Reach PCI

County	Par
Classification	CS:
General Location	Gar

ark S: Confined straight ardiner to Little Trail Cr. Upstream River Mile564.8Downstream River Mile560.2Length4.60 mi (7.40 km)

General Comments

Narrative Summary

Reach PC1 is the upstream-most reach of the project area, beginning at Gardiner Montana, and extending northward almost five miles to the Trail Creek confluence. Reach PC1 is confined/straight reach type and shows minimal impact in terms of flow alterations, bank armoring, and side channel loss. The bankfull area has remained essentially unchanged since 1950. Land use is dominated by nonirrigated agriculture, with some conversion of flood irrigation to sprinkler from 1950 to 2011. There are over 300 acres of urban/exurban development in the reach, dominated by the town of Gardiner. Although the development in Gardiner is very close to the river, it is located high on bluffs that are outside of the Channel Migration Zone (CMZ) and floodplain. The bluffs are composed of glacial outwash deposits that are very coarse and erosion resistant. The total CMZ area in Reach PC1 is only 115 acres, and there is essentially no riparian zone in this reach. This section of river is relatively steep, with steep boulder runs and associated wave trains that make it a popular stretch of river for recreational white water rafting. There is one boat ramp in the reach at RM 561.5, and the Queen of the Waters Fishing Access Site is located at RM 563.

This area of the upper Yellowstone River basin experienced three severe floods in the last 20 years. The largest floods were in 1996 and 1997, when the 32,200 cfs peak flow measured at the Corwin Springs gage exceeded a 100-year flood for those two years in a row. The 1974 and 2011 floods were major as well, with both events exceeding 30,000 cfs. The Corwin Springs gage is located downstream of Reach PC1 at the Corwin Springs Bridge.

CEA-Related observations in Reach PC1 include: •Urban/Exurban development at Gardiner

No reach-specific Practices have been identified for this reach.

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Corwin Springs

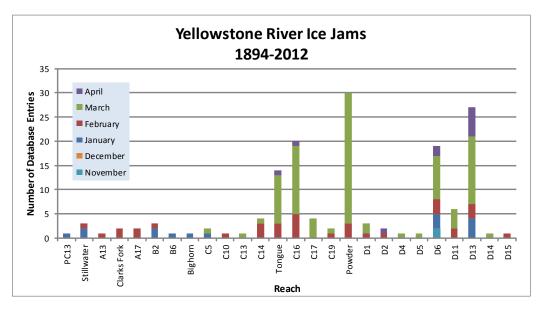
Flood His	story								Downstream	
Year	Dat	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6191500	Gage 6186500
1927	Jun 2	27	25,000	10-25	5 yr			Location	Corwin Spring	
1971	Jun 2	23	25,200	10-25	10-25 yr Period of Record		1890-2012	1923-2012		
1928	May	26	25,300	10-25	i yr					1929-2012
1911	Jun '	13	25,800	10-25	10-25 yr Distance To (miles)				3.0	
2010	Jun	5	26,000	10-25	i yr					
2011	Jun :	30	30,300	50-10	0 yr					
1974	Jun '	17	30,900	50-10	0 yr					
1918	Jun '	14	32,000	50-10	0 yr					
1997	Jun	6	32,200	>100	-yr					
1996	Jun '	10	32,200	>100	-yr					
Discharg	е								7Q10	95% Sum.
		1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregul	ated	8,370	16,800	21,300	24,100	29,800	32,100	37,500	NA	1,760
Regul	ated	8,370	16,800	21,300	24,100	29,800	32,100	37,500	NA	1,680
% Cha	ange	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	NA	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/28/2005	color	1-meter pixels	6192500	2210
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/22/2009	Color	1-meter pixels	6192500	6990
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	08/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES


Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	23,391		1.00	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	2,345,264		1.00	1950 to 2001:	0.00%
Change 1950 - 2001	2,321,873		0.00		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-1	/ear
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	the second se			

Flood Sprinkler Pivot Total

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

Mean 50-Yr	Erosion	Total	Restricted	% Restricted	Total	Restricted	% Restricted
Migration	Buffer	CMZ	CMZ	Migration	AHZ	AHZ	Avulsion
Distance (ft)	(ft)	Acreage	Acreage	Area	Acreage	Acreage	Area
0	0	115	0	0%	0	0	0%

Land Uses within the CMZ (Acres)		Sprinkler Irrigation		Urban/ ExUrban	Trans- portation
	0.0	0.0	0.0	1.4	0.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Tir	neline - Tiers 2	and 3	Acr	es		% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infras	tructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	2	2	2	0	0.1%	0.1%	0.1%	0.0%
	Totals	2	2	2	0	0.1%	0.1%	0.1%	0.0%
Agricultural Land									
-	Non-Irrigated	1,605	1,433	1,362	1,364	84.5%	75.4%	71.7%	71.8%
	Irrigated	42	35	36	36	2.2%	1.8%	1.9%	1.9%
	Totals	1,648	1,468	1,398	1,399	86.7%	77.3%	73.6%	73.7%
Channel									· · · ·
	Channel	107	110	110	110	5.6%	5.8%	5.8%	5.8%
	Totals	107	110	110	110	5.6%	5.8%	5.8%	5.8%
ExUrban									I
	ExUrban Other	0	6	6	6	0.0%	0.3%	0.3%	0.3%
	ExUrban Undevelop	ed 0	0	19	19	0.0%	0.0%	1.0%	1.0%
	ExUrban Industrial	31	107	107	107	1.7%	5.6%	5.6%	5.6%
	ExUrban Commercia	al O	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	25	27	27	0.0%	1.3%	1.4%	1.4%
	Totals	31	138	158	158	1.7%	7.2%	8.3%	8.3%
Transportation									
	Public Road	60	58	58	58	3.2%	3.1%	3.1%	3.1%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	60	58	58	58	3.2%	3.1%	3.1%	3.1%
Urban									
	Urban Other	1	27	27	27	0.1%	1.4%	1.4%	1.4%
	Urban Residential	16	30	77	77	0.9%	1.6%	4.0%	4.0%
	Urban Commercial	30	57	71	71	1.6%	3.0%	3.7%	3.7%
	Urban Undeveloped	4	10	0	0	0.2%	0.5%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	52	125	175	175	2.7%	6.6%	9.2%	9.2%

Land Use Ti	meline - Tiers 3 and	4								Chan	ige Betw	leen Y	ears
			Acr	es		%	of Rea	ch Area	1	(% of	Agricul	tural La	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '()1-11	'50-11
Irrigated													
	Sprinkler	0	0	36	36	0.0%	0.0%	2.6%	2.6%	0.0%	2.6%	0.0%	2.6%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	42	35	0	0	2.6%	2.4%	0.0%	0.0%	-0.2%	-2.4%	0.0%	-2.6%
	Totals	42	35	36	36	2.6%	2.4%	2.6%	2.6%	-0.2%	0.2%	0.0%	0.0%

Reach PCI

Non-Irrigated

Multi-Use	1,605	1,433	1,362	1,364	97.4%	97.6%	97.4%	97.4%	0.2%	-0.2%	0.0%	0.0%
Hay/Pasture	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Totals	1,605	1,433	1,362	1,364	97.4%	97.6%	97.4%	97.4%	0.2%	-0.2%	0.0%	0.0%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	0.0	0.0	0.0	0.0	0.0
Acres/Valley Mile	0.0	0.0	0.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.05	0.28%	0.42	0.00	0.00	0.00	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC2

County	Park
Classification	CM: Confined meandering
General Location	Devil's Slide area

Upstream River Mile560.2Downstream River Mile557.2Length3.00 mi (4.83 km)

General Comments Narrative Summary

Reach PC2 is located north of Gardiner near Devil's Slide. The reach is three miles long, and is confined by glacial terraces that taper in the northward direction as the river approaches Yankee Jim Canyon. This reach a contains over 3,000 feet of rock riprap, all of which is against the toe of the terrace where the river flows adjacent to Highway 89 on the east side of the river. About one third or 1,200 feet of that riprap was built since 2001, where older riprap was extended against the highway. The riprap covers 9.3 percent of the total bankline. Migration rates are very low, and the total CMZ acreage is 111 acres. Land use is dominated by non-irrigated agriculture, and irrigated agriculture has seen some conversion from flood to sprinkler and pivot. In 1950, there were 152 acres of land in PC2 under flood irrigation, and in 2011 there were none. Whereas there was no sprinkler or pivot irrigation in 1950, now there are 133 acres of sprinkler and 62 acres under flood irrigation. The Brogans Landing Fishing Access Site is located in the lower end of the reach.

This area of the upper Yellowstone River basin experienced three severe floods in the last 20 years. The largest floods were in 1996 and 1997, when the 32,200 cfs peak flow measured at the Corwin Springs gage exceeded a 100-year flood for those two years in a row. The 1974 and 2011 floods were major as well, with both events exceeding 30,000 cfs. The Corwin Springs gage is located downstream of Reach PC2 at the Corwin Springs Bridge.

CEA-Related observations in Reach PC2 include: •Urban/Exurban development at Gardiner

No reach-specific Practices have been identified for this reach.

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Corwin Springs

Flood His	story								Downstream	
Year	Dat	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6191500	Gage 6186500
1927	Jun	27	25,000	10-25	5 yr		Corwin Spring:			
1971	Jun	23	25,200	10-25	i yr		Period	1890-2012	1923-2012	
1928	May	26	25,300	10-25	5 yr				1923-2012	
1911	Jun	13	25,800	10-25	5 yr		Distance	To (miles)	0.0	
2010	Jun	5	26,000	10-25	i yr					
2011	Jun	30	30,300	50-100	0 yr					
1974	Jun	17	30,900	50-100	0 yr					
1918	Jun	14	32,000	50-100	0 yr					
1997	Jun	6	32,200	>100	-yr					
1996	Jun	10	32,200	>100	-yr					
Discharg	е								7Q10	95% Sum.
		1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregul	ated	8,800	17,600	22,300	25,200	31,100	33,500	39,100	NA	1,760
Regul	ated	8,800	17,600	22,300	25,200	31,100	33,500	39,100	NA	1,680
% Cha	ange	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	NA	-4.55%

AERIAL PHOTOGRAPHY

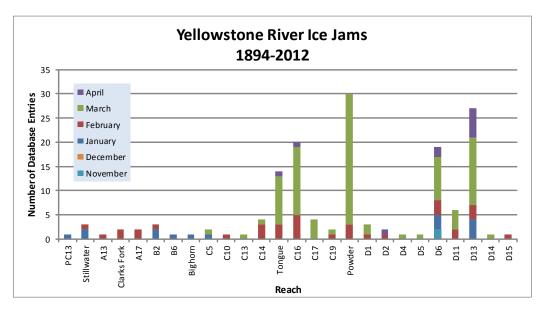
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/22/2009	Color	1-meter pixels	6192500	6990
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	08/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	1,788	5.5%	3,043	9.3%	1,255
	Feature Type Totals	1,788	5.5%	3,043	9.3%	1,255
	Reach Totals	1,788	5.5%	3,043	9.3%	1,255

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	16,400		1.00	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	16,392		1.00	1950 to 2001:	0.00%
Change 1950 - 2001	-9		0.00		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-1	fear
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	the second se			

Flood Sprinkler Pivot Total

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

Mean 50-Yr	Erosion	Total	Restricted	% Restricted	Total	Restricted	% Restricted
Migration	Buffer	CMZ	CMZ	Migration	AHZ	AHZ	Avulsion
Distance (ft)	(ft)	Acreage	Acreage	Area	Acreage	Acreage	Area
0	0	111	0	0%	0	0	0%

Land Uses within the CMZ (Acres)	Flood	Sprinkler	Pivot	Urban/	Trans-
	Irrigation	Irrigation	Irrigation	ExUrban	portation
	0.0	0.0	0.0	1.5	0.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3		Acı	es		% of Reach Area				
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	structure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	21	32	36	24	1.6%	2.4%	2.7%	1.8%	
	Totals	21	32	36	24	1.6%	2.4%	2.7%	1.8%	
Agricultural Land										
0	Non-Irrigated	908	882	859	833	68.2%	66.2%	64.5%	62.5%	
	Irrigated	251	223	156	194	18.8%	16.7%	11.7%	14.6%	
	Totals	1,159	1,105	1,015	1,027	87.0%		76.2%	77.1%	
Channel		,	,			1				
	Channel	107	100	100	100	8.1%	7.5%	7.5%	7.5%	
	Totals	107	100	100	100	8.1%	7.5%	7.5%	7.5%	
ExUrban	i otalo									
	ExUrban Other	0	16	16	16	0.0%	1.2%	1.2%	1.2%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	9	0	0	0.0%	0.7%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	9	34	129	129	0.7%	2.6%	9.7%	9.7%	
	Totals	9	59	145	145	0.7%	4.5%	10.9%	10.9%	
Transportation	i otalo	-								
ranoportation	Public Road	36	36	36	36	2.7%	2.7%	2.7%	2.7%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	36	36	36	36	2.7%	2.7%	2.7%	2.7%	
Urban	. otalo									
C. 3411	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	IUtais	U	U	U	U	0.070	0.070	0.070	0.070	

Land Use Ti	meline - Tiers 3 and	4									ige Betw		
			Acr	es		%	of Rea	ch Area	ı	(% o	f Agricul	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '(01-11	'50-11
Irrigated													
	Sprinkler	0	0	125	133	0.0%	0.0%	12.3%	12.9%	0.0%	12.3%	0.6%	12.9%
	Pivot	0	0	0	62	0.0%	0.0%	0.0%	6.0%	0.0%	0.0%	6.0%	6.0%
	Flood	251	223	31	0	21.6%	20.2%	3.1%	0.0%	-1.5%	-17.1%	-3.1%	-21.6%
	Totals	251	223	156	194	21.6%	20.2%	15.4%	18.9%	-1.5%	-4.8%	3.5%	-2.7%

Reach PC2

Non-Irrigated													
	Multi-Use	867	793	813	810	74.8%	71.8%	80.1%	78.8%	-3.0%	8.3%	-1.2%	4.0%
	Hay/Pasture	41	89	46	23	3.5%	8.0%	4.5%	2.2%	4.5%	-3.5%	-2.3%	-1.3%
	Totals	908	882	859	833	78.4%	79.8%	84.6%	81.1%	1.5%	4.8%	-3.5%	2.7%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	0.0	2.5	2.4	0.0	4.9
Acres/Valley Mile	0.0	0.9	0.9	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)		
Russian Olive in Reach	0.01	0.20%	0.25	0.00	0.01	0.00	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC3

Park

Classification General Location

CS: Confined straight

Corwin Springs to Carbella; Yankee Jim Canyon

Upstream River Mile557.2Downstream River Mile546.8Length10.40 mi (16.74 km)

General Comments

Narrative Summary

Reach PC3 is located north of Gardiner, extending from Corwin Springs to Carbella. This reach is highly confined and by glacial terraces on its upper end, and Archean-age gneiss on its lower end. As an Archean-age rock unit, the gneiss is over 2.5 billion years old. This bedrock confined section of river is known as Yankee Jim Canyon, which hosts a steep series of drops that create the most challenging whitewater section of the Yellowstone River outside of Yellowstone National Park. "Yankee Jim" George was a well-known character of the area; he came from the east in the late 1800s to settle on a newly built wagon road that extended from Bozeman to Mammoth Hot Springs in Yellowstone National Park. For 20 years Yankee Jim ran the National Park Toll Road. One hundred years later, Yankee Jim Canyon is highly popular as a recreational resource for both rafting and fishing. There are two boat ramps in the reach, located above and below the canyon. The Slip & Slide (RM 552) and Crystal Cross (RM 548) Fishing Access Sites provide river access but have no boat ramps.

Reach PC3 contains over three miles of bank armor, most of which is rock riprap that protects the highway at the entrance to Yankee Jim Canyon. Of those three miles, 700 feet was constructed since 2001. Channel migration is extremely localized in the reach, and is concentrated at the toe of an alluvial fan at the mouth of Cedar Creek that impinges on the river from the east.

Similar to other reaches in Park County, the extent of flood irrigation has dropped in the reach since 1950, and the amount of sprinkler irrigation has increased. Even so, there has been a net loss of irrigated land of over 200 acres in the reach as exurban land uses have expanded.

This area of the upper Yellowstone River basin experienced three severe floods in the last 20 years. The largest floods were in 1996 and 1997, when the 32,200 cfs peak flow measured at the Corwin Springs gage exceeded a 100-year flood for those two years in a row. The 1974 and 2011 floods were major as well, with both events exceeding 30,000 cfs.

CEA-Related observations in Reach PC3 include: •Conversion of flood irrigation to sprinkler •Net loss of irrigated land

No reach-specific Practices have been identified for this reach.

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

0.00%

% Change

0.00%

0.00%

0.00%

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Corwin Springs

Flood His	story								Downstream Gage	Upstream Gage
Year	Date	Flow	on Date	Return In	terval			Gage No	6192500	6191500
1927	Jun 27	25	5,000	10-25	yr			Location	Livingston	Corwin Springs
1971	Jun 23	25	5,200	10-25	yr		Period	of Record	1929-2015	1890-2012
1928	May 26	25	5,300	10-25	yr					
1911	Jun 13	25	5,800	10-25	yr		Distance	To (miles)	40.2	0.0
2010	Jun 5	26	6,000	10-25	yr					
2011	Jun 30	30),300	50-100) yr					
1974	Jun 17	30),900	50-100) yr					
1918	Jun 14	32	2,000	50-100) yr					
1997	Jun 6	32	2,200	>100-	yr					
1996	Jun 10	32	2,200	>100-	yr					
Discharg	е								7Q10	95% Sum.
	1.	01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregul	ated 8	8,800	17,600	22,300	25,200	31,100	33,500	39,100	1,230	1,760
Regul	ated 8	8,800	17,600	22,300	25,200	31,100	33,500	39,100	1,220	1,680

0.00%

0.00%

0.00%

-0.81%

-4.55%

AERIAL PHOTOGRAPHY

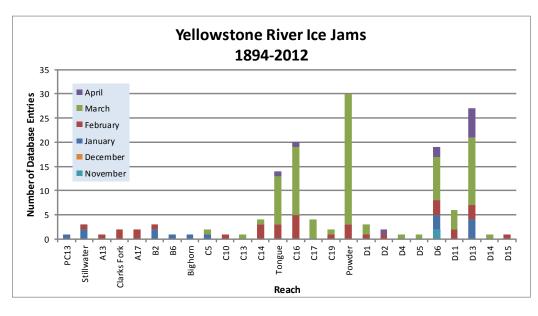
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/27/2005	color	1-meter pixels	6192500	2250
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/22/2009	Color	1-meter pixels	6192500	6990
2009	NAIP	6/27/2009	Color	1-meter pixels	6192500	15200
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	15,624	14.3%	16,335	15.0%	711
	Flow Deflectors	227	0.2%	227	0.2%	0
	Between Flow Deflectors	67	0.1%	67	0.1%	0
	Feature Type Totals	15,917	14.6%	16,628	15.2%	711
	Reach Totals	15,917	14.6%	16,628	15.2%	711

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	54,600		1.00	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	54,596	1,677	1.03	1950 to 2001:	3.07%
Change 1950 - 2001	-4		0.03		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-`	<i>l</i> ear
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

Mean 50-Yr	Erosion	Total	Restricted	% Restricted	Total	Restricted	% Restricted
Migration	Buffer	CMZ	CMZ	Migration	AHZ	AHZ	Avulsion
Distance (ft)	(ft)	Acreage	Acreage	Area	Acreage	Acreage	Area
74	148	335	0	0%	0	0	0%

Land Uses within the CMZ (Acres)		Sprinkler Irrigation	Pivot Irrigation	Urban/ ExUrban	Trans- portation
	0.0	0.0	0.0	4.2	1.3

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Tir	neline - Tiers 2 and 3		Acr	es		%	of Rea	ch Area	i j
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infras	tructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	21	32	36	24	0.5%	0.7%	0.8%	0.5%
	Totals	21	32	36	24	0.5%	0.7%	0.8%	0.5%
Agricultural Land						1			
	Non-Irrigated	908	882	859	833	20.1%	19.5%	19.0%	18.4%
	Irrigated	251	223	156	194	5.5%	4.9%	3.5%	4.3%
	Totals	1,159	1,105	1,015	1,027	25.6%	24.4%	22.4%	22.7%
Channel									
	Channel	107	100	100	100	2.4%	2.2%	2.2%	2.2%
	Totals	107	100	100	100	2.4%	2.2%	2.2%	2.2%
ExUrban									1
	ExUrban Other	0	16	16	16	0.0%	0.4%	0.4%	0.4%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	9	0	0	0.0%	0.2%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	9	34	129	129	0.2%	0.8%	2.9%	2.9%
	Totals	9	59	145	145	0.2%	1.3%	3.2%	3.2%
Transportation									
	Public Road	36	36	36	36	0.8%	0.8%	0.8%	0.8%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	36	36	36	36	0.8%	0.8%	0.8%	0.8%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	meline - Tiers 3 and	4									ige Betv		
			Acr	res		%	of Rea	ch Area	1	(% o	f Agricul	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	92	188	0.0%	0.0%	2.5%	5.1%	0.0%	2.5%	2.6%	5.1%
	Pivot	0	0	0	32	0.0%	0.0%	0.0%	0.9%	0.0%	0.0%	0.9%	0.9%
	Flood	635	535	272	184	15.6%	13.7%	7.4%	5.0%	-2.0%	-6.3%	-2.4%	-10.6%
	Totals	635	535	364	404	15.6%	13.7%	9.9%	11.0%	-2.0%	-3.7%	1.1%	-4.6%

Reach PC3

Non-Irrigated

Totals	3,433	3,380	3,313	3,280	84.4%	86.3%	90.1%	89.0%	2.0%	3.7%	-1.1%	4.6%	
Hay/Pasture	33	• •							1.2%				
Multi-Use	3,400	3,299	3,113	3,116	83.6%	84.3%	84.7%	84.6%	0.7%	0.4%	-0.1%	1.0%	

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	0.3	7.3	6.4	0.0	14.0
Acres/Valley Mile	0.0	0.7	0.6	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)	
Russian Olive in Reach	0.02	0.15%	0.72	0.00	0.01	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

546.8

543.2

3.60 mi (5.79 km)

Upstream River Mile

Length

Downstream River Mile

CountyParkClassificationCM: Confined meanderingGeneral LocationCarbella to Hwy 89 Br.

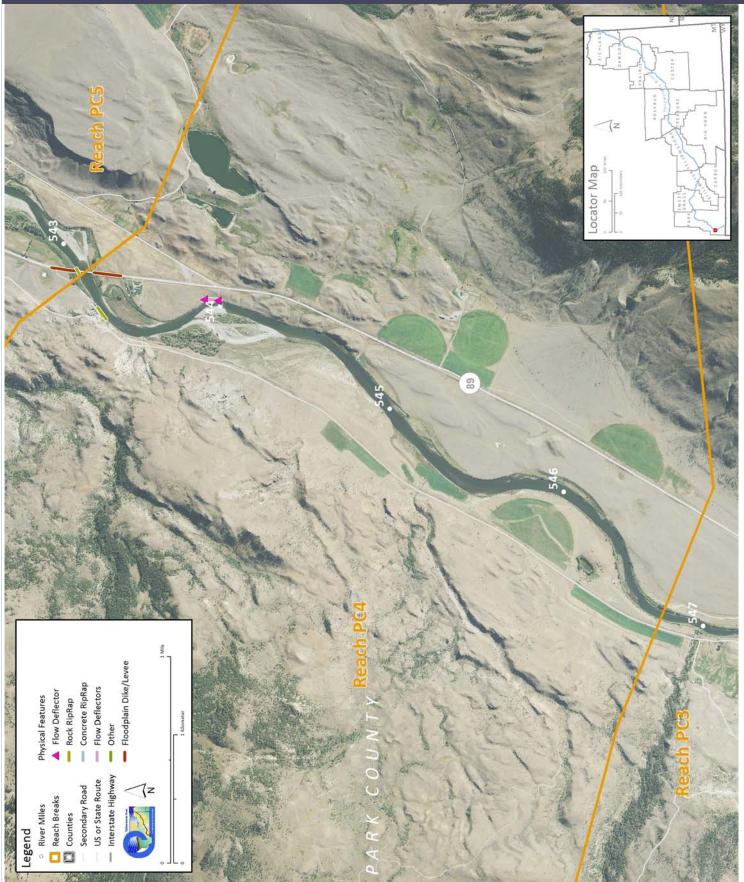
General Comments

Narrative Summary

Reach PC4 extends from Carbella to the Highway 89 Bridge at Point of Rocks in the upper Paradise Valley. The reach is classified as confined meandering, indicating that it has some sinuosity, yet migration rates are low due to lateral confinement.

Flow deflectors and rock riprap cover about 800 feet of bankline in Reach PC4, which is about 2 percent of the total streambank length. All of this armor was in place prior to 2001.

Similar to other reaches in Park County, the extent of flood irrigation has dropped in the reach since 1950, and the amount of sprinkler and pivot irrigation has increased. Reach PC4 has seen a net expansion of about 150 acres of irrigated lands since 1950, with about half of the expansion into sprinkler irrigation and the other half into pivot.


Reach PC4 marks the entrance of the Yellowstone River into the Paradise Valley. This is geomorphically indicated by the onset of point bar formation and sediment storage in the channel. One large bar deposit located about ³/₄ mile of the Highway 89 bridge has driven almost 300 feet of bank movement since 1950. As result, the Channel Migration Zone area in this reach has expanded relative to upstream, with an erosion buffer of 258 feet assigned to the alluvial edge of the river. Reach PC4 also has over 2,000 feet of active side channels.

This area of the upper Yellowstone River basin experienced three severe floods in the last 20 years. The largest floods were in 1996 and 1997, when the 32,200 cfs peak flow measured at the Corwin Springs gage exceeded a 100-year flood for those two years in a row. The 1974 and 2011 floods were major as well, with both events exceeding 30,000 cfs. The Corwin Springs gage is located upstream of Reach PC4 at the Corwin Springs Bridge.

CEA-Related observations in Reach PC4 include: •Increased bank migration and Channel Migration Zone area entering Paradise Valley •Net expansion of irrigated lands

No reach-specific Practices have been identified for this reach.

PHYSICAL FEATURES MAP (2011)

-0.42%

-0.52%

-0.37%

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Corwin Springs

Flood His _{Year}	story Date	Flo	ow on Date	Return Ir	iterval			Gage No	Downstream Gage 6192500	Upstream Gage 6191500
1927	Jun 27	7	25,000	10-25	yr			Location	Livingston	Corwin Springs
1971	Jun 23	3	25,200	10-25	yr		Period	of Record	1929-2015	1890-2012
1928	May 2	6	25,300	10-25	yr					
1911	Jun 13	3	25,800	10-25	yr		Distance	To (miles)	36.6	10.4
2010	Jun 5		26,000	10-25	yr					
2011	Jun 30)	30,300	50-100) yr					
1974	Jun 17	7	30,900	50-100) yr					
1918	Jun 14	1	32,000	50-100) yr					
1997	Jun 6		32,200	>100-	-yr					
1996	Jun 10)	32,200	>100	-yr					
Discharg	е								7Q10	95% Sum.
-		1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregul	ated	9,560	19,100	24,000	27,100	33,400	36,000	41,900	1,240	1,760
Regul	ated	9,500	19,000	23,900	27,000	33,400	36,000	41,900	1,230	1,680

0.00%

0.00%

0.00%

-0.81%

-4.55%

% Change

-0.63%

AERIAL PHOTOGRAPHY

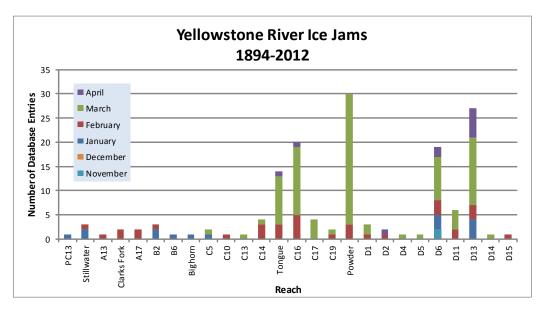
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/27/2005	color	1-meter pixels	6192500	2250
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	6/27/2009	Color	1-meter pixels	6192500	15200
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	367	1.0%	367	1.0%	0
	Flow Deflectors	150	0.4%	147	0.4%	-3
	Between Flow Deflectors	283	0.7%	287	0.8%	4
	Feature Type Totals	801	2.1%	801	2.1%	0
Floodplair	n Control					
	Floodplain Dike/Levee	918	2.4%	918	2.4%	0
	Feature Type Totals	918	2.4%	918	2.4%	0
	Reach Totals	1,718	4.5%	1,718	4.5%	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	19,086	2,189	1.11	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	19,119	2,837	1.15	1950 to 2001:	3.02%
Change 1950 - 2001	34	648	0.03		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-1	<i>l</i> ear
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	the second se			

Flood Sprinkler Pivot Total

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tota CM2 Acrea	Z CMZ	Migration Area	d Total AHZ Acreag	AHZ	Avulsion	
	129	258	308	3 3	1%	0	0	0%	
2011 Res	stricted Mig	ration Ar	ea Sum	mary				conditions in the and Sweet Grass	
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, COI				
Road/Railro	oad Prism								
	Public Road		3	0.9%					
		Totals	3	0.9%					
Land Us	es within th	e CMZ (A	(cres)	Flood Irrigation 5.5	Sprinkler Irrigation 0.8	Pivot Irrigation 0.9	Urban/ ExUrban 3.4	Trans- portation 0.8	

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Tir	meline - Tiers 2 and 3		Acr	res		%	of Rea	ch Area	1
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infras	structure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	8	2	4	4	0.5%	0.1%	0.2%	0.2%
	Totals	8	2	4	4	0.5%	0.1%	0.2%	0.2%
Agricultural Land									
-	Non-Irrigated	1,408	1,294	1,392	1,253	83.1%	76.3%	82.1%	73.9%
	Irrigated	63	167	63	190	3.7%	9.8%	3.7%	11.2%
	Totals	1,471	1,460	1,455	1,443	86.8%	86.2%	85.9%	85.1%
Channel									
	Channel	186	179	180	181	11.0%	10.6%	10.6%	10.7%
	Totals	186	179	180	181	11.0%	10.6%	10.6%	10.7%
ExUrban									1
	ExUrban Other	0	0	0	2	0.0%	0.0%	0.0%	0.1%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	9	13	22	0.0%	0.5%	0.7%	1.3%
	Totals	0	9	13	23	0.0%	0.5%	0.7%	1.4%
Transportation									
	Public Road	29	44	44	44	1.7%	2.6%	2.6%	2.6%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	29	44	44	44	1.7%	2.6%	2.6%	2.6%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	meline - Tiers 3 and	4									nge Betw		
			Acr	es		%	of Rea	ch Area	1	(% o	f Agricul	tural La	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '(01-11	'50-11
Irrigated													
	Sprinkler	0	0	39	85	0.0%	0.0%	2.7%	5.9%	0.0%	2.7%	3.2%	5.9%
	Pivot	0	0	24	97	0.0%	0.0%	1.6%	6.7%	0.0%	1.6%	5.1%	6.7%
	Flood	63	167	0	9	4.3%	11.4%	0.0%	0.6%	7.2%	-11.4%	0.6%	-3.7%
	Totals	63	167	63	190	4.3%	11.4%	4.3%	13.2%	7.2%	-7.1%	8.8%	8.9%

Reach PC4

Non-Irrigated												
	Multi-Use	1,341	1,287	1,354	1,236	91.1%	88.1%	93.1%	85.7%	-3.0%	5.0% -7.4%	-5.5%
	Hay/Pasture	68	7	37	17	4.6%	0.5%	2.6%	1.2%	-4.1%	2.1% -1.4%	-3.4%
	Totals	1,408	1,294	1,392	1,253	95.7%	88.6%	95.7%	86.8%	-7.2%	7.1% -8.8%	-8.9%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	0.0	5.5	25.0	0.0	30.5
Acres/Valley Mile	0.0	1.7	7.6	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.00	0.04%	0.10	0.00	0.02	0.07	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

County	Park
Classification	PCA: Partially confined anabranching
General Location	Hwy 89 Br. to Big Creek

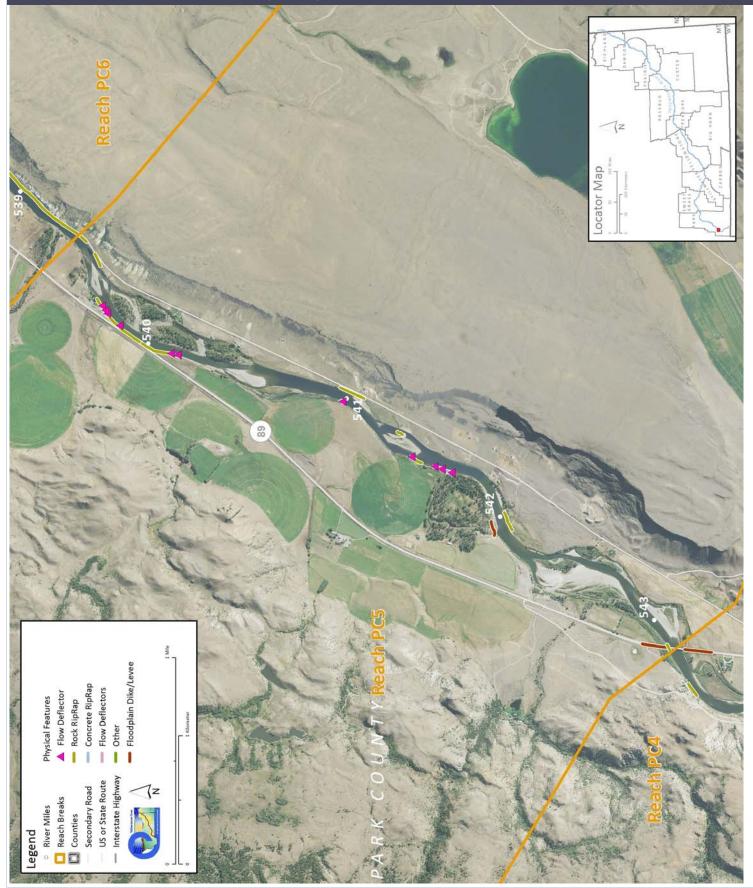
Upstream River Mile	543.2
Downstream River Mile	539.4
Length	3.80 mi (6.12 km)

General Comments

Narrative Summary

From the Highway 89 Bridge downstream to Big Creek, Reach PC5 is the first notably dynamic reach below Gardiner, with high rates of bank movement and a relatively high density of side channels and islands. In 2001, there were almost four miles of active side channel in the reach, although one 3,500-foot long channel on the west side of the river has been blocked by a dike. This dike does appear to have a culvert in it, keeping the channel somewhat accessible. In addition to side channel blockages, this reach has been impacted by over 5,000 feet of bank armor, most of which is rock riprap. One section of riprap that was about 150 feet long when constructed has been flanked and is now in the middle of the river. Since the rock was flanked, the river has migrated over 100 feet behind the old armor.

Similar to other reaches in Park County, the extent of flood irrigation has dropped in the reach since 1950, and the amount of sprinkler and pivot irrigation has increased. Reach PC5 has seen a net expansion of about 150 acres of irrigated lands since 1950, with most of the expansion into pivot. There has also been 100 acres of exurban development in Reach PC5 since 1950. There is one boat ramp at RM 542.5 at the Point of Rocks Fishing Access.


The influence of irrigation on streamflow is small but evident in Reach PC5. When gage data are extrapolated to reaches based on drainage area, Reach PC5 shows a 100 cfs reduction in the 2-year flood under developed conditions. This is a 0.5 percent reduction in the total flow of 19,000 cfs.

This area of the upper Yellowstone River basin experienced three severe floods in the last 20 years. The largest floods were in 1996 and 1997, when the 32,200 cfs peak flow measured at the Corwin Springs gage exceeded a 100-year flood for those two years in a row. The 1974 and 2011 floods were major as well, with both events exceeding 30,000 cfs. The Corwin Springs gage is located upstream of Reach PC5 at the Corwin Springs Bridge.

CEA-Related observations in Reach PC5 include: •Blockage of a 3,500feet-long side channel by a dike which may have a culvert •Flanking of rock riprap and accelerated erosion behind •Net expansion of irrigated lands

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC5 include: Side Channel Restoration at RM 542 Removal of flanked bank armor at RM 541.4

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Corwin Springs

Flood His	story								Downstream	
Year	Dat	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6192500	Gage 1619500
1927	Jun 2	27	25,000	10-25	10-25 yr			Location	Livingston	1010000
1971	Jun 2	23	25,200	10-25	5 yr		Poriod	l of Record	1929-2015	
1928	May	26	25,300	10-25	5 yr					
1911	Jun '	13	25,800	10-25	i yr	Distance To (miles)		To (miles)	32.8	
2010	Jun	5	26,000	10-25	i yr					
2011	Jun :	30	30,300	50-100	0 yr					
1974	Jun '	17	30,900	50-100	0 yr					
1918	Jun '	14	32,000	50-100	0 yr					
1997	Jun	6	32,200	>100	-yr					
1996	Jun '	10	32,200	>100	-yr					
Discharg	е								7Q10	95% Sum.
		1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregul	ated	9,560	19,100	24,000	27,100	33,400	36,000	41,900	1,280	1,760
Regul	ated	9,500	19,000	23,900	27,000	33,400	36,000	41,900	1,260	1,680
% Cha	ange	-0.63%	-0.52%	-0.42%	-0.37%	0.00%	0.00%	0.00%	-1.56%	-4.55%

AERIAL PHOTOGRAPHY

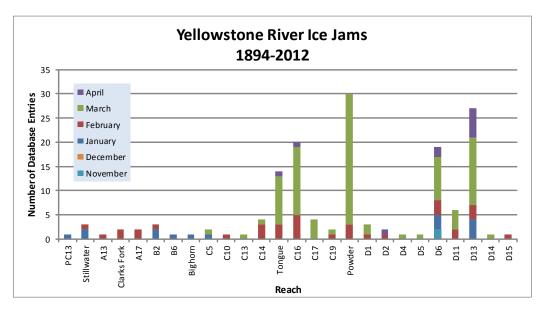
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	6/27/2009	Color	1-meter pixels	6192500	15200
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	
2013	NAIP	08/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	4,572	11.3%	4,372	10.8%	-201
	Flow Deflectors	707	1.8%	645	1.6%	-62
	Between Flow Deflectors	368	0.9%	348	0.9%	-20
	Feature Type Totals	5,647	14.0%	5,365	13.3%	-282
Floodplair	n Control					
	Floodplain Dike/Levee	1,023	2.5%	1,023	2.5%	0
	Feature Type Totals	1,023	2.5%	1,023	2.5%	0
	Reach Totals	6,670	16.5%	6,388	15.8%	-282

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	20,497	10,881	1.53	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	20,180	20,151	2.00	1950 to 2001:	30.55%
Change 1950 - 2001	-317	9,270	0.47		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	3,503		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-Year		5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 157	Erosion Buffer (ft) 313	Tot CN Acre 38	IZ age	Restricted CMZ Acreage 25	% Restric Migratio Area 6%		ge Acro		Avulsion Avulsion Area 0%
2011 Restricted Migration Area Summary				у	Note that these data reflect the observed conditions in the 2011 aerial photography (NAIP for Park and Sweet Grass					
Reason for Restriction	Protected		RMA Acres	Perce Cl	ent of MZ		DE for the res			et Grass
Road/Railro			4	0.1	20/					
RipRap/Flo	Public Road w Deflectors Public Road		4	1.	9% 5%					
RipRap	Irrigated		9	2.2	2%					
Dike/Levee	Exurban Res	idential	1	0.4	4%					
	Non-Irrigated		3	0.8	8%					
		Totals	22	5.	8%					
Land Us	es within the	e CMZ (A	Acres)	Irri		Sprinkler Irrigation 3.2	Pivot Irrigation 2.4	Urban/ ExUrban 20.1	Trar porta 2.7	tion

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Timeline - Tiers 2 and 3			Acres			% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	structure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	0	10	26	14	0.0%	0.8%	2.0%	1.0%
	Totals	0	10	26	14	0.0%	0.8%	2.0%	1.0%
Agricultural Land									1
•	Non-Irrigated	806	895	781	557	61.3%	68.0%	59.3%	42.4%
	Irrigated	188	100	102	335	14.3%	7.6%	7.8%	25.5%
	Totals	995	995	883	893	75.6%	75.6%	67.1%	67.8%
Channel									
	Channel	287	252	253	258	21.8%	19.1%	19.3%	19.6%
	Totals	287	252	253	258	21.8%	19.1%	19.3%	19.6%
ExUrban									
	ExUrban Other	0	7	20	20	0.0%	0.6%	1.5%	1.5%
	ExUrban Undeveloped	0	. 0	6	14	0.0%	0.0%	0.5%	1.0%
	ExUrban Industrial		0	7	7	0.0%	0.0%	0.5%	0.5%
	ExUrban Commercial	0 0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	3	71	62	0.0%	0.2%	5.4%	4.7%
	Totals	0	11	104	102	0.0%	0.8%	7.9%	7.8%
Transportation	. otalo								
ranoportation	Public Road	35	49	49	49	2.6%	3.7%	3.7%	3.7%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	35	49	49	49	2.6%	3.7%	3.7%	3.7%
Urban	i otalo					,			
Ciban	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	i Utais	0	5	5	J	0.070	0.070	0.070	0.070

Land Use Ti	meline - Tiers 3 and	4									nge Betv		
			Acr	es		%	of Rea	ch Area	ı	(% of	f Agricul	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	88	74	0.0%	0.0%	10.0%	8.3%	0.0%	10.0%	-1.7%	8.3%
	Pivot	0	0	0	222	0.0%	0.0%	0.0%	24.9%	0.0%	0.0%	24.9%	24.9%
	Flood	188	100	14	39	18.9%	10.1%	1.6%	4.3%	-8.9%	-8.5%	2.8%	-14.6%
	Totals	188	100	102	335	18.9%	10.1%	11.6%	37.6%	-8.9%	1.5%	26.0%	18.6%

Reach PC5

Non-Irrigated											
	Multi-Use	767	806	396	366	77.1%	81.0%	44.9%	41.0%	3.9%	-36.1% -3.9% -36.1%
	Hay/Pasture	39	89	384	191	3.9%	8.9%	43.5%	21.4%	5.0%	34.6% -22.1% 17.5%
	Totals	806	895	781	557	81.1%	89.9%	88.4%	62.4%	8.9%	-1.5% -26.0% -18.6%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	0.0	26.4	34.0	0.0	60.4
Acres/Valley Mile	0.0	7.4	9.6	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.11	0.06%	0.20	0.00	0.00	0.00	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

County	Park
Classification	CM: Confined meandering
General Location	Big Creek to Six Mile Cr
General Comments	

Upstream River Mile539.4Downstream River Mile535Length4.40 mi (7.08 km)

Narrative Summary

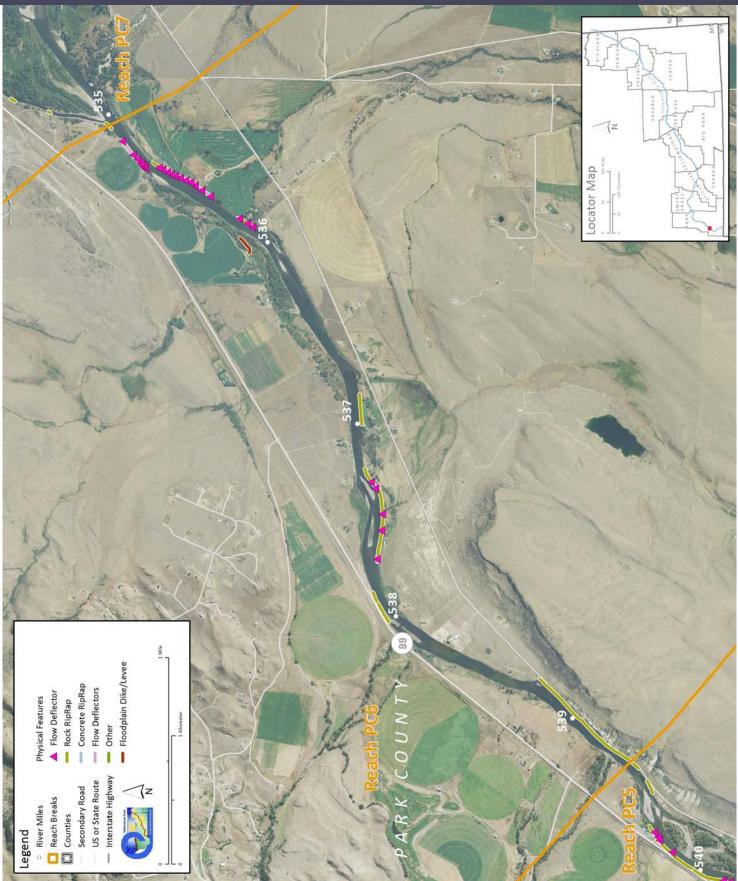
Reach PC6 is 4.4 miles long, extending from the mouth of Big Creek to the mouth of Six Mile Creek. The reach has a fairly narrow riparian corridor and Channel Migration Zone (CMZ), indicating low rates of channel movement. Over two miles of the bankline in Reach PC6 are armored, by both rock riprap (7,371 feet) and flow deflectors (3,278 feet). Over 20 percent of the total bankline in this reach is armored, and all of that armor was in place in 2001. The armor protects both exurban and irrigated lands.

The amount of flood irrigated lands in Reach PC6 has dropped by one half since 1950 (200 acre reduction), and there has been commensurate development into pivot (85 acres) and sprinkler (93 acres) during that time. The overall footprint of agricultural lands within Reach PC6 has dropped by about 500 acres, with 450 of those acres converting to exurban development. About 11 acres of irrigated land in Reach PC6 are within the Channel Migration Zone. As the CMZ is quite narrow in this reach, it indicates that these irrigated lands extend essentially to the streambank. There is one boat ramp on the right bank at RM 536.8.

This area of the upper Yellowstone River basin experienced three severe floods in the last 20 years. The largest floods were in 1996 and 1997, when the 32,200 cfs peak flow measured at the Corwin Springs gage exceeded a 100-year flood for those two years in a row. The 1974 and 2011 floods were major as well, with both events exceeding 30,000 cfs. The Corwin Springs gage is located upstream of Reach PC6 at the Corwin Springs Bridge.

A hydrologic evaluation of flow depletions in the reach indicates that flow alterations over the last century have been minimal in this reach. Flow reductions due to human influences are estimated to be less than 2 percent for both high and low flows.

CEA-Related observations in Reach PC6 include:


·Conversion of agricultural land to exurban development

·Agricultural and exurban development close to the active channel within the CMZ

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC6 include: •CMZ Management due to extensive encroachment of irrigated lands to edge of river.

Reach PC6

PHYSICAL FEATURES MAP (2011)

-0.42%

-0.52%

-0.37%

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Corwin Springs

Flood His	story							Downstream Gage	Upstream Gage
Year	Date	Flow on Dat	e Return Inte	erval			Gage No	6192500	6191500
1927	Jun 27	25,000	10-25 yı	r			Location	Livingston	Corwin Springs
1971	Jun 23	25,200	10-25 yı	r		Period	of Record	1929-2015	1890-2012
1928	May 26	25,300	10-25 yı	r					
1911	Jun 13	25,800	10-25 yı	r		Distance	To (miles)	28.4	17.8
2010	Jun 5	26,000	10-25 yı	r					
2011	Jun 30	30,300	50-100 y	/r					
1974	Jun 17	30,900	50-100 y	/r					
1918	Jun 14	32,000	50-100 y	/r					
1997	Jun 6	32,200	>100-yr	-					
1996	Jun 10	32,200	>100-yr	-					
Discharg	е							7Q10	95% Sum.
	1.0	01 Yr 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregul	ated 9	,560 19,10	0 24,000	27,100	33,400	36,000	41,900	1,310	1,760
Regul	ated 9	,500 19,00	0 23,900	27,000	33,400	36,000	41,900	1,290	1,680

0.00%

0.00%

0.00%

-1.53%

-4.55%

% Change

-0.63%

AERIAL PHOTOGRAPHY

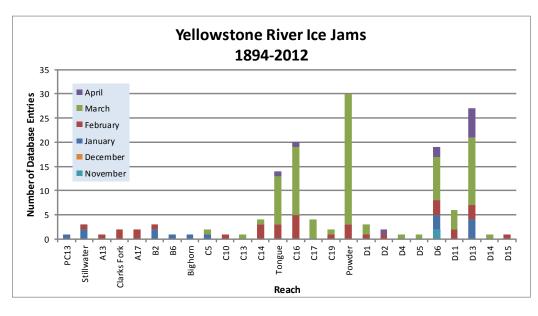
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/22/2009	Color	1-meter pixels	6192500	6990
2009	NAIP	6/27/2009	Color	1-meter pixels	6192500	15200
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	
2013	NAIP	08/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	7,371	16.2%	7,371	16.2%	0
	Flow Deflectors	1,685	3.7%	1,685	3.7%	0
	Between Flow Deflectors	1,593	3.5%	1,593	3.5%	0
	Feature Type Totals	10,649	23.4%	10,649	23.4%	0
Floodplair	n Control					
	Floodplain Dike/Levee	477	1.1%	477	1.1%	0
	Feature Type Totals	477	1.1%	477	1.1%	0
	Reach Totals	11,126	24.5%	11,126	24.5%	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	22,711	4,503	1.20	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	22,709	4,579	1.20	1950 to 2001:	0.28%
Change 1950 - 2001	-2	76	0.00		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-Year		5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 55	Erosion Buffer (ft) 110	Tor CN Acre 27	IZ age	Restricted CMZ Acreage 24	% Restric Migratio Area 9%		2	estricted AHZ creage 0	% Restricted Avulsion Area 0%
2011 Res	stricted Mig	ration A	rea Sun	nmar	y		ese data refle			
Reason for Restriction	Land Use Protected		RMA Acres	Perce Cl	ent of MZ		photography OE for the res	`		Sweet Grass
RipRap/Flo	w Deflectors									
	Other Infrast	ructure	2	0.5	5%					
	Exurban Res	sidential	11	4.0)%					
RipRap										
	Public Road		2	0.8	3%					
Flow Deflect	ctors									
	Irrigated		8	2.7	7%					
Dike/Levee										
	Non-Irrigated	ł	1	0.4	1%					
		Totals	24	8.4	4%					
Land Us	es within th	e CMZ (/	Acres)	Irrig		Sprinkler Irrigation 0.0	Pivot Irrigation 0.7	Urban ExUrba 29.0		rans- ortation 1.8

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Tir	meline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infras	structure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	17	68	75	86	1.1%	4.4%	4.9%	5.6%
	Totals	17	68	75	86	1.1%	4.4%	4.9%	5.6%
Agricultural Land									
	Non-Irrigated	869	800	903	415	56.7%	52.2%	58.9%	27.1%
	Irrigated	409	430	205	355	26.7%	28.1%	13.4%	23.2%
	Totals	1,278	1,230	1,107	770	83.4%	80.3%	72.3%	50.3%
Channel						I			
	Channel	192	188	188	188	12.5%	12.3%	12.3%	12.3%
	Totals	192	188	188	188	12.5%	12.3%	12.3%	12.3%
ExUrban	Irban								
	ExUrban Other	0	0	0	3	0.0%	0.0%	0.0%	0.2%
	ExUrban Undeveloped	4	4	16	233	0.3%	0.3%	1.0%	15.2%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	104	211	0.0%	0.0%	6.8%	13.7%
	Totals	4	4	120	446	0.3%	0.3%	7.8%	29.1%
Transportation									
	Public Road	41	42	42	42	2.7%	2.7%	2.7%	2.7%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	41	42	42	42	2.7%	2.7%	2.7%	2.7%
Urban						1			
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	_and Use Timeline - Tiers 3 and 4										ige Betv		
		Acres			% of Reach Area			(% of Agricultural Land)			and)		
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	93	93	0.0%	0.0%	8.4%	12.0%	0.0%	8.4%	3.7%	12.0%
	Pivot	0	0	49	85	0.0%	0.0%	4.4%	11.0%	0.0%	4.4%	6.6%	11.0%
	Flood	409	430	63	178	32.0%	35.0%	5.7%	23.1%	3.0%	-29.3%	17.4%	-8.9%
	Totals	409	430	205	355	32.0%	35.0%	18.5%	46.1%	3.0%	-16.5%	27.6%	14.1%

Reach PC6

Non-Irrigated												
	Multi-Use	849	761	571	272	66.4%	61.8%	51.6%	35.3%	-4.6%	-10.3% -16.2%	-31.1%
	Hay/Pasture	20	39	332	143	1.6%	3.2%	29.9%	18.6%	1.7%	26.7% -11.4%	17.0%
	Totals	869	800	903	415	68.0%	65.0%	81.5%	53.9%	-3.0%	16.5% -27.6%	-14.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	1.0	62.6	13.6	0.0	77.2
Acres/Valley Mile	0.2	15.3	3.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.01	0.15%	0.66	0.00	0.00	0.00	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

PCA: Partially confined anabranching

Six Mile Cr to Grey Owl

Upstream River Mile	535
Downstream River Mile	529
Length	6.00 mi (9.66 k

km)

General Location General Comments

County

Classification

Park

Narrative Summary

Reach PC7 extends from the mouth of Six Mile Creek to the Grey Owl fishing access site. It is six miles long and is classified as a Partially Confined Anabranching (PCA) channel type. This indicates that the reach supports side channels and wooded islands, and intermittently flows along the edge of the stream corridor. The relatively complex reach type is evidenced by the relative broad Channel Migration Zone (CMZ) footprint, which is typically about 1500 to 2500 feet wide in this reach. In comparison, Reach PC6 just upstream has a CMZ that is typically about 500 feet wide. There are a total of 1,171 acres of stream corridor within the CMZ in Reach PC7. About 6 percent of that area has been restricted by bank armor.

Reach PC7 has over 8,800 feet of rock riprap and 550 feet of flow deflectors, which collectively armors about 15 percent of the total bankline. Of those 9,350 feet of armor, about 350 feet were constructed since 2001. Since 1950, one side channel that is 2,950 feet long was blocked by a dike at RM 532. This isolated channel is located just upstream of the Emigrant Bridge on the east floodplain, and has been identified as a potential side channel restoration area. In the upstream portion of the reach at RM 534, the Park Branch Canal diverts water from a long side channel that has been active since at least the 1950s.

Land use conversions in Reach PC7 have seen a reduction in flood irrigation that has been accompanied by about 67 acres of development of sprinkler and pivot irrigation systems. That said, this reach has experienced major exurban growth, from 0 acres in 1950 to 298 acres in 2011. Most of that growth reflects rural subdivision development on the glacial outwash terraces above the active stream corridor. There is one boat ramp on the right bank just above the Emigrant Bridge at the Emigrant Fishing Access Site, and just below the bridge, there is a ~72 acre fishing access site without boating facilities on the west side of the river (Emigrant West).

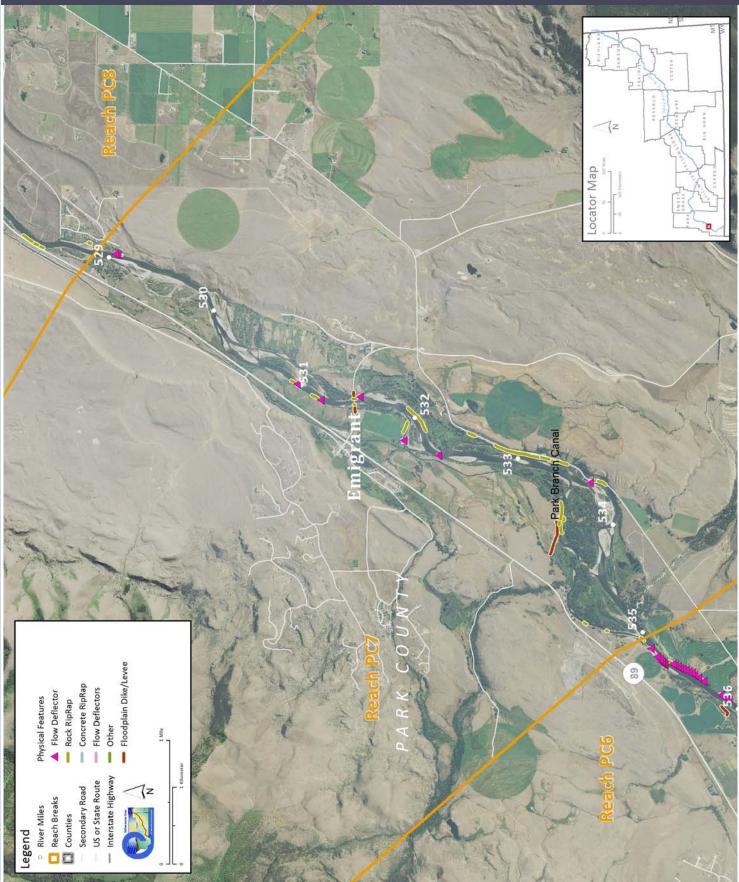
Reach PC7 contains over 200 acres of emergent wetlands, many of which appear to be associated with groundwater seepage from the base of the glacial terraces on the east side of the river, and ditch seepage on the west side of the river. These areas tend to be utilized as non-irrigated hay/pasture ground.

About 1.5 acres of Russian olive have been mapped in Reach PC7, which is a dramatic increase relative to upstream reaches.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,340 cfs to 1,320 cfs with human development, a reduction of 1.5 percent.

CEA-Related observations in Reach PC7 include:


- Conversion of agricultural land to exurban development
- •Post-1950s side channel blockage with identified restoration potential
- •Sharp increase in Russian olive extent relative to upstream reaches

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC7 include: •Side Channel Restoration at RM 532R.

- •Diversion Infrastructure Management at Park Branch Canal, RM 535.5
- Russian olive removal

Reach PC7

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Corwin Springs

Flood H	Hist	ory								Downstream Gage	Upstream Gage
Yea	ır	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	6192500	6191500
192	7	Jun 2	.7	25,000	10-25	i yr			Location	Livingston	Corwin Springs
197	1	Jun 2	3	25,200	10-25	5 yr		Period	of Record	1929-2015	1890-2012
192	8	May 2	26	25,300	10-25	5 yr					
191	1	Jun 1	3	25,800	10-25	i yr		Distance	To (miles)	22.4	22.2
201	0	Jun 🗄	5	26,000	10-25	i yr					
201	1	Jun 3	0	30,300	50-10	0 yr					
197	4	Jun 1	7	30,900	50-10	0 yr					
191	8	Jun 1	4	32,000	50-10	0 yr					
199	7	Jun (6	32,200	>100	-yr					
199	6	Jun 1	0	32,200	>100	-yr					
Discha	rge									7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unreg	gula	ted	9,560	19,100	24,000	27,100	33,400	36,000	41,900	1,340	1,760
Re	gula	ted	9,500	19,000	23,900	27,000	33,400	36,000	41,900	1,320	1,680
% (Char	nge	-0.63%	-0.52%	-0.42%	-0.37%	0.00%	0.00%	0.00%	-1.49%	-4.55%

AERIAL PHOTOGRAPHY

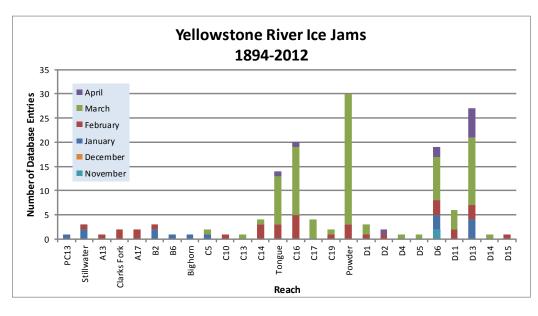
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/28/2005	color	1-meter pixels	6192500	2210
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/22/2009	Color	1-meter pixels	6192500	6990
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	
2013	NAIP	08/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	8,540	13.1%	8,841	13.6%	301
	Flow Deflectors	502	0.8%	556	0.9%	54
	Feature Type Totals	9,042	13.9%	9,396	14.4%	355
Floodplain	n Control					
	Floodplain Dike/Levee	2,005	3.1%	2,005	3.1%	0
	Feature Type Totals	2,005	3.1%	2,005	3.1%	0
	Reach Totals	11,047	17.0%	11,401	17.5%	355

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	34,130	29,472	1.86	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	32,556	41,507	2.27	1950 to 2001:	22.08%
Change 1950 - 2001	-1,574	12,035	0.41		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	2,950		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-1	<i>l</i> ear
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	the second se			

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 194	Erosion Buffer (ft) 388	To CM Acre 1,1	NZ age	Restricted CMZ Acreage 74	% Restric Migratic Area 6%		Z ige	Restricted AHZ Acreage 0	% Restricted Avulsion Area 0%
2011 Res	stricted Mig	ration A	rea Sun	nmai	ry		ese data refle			
Reason for Restriction	Land Use Protected		RMA Acres		ent of MZ		photography OE for the re			Sweet Grass
RipRap/Flo	w Deflectors									
	Public Road		0	0	.0%					
RipRap										
	Non-Irrigated	ł	36	2	.9%					
	Irrigated		6	0	.5%					
	Exurban Und	develope	0	0	.0%					
	Exurban Res	sidential	2	0	.2%					
	Canal		18	1	.5%					
Dike/Levee										
	Public Road		12	1	.0%					
		Totals	74	6	.1%					
Land Us	es within th	e CMZ (/	Acres)	Irri		Sprinkler Irrigation 11.6	Pivot Irrigation 0.0	Urba ExUr 16	ban po	Trans- ortation 3.5

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3		Aci	es		%	of Rea	ch Area	1
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	structure								
	Canal	33	33	33	33	1.2%	1.2%	1.2%	1.2%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	28	54	49	62	1.0%	2.0%	1.8%	2.3%
	Totals	61	87	82	95	2.2%	3.2%	3.0%	3.5%
Agricultural Land									1
0	Non-Irrigated	1,487	1,430	1,282	1,271	54.5%	52.4%	47.0%	46.6%
	Irrigated	415	315	265	237	15.2%	11.6%	9.7%	8.7%
	Totals	1,902	1,746	1,547	1,509	69.7%		56.7%	55.3%
Channel			,	,	,	1			1
	Channel	701	721	766	767	25.7%	26.5%	28.1%	28.1%
	Totals	701	721	766	767		26.5%		
ExUrban	Totals					2011 /0	2010 /0	2011/0	
	ExUrban Other	0	1	3	3	0.0%	0.1%	0.1%	0.1%
	ExUrban Undeveloped	3	0	5	13	0.1%	0.0%	0.2%	0.5%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	21	30	30	0.0%	0.8%	1.1%	1.1%
	ExUrban Residential	22	94	236	251	0.8%	3.4%	8.7%	9.2%
	Totals	25	116	274	298	0.9%	4.3%	10.0%	10.9%
Transportation	Totalo								
ranoportation	Public Road	39	57	59	59	1.4%	2.1%	2.1%	2.1%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	39	57	59	59	1.4%	2.1%	2.1%	2.1%
Urban	Totalo								
Orban	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	ů 0	0	0	0	0.0%	0.0%	0.0%	0.0%
	iotais	0	5	5	5	0.070	0.070	0.070	0.070

Land Use Ti	meline - Tiers 3 and	4									ige Betw		
			Acr	es		%	of Rea	ch Area	ı	(% of	f Agricul	tural La	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '(01-11	'50-11
Irrigated													
	Sprinkler	0	0	50	50	0.0%	0.0%	3.3%	3.3%	0.0%	3.3%	0.1%	3.3%
	Pivot	0	0	0	17	0.0%	0.0%	0.0%	1.1%	0.0%	0.0%	1.1%	1.1%
	Flood	415	315	214	170	21.8%	18.1%	13.9%	11.3%	-3.7%	-4.2%	-2.6%	-10.5%
	Totals	415	315	265	237	21.8%	18.1%	17.1%	15.7%	-3.7%	-0.9%	-1.4%	-6.1%

Reach PC7

Non-Irrigated													
	Multi-Use	928	1,373	1,116	1,088	48.8%	78.6%	72.1%	72.1%	29.8%	-6.5%	0.0%	23.3%
	Hay/Pasture	559	57	167	184	29.4%	3.3%	10.8%	12.2%	-26.1%	7.5%	1.4%	-17.2%
	Totals	1,487	1,430	1,282	1,271	78.2%	81.9%	82.9%	84.3%	3.7%	0.9%	1.4%	6.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	12.1	203.9	112.5	0.0	328.5
Acres/Valley Mile	2.1	36.0	19.9	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	
Russian Olive in Reach	1.47	0.16%	0.81	0.15	0.14	0.02

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC8

 County
 Park

 Classification
 CM: Confined meandering

 General Location
 Grey Owl to just below Mallard's Rest

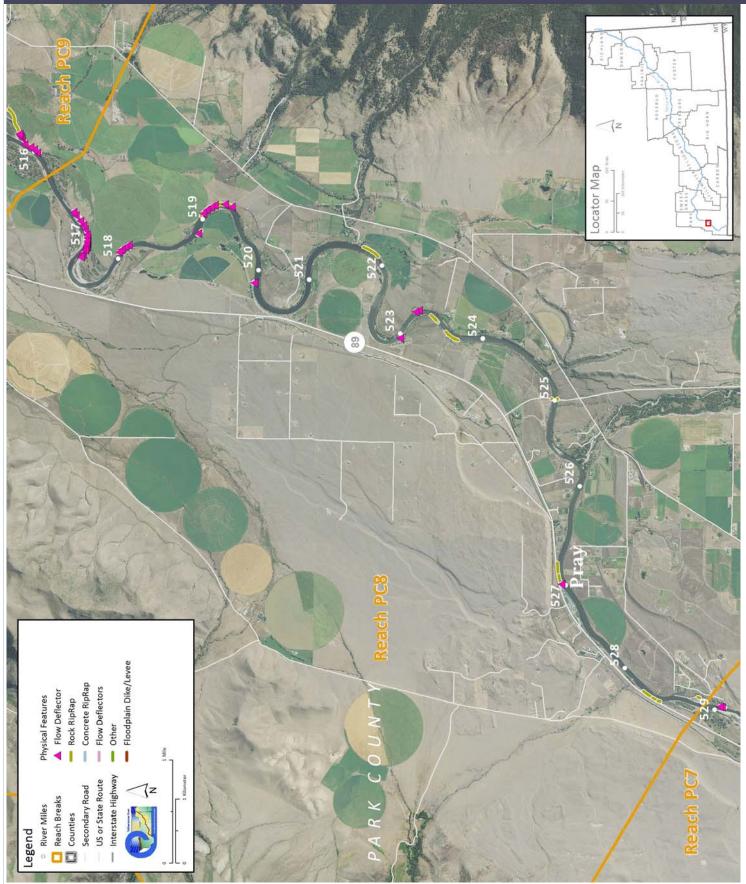
Upstream River Mile529Downstream River Mile516.3Length12.70 mi (20.44 km)

General Comments

Narrative Summary Reach PC8 extends from the Grey Owl fishing access site to just below Mallard's Rest. It is almost 13 miles long and is classified as confined meandering, indicating that it has somewhat of a sinuous planform but is largely confined by older terraces or bedrock. This is a remarkably stable reach that shows little evidence of channel migration. Even though migration rates are low, approximately 8 percent of the bankline has been armored by 7,500 feet of rock riprap and 2,760 feet of flow deflectors. About 3,200 feet of that armor was constructed since 2001.

Similar to other reaches in Park County, the extent of flood irrigation has dropped in the reach since 1950, and the amount of sprinkler and pivot irrigation has increased proportionately. There has also been a major expansion of exurban land uses in the reach from 14 acres in 1950 to 1,433 acres in 2011. By comparison, 220 acres are in flood, 170 acres in sprinkler, and 1,014 acres in pivot irrigation. The relative expansion of pivot irrigation in this reach is large compared to the rest of the Paradise Valley. About 30 acres of irrigated land are located within the Channel Migration Zone, and 14 of those are under pivot. In one case (RM 519.5) a pivot occupies the entire core of a meander bend.

The popularity of recreational fishing in this reach is exemplified by the seven boat ramps identified in this 13 mile stretch of river. Fishing Access Sites in this reach include Grey Owl, Paradise, Lock Leven, and Mallard's Rest.


This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events now considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,470 cfs to 1,430 cfs with human development, a reduction of 2.7 percent.

CEA-Related observations in Reach PC8 include: •Major expansion from flood irrigation to pivot •Conversion of agricultural land to exurban development •Extensive armoring in naturally stable reach

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC8 include: •Channel Migration Zone (CMZ) management

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood H	listory	/							Downstream	
Year	r Da	ite Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6192500	Gage 1619500
1971	l Jun	23	29,200	10-25	i yr			Location	Livingston	1010000
1902	2 Jun	11	30,100	10-25	i yr		Period of Record		1929-2015	
1943	3 Jun	20	30,600	10-25	yr					
1974	4 Jun	17	36,300	50-100	50-100 yr		Distance	To (miles)	9.7	
1996	6 Jun	10	37,100	50-100) yr					
1997	7 Jur	ר 6 ר	38,000	50-100) yr					
2011	l Jun	30	40,600	>100	-yr					
Dischar	rge								7Q10	95% Sum.
		1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unreg	gulated	9,820	19,500	24,600	27,800	34,200	36,800	42,800	1,470	1,760
Reg	gulated	9,760	19,400	24,500	27,700	34,100	36,800	42,800	1,430	1,680
% C	Change	-0.61%	-0.51%	-0.41%	-0.36%	-0.29%	0.00%	0.00%	-2.72%	-4.55%

AERIAL PHOTOGRAPHY

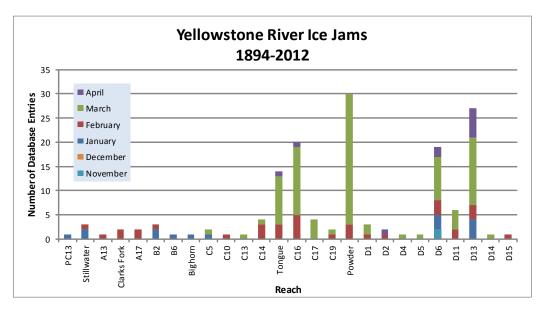
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/28/2005	color	1-meter pixels	6192500	2210
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/23/2009	Color	1-meter pixels	6192500	6770
2009	NAIP	7/22/2009	Color	1-meter pixels	6192500	6990
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	4,458	3.3%	7,494	5.6%	3,036
	Flow Deflectors	1,560	1.2%	1,603	1.2%	42
	Between Flow Deflectors	1,034	0.8%	1,155	0.9%	121
	Feature Type Totals	7,052	5.3%	10,251	7.7%	3,199
	Reach Totals	7,052	5.3%	10,251	7.7%	3,199

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	66,249	3,175	1.05	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	66,558	3,657	1.05	1950 to 2001:	0.67%
Change 1950 - 2001	309	482	0.01		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-1	fear
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	the second se			

Flood Sprinkler Pivot Total

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 75	Erosion Buffer (ft) 150	CN Acre	Total CMZ Acreage 765		% Restrict Migratio Area 2%		IZ age	Restricted AHZ Acreage 0	% Restricted Avulsion Area 0%			
2011 Res	stricted Mig	ration A	rea Sun	nmai	ry	Note that these data reflect the observed conditions in the 2011 aerial photography (NAIP for Park and Sweet Grass							
Reason for Restriction	Land Use Protected		RMA Acres		cent of CMZ	Counties, Co				Sweet Grass			
RipRap/Flo	w Deflectors												
	Non-Irrigated		2	0	.2%								
RipRap													
	Public Road		6	0	.7%								
Flow Deflect	ctors												
	Non-Irrigated		4	0	.5%								
	Irrigated		2	0	.3%								
	Exurban Res	idential	1	0	.1%								
		Totals	14	1	.8%								
Land Us	es within the	e CMZ (/	Acres)	Irr		Sprinkler Irrigation 5.1	Pivot Irrigation 14.0	ExU		Trans- ortation 2.7			

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Ti	ers 2 and 3		Acı	es		% of Reach Area				
Feature Class	Feature Type	e	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infras	structure									- C	
	Canal		41	41	41	41	0.8%	0.8%	0.8%	0.8%	
	Agricultural F	Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrast		32	60	61	59	0.6%	1.2%	1.2%	1.2%	
		Totals	73	101	102	100	1.5%	2.0%	2.1%	2.0%	
Agricultural Land										1 - C	
	Non-Irrigated	1	2,966	3,114	1,985	1,432	59.9%	62.9%	40.1%	28.9%	
	Irrigated		1,369	978	1,436	1,407	27.7%	19.8%	29.0%	28.4%	
	0	Totals	4,335	4,092	3,421	2,838	87.6%	82.7%	69.1%	57.3%	
Channel										1	
	Channel		511	493	510	511	10.3%	10.0%	10.3%	10.3%	
		Totals	511	493	510	511	10.3%	10.0%	10.3%	10.3%	
ExUrban											
	ExUrban Oth	er	0	36	39	39	0.0%	0.7%	0.8%	0.8%	
	ExUrban Und	-	0	0	68	416	0.0%	0.0%	1.4%	8.4%	
	ExUrban Ind	•	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Cor		0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Res		14	164	743	978	0.3%	3.3%	15.0%	19.8%	
		Totals	14	200	850	1,433	0.3%	4.0%	17.2%	29.0%	
Transportation											
	Public Road		17	63	64	64	0.3%	1.3%	1.3%	1.3%	
	Interstate		0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad		0	0	0	0	0.0%	0.0%	0.0%	0.0%	
		Totals	17	63	64	64	0.3%	1.3%	1.3%	1.3%	
Urban											
	Urban Other		0	2	2	3	0.0%	0.0%	0.0%	0.1%	
	Urban Resid	ential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Comm		0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Unde		0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Indust	-	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	2.22.1 110000	Totals	0	2	2	3	0.0%	0.0%	0.0%	0.1%	

Land Use Ti	meline - Tiers 3 and	Change Between Years											
			Acr	es	% of Reach Area					(% of Agricultural Land)			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	110	171	0.0%	0.0%	3.2%	6.0%	0.0%	3.2%	2.8%	6.0%
	Pivot	0	0	760	1,014	0.0%	0.0%	22.2%	35.7%	0.0%	22.2%	13.5%	35.7%
	Flood	1,369	978	566	221	31.6%	23.9%	16.5%	7.8%	-7.7%	-7.4%	-8.8%	-23.8%
	Totals	1,369	978	1,436	1,407	31.6%	23.9%	42.0%	49.6%	-7.7%	18.1%	7.6%	18.0%

Reach PC8

Non-Irrigated

Multi-Use	2,863	2,626	1,663	1,361	66.0%	64.2%	48.6%	48.0%	-1.9%	-15.6%	-0.6%	-18.1%
Hay/Pasture	103	488	322	70	2.4%	11.9%	9.4%	2.5%	9.6%	-2.5%	-6.9%	0.1%
Totals	2,966	3,114	1,985	1,432	68.4%	76.1%	58.0%	50.4%	7.7%	-18.1%	-7.6%	-18.0%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	3.3	43.2	1.6	0.0	48.1
Acres/Valley Mile	0.3	4.5	0.2	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.67	0.28%	2.26	0.01	0.12	0.00	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

County	Park
Classification	PCA: Partially confined anabranching
General Location	To Pine Creek
General Comments	

Upstream River Mile	516.3
Downstream River Mile	514.6
Length	1.70 mi (2.74 km)

Narrative Summary

Reach PC9 extends from just below Mallard's Rest to Pine Creek. It is a partially confined anabranching reach type, indicating that it has side channels and wooded islands with some valley wall influence. Reach PC9 is one of the shortest reaches in the CEA study at 1.7 miles. It is a short, fairly anomalous section of river that extends upstream from the mouth of Pine Creek and Pine Creek Bridge. This reach is anomalous because of its rates of change over the past 20 years. This includes sediment deposition, severe bank erosion and avulsions. The reach is located just upstream of a "pinch point" in the valley that is created by a glacial outwash terrace on the west bank and the Pine Creek outwash fan on the right bank. The Pine Creek Bridge was built on this pinch point, which is a stable bridge location. Because of the constriction at the bridge, however, sediment transport patterns appear interrupted which has caused sediment deposition and unstable channel dynamics upstream. Much of this erosion appears to have happened between 1991 and 2005, suggesting that the 1996 and 1997 floods drove substantial channel change.

Reach PC9 showed an increase in bankfull channel area of over 30 acres between 1950 and 2001, which may reflect the impact of the 1996/1997 floods on channel form. Air photos from as recently as 1991 show a broad expanse of forested islands, whereas the 2005 and 2011 imagery show extensive open bars and active bank erosion. In places, erosion into islands since 1991 has exceeded 500 feet. This has been accompanied by an increase in side channel length of almost 7,000 feet in the reach as islands have been eroded and dissected.

In 2011, almost 3,000 feet of rock riprap lined the banks in Reach PC9, as well as 677 feet of flow deflectors. This represents almost 20 percent of the total bankline in the reach.

Similar to other reaches in Park County, the extent of flood irrigation has dropped in the reach since 1950, and the amount of sprinkler and pivot irrigation has increased somewhat proportionately. Exurban land uses in the reach have expanded from 0 acres in 1950 to 82 acres in 2011, and all of that development is on the east side of the river just upstream of Pine Creek Bridge. The dominant land use remains agriculture, however, with 27 acres in flood irrigation, 142 acres in sprinkler, and 93 acres in pivot. Another 300 acres are in non-irrigated agriculture. There are almost 100 acres of emergent wetlands in Reach PC9, reflecting a large wet meadow complex on the southeast side of the river.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events now considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,520 cfs to 1,470 cfs with human development, a reduction of 3.9 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC9 include:

•Major post-1995 changes in channel geomorphology upstream of natural constriction point.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC9 include: •Channel Migration Zone (CMZ) management PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood His	story								Downstream Gage	Upstream Gage	
Year	Date	e Flo	w on Date	Return Ir	Return Interval			Gage No	6192500	6191500	
1971	Jun 2	3	29,200	10-25	5 yr			Location	Livingston	Corwin Springs	
1902	Jun 1	1	30,100	10-25	10-25 yr		Pariod	of Record	1929-2015	1890-2012	
1943	Jun 2	0	30,600	10-25	10-25 yr						
1974	Jun 1	7	36,300	50-10	50-100 yr		Distance	To (miles)	8.0	40.9	
1996	Jun 1	0	37,100	50-10	0 yr						
1997	Jun 6	6	38,000	50-10	0 yr						
2011	Jun 3	0	40,600	>100	-yr						
Discharg	е								7Q10	95% Sum.	
		1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration	
Unregul	ated	9,820	19,500	24,600	27,800	34,200	36,800	42,800	1,520	1,760	
Regul	ated	9,760	19,400	24,500	27,700	34,100	36,800	42,800	1,470	1,680	
% Cha	ange	-0.61%	-0.51%	-0.41%	-0.36%	-0.29%	0.00%	0.00%	-3.29%	-4.55%	

AERIAL PHOTOGRAPHY

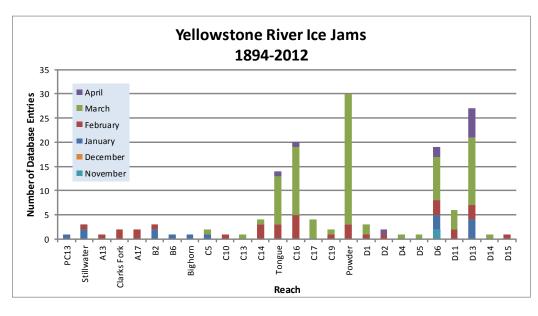
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/23/2009	Color	1-meter pixels	6192500	6770
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	2,740	13.6%	2,894	14.4%	154
	Flow Deflectors	599	3.0%	599	3.0%	0
	Between Flow Deflectors	157	0.8%	79	0.4%	-79
	Feature Type Totals	3,495	17.4%	3,571	17.7%	75
	Reach Totals	3,495	17.4%	3,571	17.7%	75

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	11,280	10,502	1.93	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	10,061	17,176	2.71	1950 to 2001:	40.20%
Change 1950 - 2001	-1,219	6,674	0.78		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tot CN Acre	IZ age	Restricted CMZ Acreage	Migratic Area	on A Ac	otal AHZ reage	Restricted AHZ Acreage	Avulsio Area	on
	183	365	34	1	36	10%		26	0	0%	
2011 Res	stricted Mig	ration A	rea Sun	nmar	у				observed co for Park and		
Reason for Restriction	Land Use Protected		RMA Acres		ent of MZ	Counties, C				Sweet Glas	55
RipRap/Flo	w Deflectors										
	Non-Irrigated	I	33	8.	9%						
RipRap											
	Public Road		1	0.	4%						
	Exurban Res	idential	3	0.	8%						
Flow Deflect	ctors										
	Other Infrast	ructure	3	0.	8%						
		Totals	40	11	.0%						
Land Us	es within th	e CMZ (A	Acres)	Irri		Sprinkler Irrigation 2.7	Pivot Irrigatio 0.0	on Ex	rban/ Urban 11.3	Trans- portation 0.6	

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3		Acı	Acres % of Reach Area				i j	
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infras	structure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	4	20	43	39	0.4%	2.0%	4.4%	4.1%
	Totals	4	20	43	39	0.4%	2.0%	4.4%	4.1%
Agricultural Land									
-	Non-Irrigated	558	422	268	353	57.6%	43.6%	27.7%	36.4%
	Irrigated	198	296	358	263	20.4%	30.6%	36.9%	27.1%
	Totals	757	718	627	615	78.1%	74.1%	64.6%	63.5%
Channel									I
	Channel	204	227	229	229	21.0%	23.4%	23.6%	23.6%
	Totals	204	227	229	229	21.0%	23.4%	23.6%	23.6%
ExUrban									1
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	67	82	0.0%	0.0%	6.9%	8.4%
	Totals	0	0	67	82	0.0%	0.0%	6.9%	8.4%
Transportation									I
	Public Road	5	5	4	4	0.5%	0.5%	0.4%	0.4%
	Interstate	0	0	. 0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	5	5	4	4	0.5%	0.5%	0.4%	0.4%
Urban	i otalo				-				
Orban	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	10(015	Ŭ	v	v	Ű	0.070	0.070	0.070	0.070

Land Use Ti	Land Use Timeline - Tiers 3 and 4								Change Between Years				
		-	Acr	es		%	of Rea	ch Area	ı 👘	(% o	f Agricultural L	and)	
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '01-11	'50-11	
Irrigated													
	Sprinkler	0	0	211	142	0.0%	0.0%	33.6%	23.1%	0.0%	33.6% -10.5%	23.1%	
	Pivot	0	0	30	93	0.0%	0.0%	4.8%	15.2%	0.0%	4.8% 10.3%	15.2%	
	Flood	198	296	117	27	26.2%	41.2%	18.7%	4.4%	15.0%	-22.5% -14.4%	-21.8%	
	Totals	198	296	358	263	26.2%	41.2%	57.2%	42.7%	15.0%	15.9% -14.5%	16.5%	

Reach PC9

Non-Irrigated													
	Multi-Use	557	403	206	145	73.7%	56.2%	32.8%	23.6%	-17.5%	-23.3%	-9.3%	-50.1%
	Hay/Pasture	1	19	63	208	0.2%	2.6%	10.0%	33.8%	2.4%	7.4%	23.8%	33.6%
	Totals	558	422	268	353	73.8%	58.8%	42.8%	57.3%	-15.0%	-15.9%	14.5%	-16.5%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	1.1	94.8	17.7	0.0	113.6
Acres/Valley Mile	0.6	55.2	10.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.12	0.18%	0.65	0.00	0.01	0.01	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC10

County	Park	Upstream River Mile
Classification	PCM: Partially confined meandering	Downstream River Mile
General Location	To downstream of Deep Creek; Weeping wall, Jumpin	Length
General Comments		

3.60 mi (5.79 km)

514.6 511

Narrative Summary

Reach PC10 is extends from the Pine Creek Bridge to below the mouth of Deep Creek. The reach is approximately 3.5 miles long, extending from RM 511.0 to RM 514.5. This is an especially unique section of the Yellowstone River where spring creeks that parallel the channel support a nationally recognized cold water fishery. The reach is also semi-confined by very coarse grained glacial alluvial terraces. Sediment recruitment from the terraces drives bar formation, resulting in locally rapid bank migration, and in some cases, threats to the spring creeks. This was exemplified during the 1996/1997 floods, when the river migrated tens of feet into high glacial terraces, delivering vast amounts of gravel to the channel. At one location near the Deep Creek confluence, a home on a ~30 foot high glacial terrace was undermined and deliberately burnt down to prevent its collapse into the river. Just downstream of this site, rapid point bar growth drove westward channel migration towards a prized spring creek, which created a real risk of Yellowstone River avulsion into that channel. Efforts to prevent an avulsion included sediment removal from the rapidly enlarging point bar, bank protection, and construction of a long floodplain dike between the spring creek and the river. This single bendway experienced approximately 750 feet of migration between 1948 and 1999, which translates to an average migration rate of 14.7 feet per year.

Approximately 14 percent of the bankline is armored, primarily by rock riprap (3,753 feet) and flow deflectors (1,197 feet). Between 2001 and 2011, the net length of bank armor increased by 1,037 feet, although 50 feet of flow deflectors were eroded out during that time. There are also over two miles of floodplain dikes in the reach, most of which run parallel to the river to isolate the spring creeks. Several thousand feet of side channels have been blocked in Reach PC10; one large channel that was blocked prior to 1950 extends downstream for several thousand feet into Reach PC11. There is a high concentration of emergent wetlands in these abandoned side channels.

The total bankfull channel area in Reach PC10 increased from 151 acres in 1950 to 191 acres in 2001, suggesting channel enlargement, either due to floods or flow concentrations in the main channel due to side channel loss and diking.

Land uses in Reach PC10 include irrigated ground, multi-use (non-irrigated and undeveloped), and exurban residential development. Whereas in 1950 there were 512 acres under flood irrigation, by 2011 that had been reduced to 17 acres. The expansion of irrigation during that time included 136 acres of sprinkler, and another 56 acres of pivot irrigation. Most of the land, over 900 acres, is used as non-irrigated agricultural land. There has also been about 180 acres of exurban development in Reach PC10, much of which is part of the Jumping Rainbow Ranch downstream of Deep Creek. Some of this development, such as the location of the house that was undermined in 1997, is in the Channel Migration Zone. In the upstream portion the reach, a gravel pit on a large point bar (RM 513.8) encroaches into the Channel Migration Zone. Because of the extensive levee construction in the reach to protect spring creeks, 38 percent of the CMZ has been restricted from the natural CMZ footprint. The reach is very popular for recreational boating and fishing; the Pine Creek Fishing Access Site is located just below the Pine Creek Bridge on the left bank.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,530 cfs to 1,480 cfs with human development, a reduction of 3.3 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC10 include:

•Extensive dike construction Floodplain dikes constructed to protect spring creek fisheries have narrowed the active meander corridor •Exurban encroachment into the Channel Migration Zone (CMZ) has occurred on terrace surfaces

•Gravel pit and recreational pond development in a meander core may contribute to avulsion risk in the reach.

•Rapid dike construction and armoring following major flooding (1996/1997).

•Increase in primary channel length (sinuosity) with loss of side channels.

•Isolation of 38 percent of the CMZ, mostly avulsion hazard areas that support spring creeks.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC10 include:

•Selective side channel restoration at RM 511.5 (may be difficult to reactivate side channels without affecting developed spring creek fishery

•CMZ Management due to current restriction of 38 percent of the Channel Migration Zone

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood His	story								Downstream	
Year	Dat	e Flo	ow on Date	Return Ir	Return Interval		Gage No		Gage 6192500	Gage 6191500
1971	Jun 2	23	29,200	10-25	10-25 yr		Location		Livingston	Corwin Springs
1902	Jun '	11	30,100	10-25	5 yr		Period of Record		1929-2015	1890-2012
1943	Jun 2	20	30,600	10-25	5 yr					
1974	Jun ′	17	36,300	50-10	0 yr		Distance	To (miles)	4.4	42.6
1996	Jun ′	10	37,100	50-10	0 yr					
1997	Jun	6	38,000	50-10	0 yr					
2011	Jun 3	30	40,600	>100	-yr					
Discharg	е								7Q10	95% Sum.
		1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregul	ated	9,820	19,500	24,600	27,800	34,200	36,800	42,800	1,530	1,760
Regul	ated	9,760	19,400	24,500	27,700	34,100	36,800	42,800	1,480	1,680
% Cha	ange	-0.61%	-0.51%	-0.41%	-0.36%	-0.29%	0.00%	0.00%	-3.27%	-4.55%

AERIAL PHOTOGRAPHY

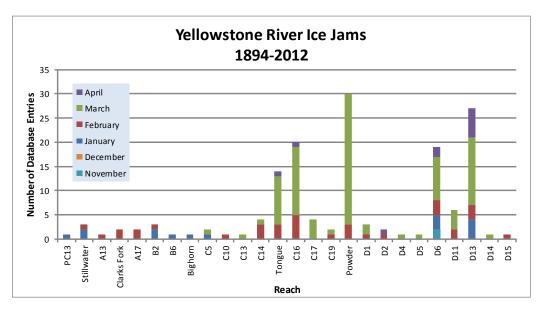
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/23/2009	Color	1-meter pixels	6192500	6770
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	2,667	7.3%	3,754	10.3%	1,086
	Flow Deflectors	768	2.1%	674	1.8%	-94
	Between Flow Deflectors	478	1.3%	522	1.4%	44
	Feature Type Totals	3,914	10.7%	4,950	13.5%	1,037
Floodplair	n Control					
	Floodplain Dike/Levee	12,431	34.0%	12,431	34.0%	0
	Feature Type Totals	12,431	34.0%	12,431	34.0%	0
	Reach Totals	16,344	44.7%	17,381	47.5%	1,037

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Anab. Ch. Length (ft) Length (ft)		Bankfull Braiding Parameter		% Change in Braiding
1950	16,592	7,240	1.44	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	18,301	1,489	1.08	1950 to 2001:	-24.71%
Change 1950 - 2001	1,710	-5,751	-0.35		
Length of Side		Pre-1950s (ft)	7,000		
Channels Blocked		Post-1950s (ft)	1,454		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				· · · · ·

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 235	Erosion Buffer (ft) 469	Tot CM Acre 46	IZ age	Restricted CMZ Acreage 94	% Restrict Migration Area 20%		Al ge Acre		Restricted Avulsion Area 79%		
2011 Res	stricted Mig	ration Ar	rea Sun	nmar	у	Note that these data reflect the observed conditions in the 2011 aerial photography (NAIP for Park and Sweet Grass						
Reason for Restriction	Land Use Protected		RMA Acres		ent of MZ	Counties, COE for the rest of the river).				el Glass		
Flow Deflect	ctors											
	Non-Irrigated		6	0.9%								
Dike/Levee												
	Non-Irrigated		247	37	.0%							
		Totals	253	37	.9%							
Land Uses within the CMZ (Acres)		Flood Irrigation 0.0		Sprinkler Irrigation 27.5	Pivot Irrigation 0.0	Urban/ ExUrban 19.9	Tran portat 0.3	tion				

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Tir	meline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infras	structure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	31	49	62	55	2.0%	3.2%	4.1%	3.6%
	Totals	31	49	62	55	2.0%	3.2%	4.1%	3.6%
Agricultural Land									
•	Non-Irrigated	817	864	895	852	53.6%	56.7%	58.7%	55.9%
	Irrigated	512	425	190	209	33.6%	27.9%	12.5%	13.7%
	Totals	1,330	1,289	1,085	1,061	87.2%	84.5%	71.2%	69.6%
Channel									1
	Channel	163	186	214	229	10.7%	12.2%	14.0%	15.0%
	Totals	163	186	214	229	10.7%	12.2%	14.0%	15.0%
ExUrban									1
	ExUrban Other	0	0	2	2	0.0%	0.0%	0.1%	0.1%
	ExUrban Undeveloped	0	0	72	0	0.0%	0.0%	4.7%	0.0%
	ExUrban Industrial	0	0	11	11	0.0%	0.0%	0.7%	0.7%
	ExUrban Commercial	0	0	16	16	0.0%	0.0%	1.0%	1.0%
	ExUrban Residential	0	0	62	150	0.0%	0.0%	4.1%	9.9%
	Totals	0	0	163	179	0.0%	0.0%	10.7%	11.7%
Transportation						1			
	Public Road	1	1	1	1	0.1%	0.1%	0.1%	0.1%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	1	1	1	1	0.1%	0.1%	0.1%	0.1%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Timeline - Tiers 3 and 4 Change Between Years											ears		
			Acr	es		%	of Rea	ch Area	ı	(% o	f Agricul	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '(01-11	'50-11
Irrigated													
	Sprinkler	0	0	56	136	0.0%	0.0%	5.1%	12.8%	0.0%	5.1%	7.7%	12.8%
	Pivot	0	100	37	56	0.0%	7.8%	3.4%	5.3%	7.8%	-4.4%	1.9%	5.3%
	Flood	512	325	97	17	38.5%	25.2%	9.0%	1.6%	-13.3%	-16.2%	-7.4%	-36.9%
	Totals	512	425	190	209	38.5%	33.0%	17.5%	19.7%	-5.6%	-15.5%	2.2%	-18.8%

Reach PC10

Non-Irrigated													
	Multi-Use	706	767	613	521	53.1%	59.5%	56.5%	49.1%	6.4%	-3.0%	-7.4%	-4.0%
	Hay/Pasture			282	331	8.4%	7.5%	26.0%	31.2%	-0.9%	18.5%	5.2%	22.8%
	Totals	817	864	895	852	61.5%	67.0%	82.5%	80.3%	5.6%	15.5%	-2.2%	18.8%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	22.5	165.1	49.1	0.0	236.7
Acres/Valley Mile	9.7	71.2	21.1	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.14	0.25%	1.46	0.02	0.01	0.00	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

PCA: Partially confined anabranching

To near Suce Cr, Wineglass Mtn to west

Reach PCII

Upstream River Mile	511
Downstream River Mile	508.7
Length	2.30 mi (3.70 km)

General Location General Comments

County

Classification

Park

Narrative Summary

Reach PC11 is located in the Paradise Valley downstream of Deep Creek, and consists of a Partially Confined Anabranching (PCA) reach type, reflected by multiple channels separated by wooded islands, and local abutment of the channel against low glacial terraces. Long floodplain dikes and bank armor installations have isolated natural migration and avulsion areas from the active channel corridor. These dikes and levees narrow the corridor significantly in the downstream direction; whereas in the upper portions of Reach PC11 the active corridor is approximately 2,000 feet wide, it is narrowed approximately 400 feet by floodplain dikes and bank armor at the downstream boundary of Reach PC11.

Some of the most significant impacts to Reach PC11 occurred prior to 1950. This includes the isolation of a major anabranching channel on the east side of the river that has been improved as a spring creek. The dike blocking this channel is located at its upper end in Reach PC10; within Reach PC11this channel is over a mile long.

Although many of the impacts to Reach PC11 occurred prior to 1950, one dike isolated a channel more recently. This 1/4 mile long channel to the west of the main river was blocked off between 1988 and 1991. Within Reach PC11, several channels that have historically been relatively connected to the active river are now largely isolated, forming spring creeks on each side of the river that run parallel to the river for miles. Continual improvements on these spring creeks are evident on the air photos, including original development efforts that included deepening and widening the relic Yellowstone River channels, and re-routing these channels to lengthen them as they parallel the main thread. On the west side of the river, a lengthened spring creek is separated from the river by over a mile of floodplain dike in Reach PC11 alone.

Approximately 35 percent of the bankline in Reach PC11 is armored by Rock Riprap (8,645 feet), and another 8 percent of the bank is protected by flow deflectors (2,047 feet). Approximately 6,900 feet of floodplain dikes protect the spring creek on the west side of the corridor from Yellowstone River overflows. Armor, dikes, and levees have isolated 26 percent of the natural Channel Migration Zone.

Since 1950 the main channel has increased length by approximately 10 percent or 1,200 feet. This trend is common in reaches where side channels have been lost and the main thread has more consolidated flow. The bankfull footprint has grown by 40 acres since 1950, which may reflect main channel expansion due to side channel loss.

Similar to other reaches in Park County, the extent of flood irrigation has dropped in the reach since 1950, and the amount of sprinkler and pivot irrigation has increased. The dominant land use remains agriculture, however, with 139 acres in flood irrigation, 102 acres in sprinkler, and 80 acres in pivot. Another 600 acres are in non-irrigated agriculture. There are almost 80 acres of emergent wetlands in Reach PC10, reflecting a large wet meadow complex across the river from the mouth of Deep Creek.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events now considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,550 cfs to 1,500 cfs with human development, a reduction of 3.2 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC11 include:

- •Channel Migration Zone restrictions by floodplain dikes and bank armor causing simplification.
- •Loss of side channel connectivity due to floodplain dikes and bank armor causing simplification.
- •Increase in primary channel length with reduction in side channel length.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC11 include: •Selective side channel restoration at RM 510L (may be difficult to reactivate side channels without affecting developed spring creek fishery

•CMZ Management due to current restriction of 26 percent of the Channel Migration Zone

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood His	story								Downstream	
Year	Dat	te Flo	ow on Date	Return Ir	nterval			Gage No	Gage 6192500	Gage 1619500
1971	Jun	23	29,200	10-25	5 yr			Location	Livingston	1010000
1902	Jun	11	30,100	10-25	5 yr		Period of Record		1929-2015	
1943	Jun	20	30,600	10-25	10-25 yr					
1974	Jun	17	36,300	50-10	0 yr		Distance	To (miles)	2.1	
1996	Jun	10	37,100	50-10	0 yr					
1997	Jun	6	38,000	50-10	0 yr					
2011	Jun	30	40,600	>100	-yr					
Discharg	e								7Q10	95% Sum.
		1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregu	lated	9,820	19,500	24,600	27,800	34,200	36,800	42,800	1,550	1,760
Regu	lated	9,760	19,400	24,500	27,700	34,100	36,800	42,800	1,500	1,680
% Ch	ange	-0.61%	-0.51%	-0.41%	-0.36%	-0.29%	0.00%	0.00%	-3.23%	-4.55%

AERIAL PHOTOGRAPHY

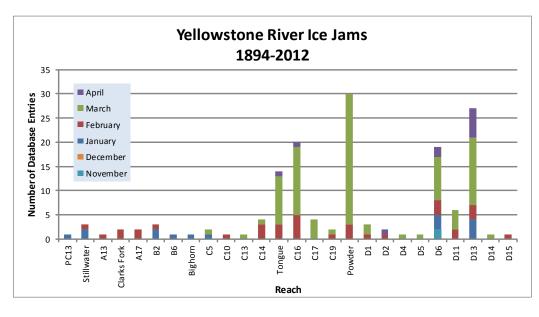
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/23/2009	Color	1-meter pixels	6192500	6770
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	8,601	34.6%	8,645	34.8%	45
	Flow Deflectors	1,167	4.7%	1,149	4.6%	-17
	Between Flow Deflectors	1,118	4.5%	897	3.6%	-220
	Feature Type Totals	10,885	43.8%	10,692	43.0%	-193
Floodplain	n Control					
	Floodplain Dike/Levee	6,891	27.7%	6,879	27.7%	-12
	Feature Type Totals	6,891	27.7%	6,879	27.7%	-12
	Reach Totals	17,775	71.5%	17,571	70.7%	-205

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	11,289	12,686	2.12	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	12,432	7,832	1.63	1950 to 2001:	-23.25%
Change 1950 - 2001	1,144	-4,854	-0.49		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	1,990		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 211	Erosion Buffer (ft) 422	Tor CM Acre 47	IZ age	Restricted CMZ Acreage 104	% Restrict Migratio Area 22%		IZ age	Restricted AHZ Acreage 47	Avulsion
2011 Res	stricted Migr	ation A	rea Sun	nmai	ry					onditions in the
Reason for Restriction	Land Use Protected		RMA Acres		cent of MZ	Counties, CO	0 1 2	× .		I Sweet Grass
RipRap/Flo	w Deflectors									
	Non-Irrigated		106	17	7.6%					
RipRap										
	Irrigated		21	3	.4%					
Flow Deflect	ctors									
	Irrigated		23	3	.9%					
Dike/Levee										
	Non-Irrigated		4	0	.7%					
		Totals	155	25	5.6%					
Land Us	es within the	e CMZ (A	Acres)	Irr		Sprinkler Irrigation 8.8	Pivot Irrigation 1.5	ExU	ban/ Irban j).4	Trans- portation 0.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Tir	meline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infras	structure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	19	76	75	64	1.5%	6.1%	6.0%	5.2%
	Totals	19	76	75	64	1.5%	6.1%	6.0%	5.2%
Agricultural Land									1
-	Non-Irrigated	556	472	472	613	44.6%	37.9%	37.8%	49.2%
	Irrigated	501	447	392	320	40.2%	35.9%	31.4%	25.7%
	Totals	1,057	919	863	934	84.8%	73.8%	69.3%	74.9%
Channel									I.
	Channel	164	237	292	232	13.2%	19.0%	23.4%	18.6%
	Totals	164	237	292	232	13.2%	19.0%	23.4%	18.6%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	2	2	0.0%	0.0%	0.2%	0.2%
	Totals	0	0	2	2	0.0%	0.0%	0.2%	0.2%
Transportation					1				
	Public Road	6	14	14	14	0.5%	1.1%	1.1%	1.1%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	6	14	14	14	0.5%	1.1%	1.1%	1.1%
Urban					1				
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	meline - Tiers 3 and	4								Char	nge Betw	veen Y	ears
				Acres			% of Reach Area			(% of Agricultural Land)			and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '(01-11	'50-11
Irrigated													
	Sprinkler	0	0	89	102	0.0%	0.0%	10.3%	10.9%	0.0%	10.3%	0.6%	10.9%
	Pivot	0	0	25	80	0.0%	0.0%	2.9%	8.5%	0.0%	2.9%	5.6%	8.5%
	Flood	501	447	278	138	47.4%	48.6%	32.2%	14.8%	1.2%	-16.4% -	·17.4%	-32.6%
	Totals	501	447	392	320	47.4%	48.6%	45.4%	34.3%	1.2%	-3.2% -	·11.1%	-13.1%

Reach PCII

Non-Irrigated													
Μ	ulti-Use	397	396	420	569	37.6%	43.1%	48.7%	60.9%	5.5%	5.6%	12.2%	23.3%
Ha	ay/Pasture	159	76	51	45	15.0%	8.3%	5.9%	4.8%	-6.7%	-2.4%	-1.1%	-10.2%
	Totals	556	472	472	613	52.6%	51.4%	54.6%	65.7%	-1.2%	3.2%	11.1%	13.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	27.5	75.5	55.0	0.0	158.0
Acres/Valley Mile	13.5	37.1	27.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.26	0.06%	0.13	0.06	0.05	0.00	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC12

508.7 506.7

2.00 mi (3.22 km)

Upstream River Mile

Length

Downstream River Mile

County	Park
Classification	PCM: Partially confined meandering
General Location	To Carters Bridge

General Comments

Narrative Summary

Reach PC12 is located in the northernmost portion of the Paradise Valley, consisting of the two miles of river channel upstream of Carters Bridge. The reach is somewhat confined between terraces, Highway 89, and bedrock hillslopes. Carter's Bridge hosts a fishing access site and boat ramp.

Over its two mile length, the banks of Reach PC12 are armored by 7,267 feet of rock riprap and 4,106 feet of flow deflectors. Over 50 percent of the banks are armored. There are also about 8,700 feet of floodplain levees in Reach PC12. About 2,600 feet of this levee extent is the Highway 89 embankment which also forms the bankline as the river approaches the Livingston Ditch Diversion structure. A total of 39 percent of the Channel Migration Zone in this reach has been restricted by physical features such as bank armor and levees.

In 1950, there were 343 acres of land under flood irrigation in the reach. By 2000, that had dropped to about 90 acres, and sprinklers and pivots had expanded to 201 and 16 acres, respectfully. There was also about 51 acres of exurban development in the reach, all of which is just above Carter's Bridge on the west side of the river.

Over 100 acres of wetlands have been mapped in Reach PC12. These wetlands are located in isolated relic channels in the southwest floodplain, and in perched historic meander features in the northeast.

Reach PC12 is located right next to the Livingston gage which is at Carters Bridge. This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,550 cfs to 1,500 cfs with human development, a reduction of 3.2 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC12 include:

•Narrowing of the CMZ to less than half of its natural width, mainly due to long levees that run parallel to the river to protect spring creeks.

•Loss of side channel connectivity due to floodplain dikes and bank armor causing simplification

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC12 include: •Side channel restoration at RM 508L

•CMZ Management due to current restriction of 39 percent of the Channel Migration Zone

Bank Stabilization Recommended Practices due to 55 percent of banks being armored in reach

Irrigation diversion management at Livingston Ditch Diversion

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

1902	Date Jun 23 Jun 11	Flow on Date 29,200 30,100	Return Ir 10-25 10-25	yr yr		Period	Gage No Location I of Record	Downstream Gage 6214500 Billings 1929-2015	Upstream Gage 6192500 Livingston 1929-2015	
1974 1996 1997	Jun 20 Jun 17 Jun 10 Jun 6 Jun 30	30,600 36,300 37,100 38,000 40,600	10-25 yr 50-100 yr 50-100 yr 50-100 yr >100-yr			Distance To (miles)			-2.1	
Discharge Unregulat Regulat % Chan	1.01 ied 10,2 ied 10,1	200 20,300 100 20,200	5 Yr 25,600 25,500 -0,39%	10 Yr 28,800 28,700 -0.35%	50 Yr 35,400 35,300 -0.28%	100 Yr 38,200 38,100 -0.26%	500 Yr 44,300 44,200 -0.23%	7Q10 Summer 1,550 1,500 -3,23%	95% Sum. Duration 1,760 1,680 -4.55%	

AERIAL PHOTOGRAPHY

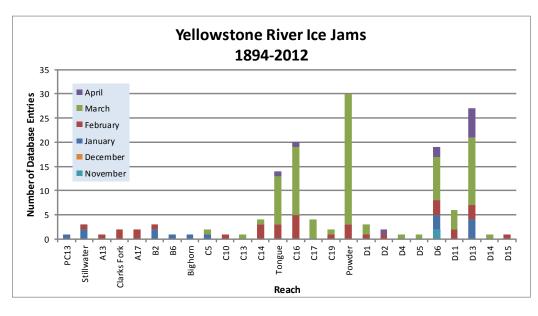
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/23/2009	Color	1-meter pixels	6192500	6770
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	7,158	34.6%	7,267	35.1%	109
	Flow Deflectors	1,721	8.3%	1,772	8.6%	51
	Between Flow Deflectors	2,458	11.9%	2,334	11.3%	-124
	Feature Type Totals	11,337	54.8%	11,373	55.0%	36
Floodplair	n Control					
	Floodplain Dike/Levee	8,706	42.1%	8,706	42.1%	0
	Feature Type Totals	8,706	42.1%	8,706	42.1%	0
	Reach Totals	20,043	96.9%	20,079	97.1%	36

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	10,805	8,196	1.76	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	10,337	8,164	1.79	1950 to 2001:	1.78%
Change 1950 - 2001	-468	-31	0.03		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 125	Erosion Buffer (ft) 249	To CM Acre 27	IZ age	Restricted CMZ Acreage 84	% Restric Migratio Area 31%		Z age	Restricted AHZ Acreage 72	% Restricted Avulsion Area 57%
2011 Res	stricted Mig	ration A	rea Sun	nmai	у					ditions in the
Reason for Restriction	Land Use Protected		RMA Acres		ent of MZ	Counties, Co				Sweet Grass
Road/Railro	oad Prism									
	Exurban Oth	er	6	1	.6%					
RipRap/Flo	w Deflectors									
	Public Road		10	2	.5%					
	Non-Irrigated		100	25	5.1%					
	Irrigated		11	2	.7%					
Flow Deflect	ctors									
	Public Road		1	0	.4%					
	Irrigated		24	6	.0%					
Dike/Levee										
	Public Road		3	0	.8%					
		Totals	155	39	.0%					
Land Us	es within th	e CMZ (/	Acres)	Irri		Sprinkler Irrigation 10.8	Pivot Irrigation 0.0			Trans- ortation 3.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Tir	meline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infras	structure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	2	2	0.0%	0.0%	0.2%	0.2%
	Other Infrastructure	39	41	51	55	3.7%	3.9%	4.9%	5.2%
	Totals	39	41	54	57	3.7%	3.9%	5.1%	5.4%
Agricultural Land						1			
	Non-Irrigated	482	461	471	442	46.0%	44.0%	44.9%	42.2%
	Irrigated	343	334	285	307	32.7%	31.8%	27.1%	29.3%
	Totals	825	795	755	749	78.7%	75.8%	72.0%	71.5%
Channel						I			
	Channel	165	163	170	172	15.7%	15.5%	16.2%	16.4%
	Totals	165	163	170	172	15.7%	15.5%	16.2%	16.4%
ExUrban									
	ExUrban Other	0	0	3	3	0.0%	0.0%	0.3%	0.3%
	ExUrban Undeveloped	0	3	3	3	0.0%	0.3%	0.3%	0.3%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	28	44	45	0.0%	2.6%	4.2%	4.3%
	Totals	0	31	51	51	0.0%	2.9%	4.8%	4.8%
Transportation					l				· · · ·
-	Public Road	19	19	19	19	1.8%	1.8%	1.8%	1.8%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	19	19	19	19	1.8%	1.8%	1.8%	1.8%
Urban									1
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	meline - Tiers 3 and	4									ige Betw		
			Acr	es		%	of Rea	ch Area	ı –	(% 01	f Agricul	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '(01-11	'50-11
Irrigated													
	Flood	343	334	172	89	41.6%	42.0%	22.8%	11.9%	0.4%	-19.2% -	10.9%	-29.7%
	Sprinkler	0	0	112	201	0.0%	0.0%	14.9%	26.9%	0.0%	14.9%	12.0%	26.9%
	Pivot	0	0	0	16	0.0%	0.0%	0.0%	2.1%	0.0%	0.0%	2.1%	2.1%
	Totals	343	334	285	307	41.6%	42.0%	37.7%	40.9%	0.4%	-4.3%	3.3%	-0.6%

Reach PC12

Non-Irrigated													
	Multi-Use	417	416	443	438	50.6%	52.3%	58.7%	58.5%	1.8%	6.3%	-0.1%	8.0%
	Hay/Pasture	65	45	28	4	7.9%	5.7%	3.7%	0.5%	-2.2%	-2.0%	-3.1%	-7.3%
	Totals	482	461	471	442	58.4%	58.0%	62.3%	59.1%	-0.4%	4.3%	-3.3%	0.6%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	19.8	67.5	28.5	0.0	115.8
Acres/Valley Mile	10.8	36.8	15.6	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.19	0.08%	0.16	0.09	0.02	0.01	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PCI3

County	Park
Classification	PCB: Partially confined braided
General Location	Through canyon upstream of Livingston

Upstream River Mile 506.7 505 **Downstream River Mile** 1.70 mi (2.74 km) Length

General Comments Narrative Summary

Reach PC13 flows through Allenspur Canyon, which is a notch carved through a limestone and sandstone ridge that runs perpendicular to the river. Within this notch, the river bottom is 1,000 to 1,800 feet wide, so that the river is not entirely confined. The reach is largely single thread with large point bars, and has several bank migration sites that have exceeded 200 feet of movement since 1950.

There are about 2,000 feet of bank armor in the reach, which covers about 13 percent of the total bankline. There is also about 1/2 mile of diking that is concentrated just downstream of Carters Bridge on the west floodplain.

Approaching Livingston, the primary modern land use is exurban, although historically the land was primarily used for agriculture. There are over 80 acres of exurban development in Reach PC13, most of which is on the west floodplain. Only 4 acres of land in the reach are irrigated. There is a ~13 acre fishing access site named Free River on an historic island that offers no boating facilities.

Reach PC13 experienced an ice jam-related flood in January of 2007 which flooded one house in the area.

Reach PC13 has seen a dramatic change in channel form since 1950, as it has shifted from a multi-thread anabranching reach type to a single channel with distinct meanders and open bars. In 1950, this reach had 6,600 feet of anabranching channels that flowed around wooded islands. Since then, the river has consolidated into a single thread and lost virtually all of its side channels. Those side channels were not blocked, but they were abandoned with flow consolidation into a single thread. The size of the channel (bankfull area) has increased by about 20 percent. One large meander in the reach is in the process of cutting off, as a prominent chute channel has formed against the east valley wall.

Numerous structures and a portion of the Highway 89 embankment are located within the CMZ in Reach PC13. A total of 8 percent of the CMZ has been restricted by physical features.

In the early 1960's, a dam was proposed for Allenspur Canyon but was ultimately defeated largely due to local resistance. Allen Spur Dam was proposed as a 380-foot tall dam with a 250,000 watt power plant that would have inundated the Paradise Valley up to 30 miles upstream.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,550 cfs to 1,500 cfs with human development, a reduction of 3.2 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1.680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC13 include:

•Transformation from a multi-thread, anabranching reach type to a single thread channel with open bars. •Abandonment of over a mile of side channels since 1950 in a 1.7 mile long reach.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC13 include: •CMZ Management due to development pressure in confined reach

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood His Year 1971 1902	Dat Jun 2 Jun 2	e Flo 23 11	ow on Date 29,200 30,100	Return Ir 10-25 10-25	i yr i yr		Period	Gage No Location I of Record	Downstream Gage 6214500 Billings 1929-2015	Upstream Gage 6192500 Livingston 1929-2015	
1943 1974 1996 1997 2011	Jun : Jun : Jun : Jun :	17 10 6	30,600 36,300 37,100 38,000 40,600	10-25 yr 10-25 yr 50-100 yr 50-100 yr 50-100 yr >100-yr			Distance To (miles)		140.6	-0.1	
Discharge Unregula Regula	ated	1.01 Yr 10,200 10,100	2 Yr 20,300 20,200	5 Yr 25,600 25,500	10 Yr 28,800 28,700	50 Yr 35,400 35,300	100 Yr 38,200 38,100	500 Yr 44,300 44,200	7Q10 Summer 1,550 1,500	95% Sum. Duration 1,760 1,680	
% Cha	ange	-0.98%	-0.49%	-0.39%	-0.35%	-0.28%	-0.26%	-0.23%	-3.23%	-4.55%	

AERIAL PHOTOGRAPHY

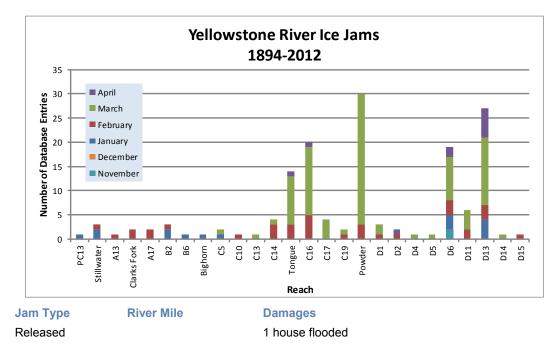
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/26/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	1,087	6.6%	1,240	7.6%	153
	Flow Deflectors	456	2.8%	394	2.4%	-62
	Between Flow Deflectors	620	3.8%	481	2.9%	-139
	Feature Type Totals	2,164	13.2%	2,115	12.9%	-49
Floodplair	n Control					
	Floodplain Dike/Levee	2,541	15.5%	2,541	15.5%	0
	Feature Type Totals	2,541	15.5%	2,541	15.5%	0
	Reach Totals	4,705	28.7%	4,656	28.4%	-49

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

1/17/2007

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	7,508	6,652	1.89	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	8,189		1.00	1950 to 2001:	-46.98%
Change 1950 - 2001	682		-0.89		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 123	Erosion Buffer (ft) 246			Restricted CMZ Acreage 13	% Restric Migratic Area 6%	on A Acr	otal HZ eage 15	Restricted AHZ Acreage 6	Nestricted Avulsion Area 41%		
2011 Res	stricted Mig	nmai	ry	Note that these data reflect the observed conditions in the								
Reason for Restriction	Land Use Protected		RMA Acres	RMA Percent of			2011 aerial photography (NAIP for Park and Sweet C Counties, COE for the rest of the river).					
Road/Railro	oad Prism											
	Exurban Othe	er	10	4	.4%							
RipRap/Flo	w Deflectors											
	Exurban Res	idential	6	2	.6%							
Flow Deflect	ctors											
	Non-Irrigated		3	1	.3%							
		Totals	19	8	.2%							
Land Us	es within th	e CMZ (A	Acres)	-		Sprinkler Irrigation	Pivot Irrigatio	-	rban/ :Urban p	Trans- ortation		

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3		Acı	res		% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	structure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	2	3	4	4	0.3%	0.6%	0.8%	0.8%
	Totals	2	3	4	4	0.3%	0.6%	0.8%	0.8%
Agricultural Land	Agricultural Land				1				
	Non-Irrigated	256	225	205	208	54.8%	48.3%	44.0%	44.6%
	Irrigated	36	0	11	4	7.7%	0.0%	2.4%	0.9%
	Totals		225	217	212	62.5%	48.3%	46.4%	45.5%
Channel									· · · ·
	Channel	156	153	153	157	33.5%	32.9%	32.7%	33.6%
	Totals		153	153	157	33.5%	32.9%	32.7%	33.6%
ExUrban					l				1
	ExUrban Other	2	2	2	2	0.3%	0.3%	0.5%	0.5%
	ExUrban Undeveloped	0	2	2	0	0.0%	0.5%	0.5%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	3	70	78	80	0.7%	15.0%	16.6%	17.1%
	Totals	5	74	82	82	1.1%	15.8%	17.6%	17.6%
Transportation									
	Public Road	12	12	12	12	2.6%	2.5%	2.5%	2.5%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	12	12	12	12	2.6%	2.5%	2.5%	2.5%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	and Use Timeline - Tiers 3 and 4					Change Between Years							
			Acr	es		%	of Rea	ch Area		(% o	f Agricul	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '(01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	36	0	11	4	12.3%	0.0%	5.2%	2.0%	-12.3%	5.2%	-3.2%	-10.3%
	Totals	36	0	11	4	12.3%	0.0%	5.2%	2.0%	-12.3%	5.2%	-3.2%	-10.3%

Reach PCI3

Non-Irrigated													
	Multi-Use	214	200	192	189	73.2%	88.8%	88.7%	88.9%	15.6%	-0.1%	0.2%	15.7%
	Hay/Pasture	42	25	13	19	14.4%	11.2%	6.0%	9.1%	-3.2%	-5.1%	3.0%	-5.3%
	Totals	256	225	205	208	87.7%	######	94.8%	98.0%	12.3%	-5.2%	3.2%	10.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	0.5	8.4	3.3	0.0	12.2
Acres/Valley Mile	0.3	6.1	2.4	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.19	0.06%	0.02	0.00	0.03	0.03	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC14

County	Park	U
Classification	PCA: Partially confined anabranching	D
General Location	Through Interstate bridge crossing to Livingston	L
Conorol Commonto		

Upstream River Mile505Downstream River Mile501.7Length3.30 mi (5.31 km)

General Comments

Narrative Summary

Reach PC14 is a 3.3 mile long river segment that extends from the mouth of Allenspur Canyon to Sacajawea Park in Livingston. The reach is heavily developed, with almost 600 acres of urban/exurban development in the land use mapping corridor, and another 45 acres developed on 9th Street Island and Siebeck Island. There are over three miles of bank armor in the reach, with about 17,000 feet of rock riprap and 1,600 feet of flow deflectors. This armor covers about 54 percent of the streambanks. Between 2001 and 2011, almost 400 feet of rock riprap located at the head of Siebeck Island was destroyed. There are also over three miles of floodplain dikes mapped in this reach. The physical features protect development on the west floodplain and on Siebeck Island, which is a ~100 acre island just upstream of the Interstate Bridge Physical features have isolated 39 percent of the natural channel migration zone in Reach PC14.

There have been extensive blockages of side channels in Reach PC14. Prior to 1950, about 8,600 feet of side channels were blocked by dikes, and since 1950 dikes have been built to block another mile of side channel.

About 100 acres of wetlands have been mapped in Reach PC14. About 20 of those wetland acres are on Siebeck Island.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,570 cfs to 1,510 cfs with human development, a reduction of 3.8 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

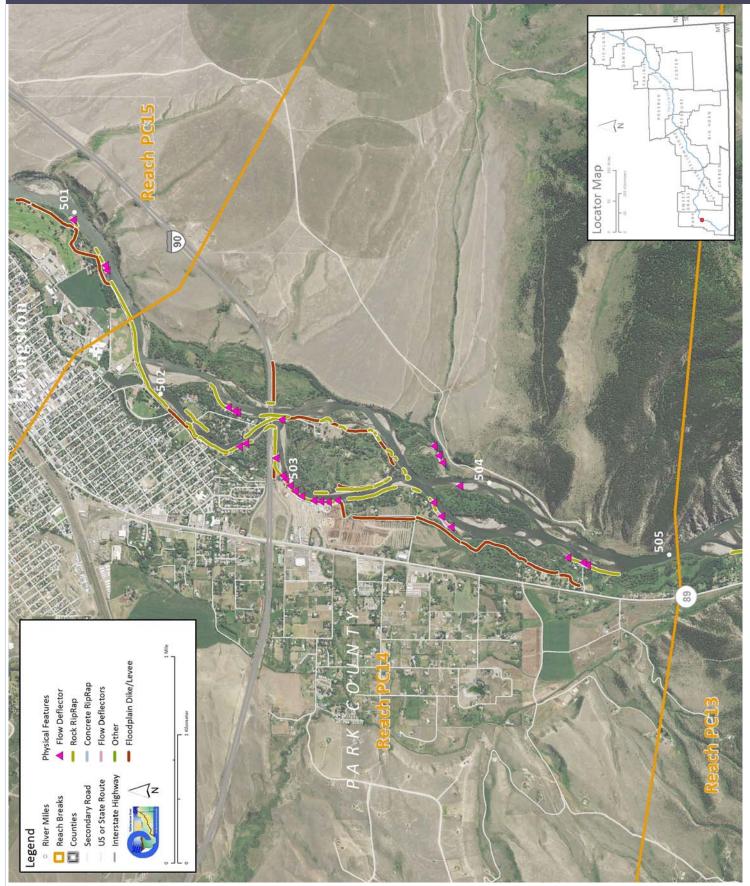
CEA-Related observations in Reach PC14 include:

•Physical features blocking over 13,000 feet of side channels.

•Riprap failure at head of Siebeck Island

•Extensive CMZ Restriction with floodplain development.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC14 include: •Side channel restoration at RM 504.6L


•Bank armor removal at head of Siebeck Island at RM 503.8

•CMZ management due to 38 percent restriction of Channel Migration Zone

Russian olive removal

•Bank Stabilization Recommended Practices due to extensive armoring in reach (51 percent of bankline)

PHYSICAL FEATURES MAP (2011)

Reach PC14

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

1971 Ju 1902 Ju	Date FI un 23 un 11	ow on Date 29,200 30,100	Return In 10-25 10-25	yr yr		Period	Gage No Location of Record	Downstream Gage 6214500 Billings 1929-2015	Upstream Gage 6192500 Livingston 1929-2015	
1974 Ju 1996 Ju 1997 Ju	ın 20 ın 17 ın 10 un 6 ın 30	30,600 36,300 37,100 38,000 40,600	10-25 yr 50-100 yr 50-100 yr 50-100 yr ≻100-yr			Distance	To (miles)	137.3	1.6	
Discharge Unregulated Regulated % Change	10,100	20,300 20,200	5 Yr 25,600 25,500 -0,39%	10 Yr 28,800 28,700 -0,35%	50 Yr 35,400 35,300 -0.28%	100 Yr 38,200 38,100 -0.26%	500 Yr 44,300 44,200 -0.23%	7Q10 Summer 1,570 1,510 -3.82%	95% Sum. Duration 1,760 1,680 -4.55%	

AERIAL PHOTOGRAPHY

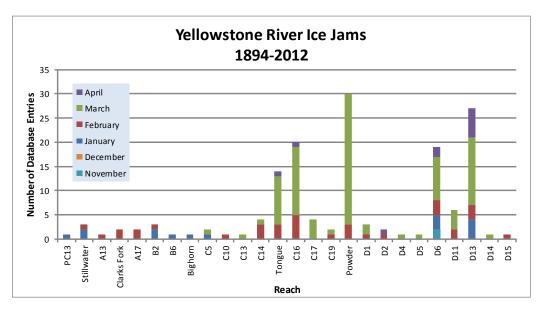
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	17,321	47.4%	16,932	46.4%	-390
	Gabions	0	0.0%	149	0.4%	149
	Flow Deflectors	961	2.6%	961	2.6%	0
	Between Flow Deflectors	629	1.7%	621	1.7%	-8
	Feature Type Totals	18,911	51.8%	18,662	51.1%	-249
Floodplair	n Control			1		
	Floodplain Dike/Levee	18,388	50.4%	17,937	49.1%	-451
	Feature Type Totals	18,388	50.4%	17,937	49.1%	-451
	Reach Totals	37,299	102.2%	36,599	100.3%	-700

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	18,451	26,163	2.42	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	18,253	18,762	2.03	1950 to 2001:	-16.13%
Change 1950 - 2001	-198	-7,401	-0.39		
Length of Side		Pre-1950s (ft)	8,601		
Channels Blocked		Post-1950s (ft)	5,546		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 171	Erosion Buffer (ft) 342	Tot CN Acre 63	NZ age	Restricted CMZ Acreage 225	% Restrict Migration Area 35%		Z Ige	Restricted AHZ Acreage 44	% Restricted Avulsion Area 69%
2011 Res	stricted Mig	ration A	rea Sun	nmar	У	Note that the				
Reason for Restriction	Land Use Protected		RMA Acres		ent of MZ	2011 aerial p Counties, CC				Sweet Grass
Road/Railro	oad Prism									
	Urban Indus	trial	17	2.	4%					
	Interstate		5	0.	6%					
RipRap/Flo	w Deflectors									
	Urban Resid	lential	6	0.	8%					
	Urban Indus	trial	15	2.	2%					
	Exurban Res	sidential	19	2.	8%					
RipRap										
	Exurban Res	sidential	15	2.	1%					
Flow Deflect										
	Non-Irrigated	b	1	0.	1%					
Dike/Levee										
	Urban Other		66		5%					
	Non-Irrigated	b	10	1.	4%					
	Exurban Res	sidential	115	16	.4%					
		Totals	268	38	.5%					
Land Us	es within th	e CMZ (/	Acres)	Irri		Sprinkler Irrigation 4.0	Pivot Irrigation 0.0	Urba ExUrl 135	ban po	Frans- ortation 9.2

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3		Acı	es		% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infras	structure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	2	1	1	1	0.1%	0.1%	0.1%	0.1%
	Totals	2	1	1	1	0.1%	0.1%	0.1%	0.1%
Agricultural Land									
•	Non-Irrigated	662	494	415	410	42.3%	31.6%	26.6%	26.3%
	Irrigated	150	26	34	34	9.6%	1.7%	2.2%	2.2%
	Totals	811	520	449	444	51.9%	33.3%	28.7%	28.4%
Channel									1
	Channel	416	432	443	448	26.6%	27.6%	28.4%	28.7%
	Totals	416	432	443	448	26.6%	27.6%	28.4%	28.7%
ExUrban									1
	ExUrban Other	9	0	0	0	0.5%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	15	4	4	0.0%	1.0%	0.2%	0.2%
	ExUrban Industrial	1	94	94	94	0.0%	6.0%	6.0%	6.0%
	ExUrban Commercial	0	19	28	28	0.0%	1.2%	1.8%	1.8%
	ExUrban Residential	28	85	140	 140	1.8%	5.5%	9.0%	9.0%
	Totals	37	214	266	266	2.4%	13.7%	17.1%	17.1%
Transportation									I.
	Public Road	18	33	41	41	1.2%	2.1%	2.6%	2.6%
	Interstate	0	34	34	34	0.0%	2.2%	2.2%	2.2%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	18	67	75	75	1.2%	4.3%	4.8%	4.8%
Urban	lotalo								
	Urban Other	49	61	61	61	3.2%	3.9%	3.9%	3.9%
	Urban Residential	183	226	226	226	11.7%	14.5%	14.5%	14.5%
	Urban Commercial	20	42	42	42	1.3%	2.7%	2.7%	2.7%
	Urban Undeveloped	25	0	0	0	1.6%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	277	328	328	328	17.7%		21.0%	21.0%
		-							

Land Use Ti	meline - Tiers 3 and	4									ige Betw		
			Acr	es		%	of Rea	ch Area	l	(% of	Agricult	tural La	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '0)1-11	'50-11
Irrigated													
	Sprinkler	0	0	33	33	0.0%	0.0%	7.3%	7.4%	0.0%	7.3%	0.1%	7.4%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	150	26	1	1	18.4%	5.1%	0.2%	0.2%	-13.4%	-4.9%	0.0%	-18.3%
	Totals	150	26	34	34	18.4%	5.1%	7.5%	7.6%	-13.4%	2.4%	0.1%	-10.9%

Reach PC14

Non-Irrigated													
	Multi-Use	507	406	415	410	62.5%	78.1%	92.5%	92.4%	15.6%	14.4%	-0.1%	29.9%
	Hay/Pasture	154	87	0	0	19.0%	16.8%	0.0%	0.0%	-2.2%	-16.8%	0.0%	-19.0%
	Totals	662	494	415	410	81.6%	94.9%	92.5%	92.4%	13.4%	-2.4%	-0.1%	10.9%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	15.3	26.4	51.2	0.0	93.0
Acres/Valley Mile	5.1	8.8	17.1	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	4.74	0.89%	3.68	1.92	0.45	1.36	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

PCS: Partially confined straight

To Mayors Landing

Reach PCI5

Upstream River Mile501.7Downstream River Mile499.9Length1.80 mi (2.90 km)

General Location General Comments

County

Classification

Narrative Summary

Reach PC15 is a 1.83 mile long river segment that extends from Sacajawea Park to the KPRK Bridge (Hwy 89) in Livingston. Within the reach, the river largely flows along the east valley wall, with extensive development on the west side of the river. There are almost 463 acres of urban development in the land use mapping corridor within this reach. There is also over a mile of bank armor, almost all of which is on the left (west) bank of the river. This includes about 5,000 feet of rock riprap and 600 feet of flow deflectors, which drape about 29 percent of the bankline. There are also 9,000 feet of floodplain dikes mapped in this reach, and again, they are on the west side of the river. The physical features have restricted about one half of the river's natural Channel Migration Zone in Reach PC15.

The Vallis Ditch Diversion diverts water from a side channel on the east side of the river at RM 500.4. Across the river from the diversion, Mayor's Landing is a popular ~3 acre fishing access site with a boat ramp.

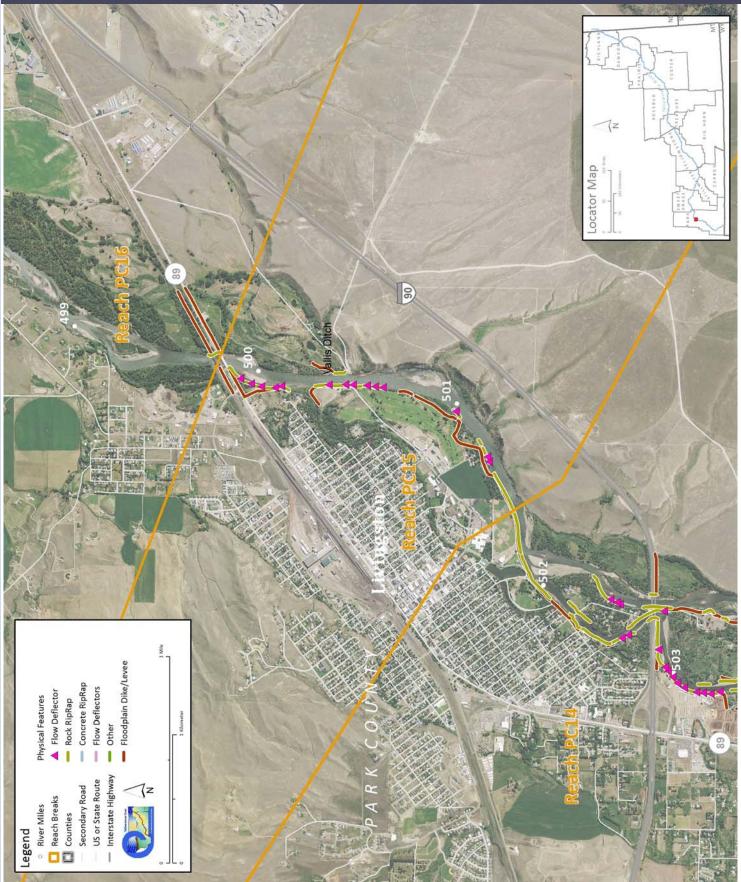
About 50 acres of wetlands have been mapped in Reach PC15, and most of these remain connected to the main channel. About 20 of those wetland acres are on Siebeck Island.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,570 cfs to 1,510 cfs with human development, a reduction of 3.8 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC15 include:

Park


•Physical features blocking over 13,000 feet of side channels.

•Extensive CMZ Restriction with floodplain development.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC15 include: •CMZ Management due to current restriction of 53 percent of the Channel Migration Zone •Channel Bank Stabilization Recommended Practices due to 29 percent of banks being armored in reach •Irrigation diversion management at Vallis Ditch Diversion

Reach PC15

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood His Year 1971 1902	Dat Jun 2 Jun 7	23 11	ow on Date 29,200 30,100	Return Ir 10-25 10-25	5 yr 5 yr		Perioc	Gage No Location I of Record	Downstream Gage 6214500 Billings 1929-2015	Upstream Gage 6192500 Livingston 1929-2015	
1943 1974 1996 1997 2011	Jun 2 Jun 7 Jun 7 Jun Jun 3	17 10 6	30,600 36,300 37,100 38,000 40,600	50-100 50-100 50-100	10-25 yr 50-100 yr 50-100 yr 50-100 yr >100-yr		Distance To (miles)		135.5	4.9	
Discharge Unregula Regula	ated	1.01 Yr 10,200 10,100	2 Yr 20,300 20,200	5 Yr 25,600 25,500	10 Yr 28,800 28,700	50 Yr 35,400 35,300	100 Yr 38,200 38,100	500 Yr 44,300 44,200	7Q10 Summer 1,570 1,510	95% Sum. Duration 1,760 1,680	
% Cha	ange	-0.98%	-0.49%	-0.39%	-0.35%	-0.28%	-0.26%	-0.23%	-3.82%	-4.55%	

AERIAL PHOTOGRAPHY

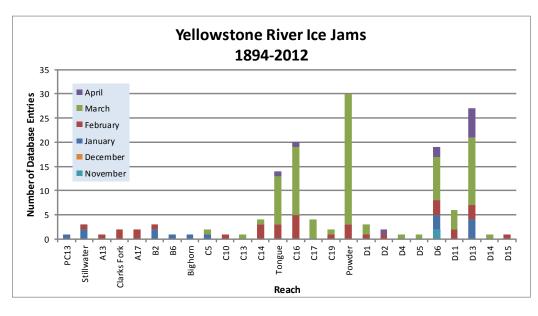
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	4,637	24.5%	4,880	25.8%	243
	Flow Deflectors	613	3.2%	613	3.2%	0
	Between Flow Deflectors	139	0.7%	0	0.0%	-139
	Feature Type Totals	5,389	28.5%	5,493	29.1%	104
Floodplair	n Control					
	Floodplain Dike/Levee	9,032	47.8%	9,032	47.8%	0
	Feature Type Totals	9,032	47.8%	9,032	47.8%	0
	Reach Totals	14,421	76.3%	14,525	76.8%	104

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	9,864	1,031	1.10	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	9,453		1.00	1950 to 2001:	-9.47%
Change 1950 - 2001	-411		-0.10		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 79	Erosion Buffer (ft) 158		•	Restricted CMZ Acreage 36	% Restrict Migration Area 24%		A	HZ eage	Avulsion Area 69%
2011 Restricted Migration Area Sum					ry		se data reflec			
Reason for Restriction	Land Use Protected		RMA Acres		cent of MZ	2011 aerial photography (NAIP for Park and Sweet C Counties, COE for the rest of the river).				
Road/Railro	oad Prism									
	Non-Irrigated		2	0	.5%					
Dike/Levee										
	Urban Other		230	53	3.0%					
		Totals	232	53	3.5%					
Land Us	es within the	e CMZ (A	Acres)	-		Sprinkler Irrigation 18.1	Pivot Irrigation 0.0	Urban/ ExUrban 200.8	Trai porta 5.0	tion

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Tim	eline - Tiers 2 and 3		Acr	res		%	of Rea	ch Area	
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infrastr	ructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	7	13	26	26	0.6%	1.2%	2.4%	2.4%
	Totals	7	13	26	26	0.6%	1.2%	2.4%	2.4%
Agricultural Land						1			
-	Non-Irrigated	504	413	310	350	48.1%	39.4%	29.5%	33.4%
	Irrigated	14	18	18	18	1.3%	1.7%	1.7%	1.7%
	Totals	518	431	328	369	49.4%	41.1%	31.3%	35.2%
Channel						I			1
	Channel	91	97	109	106	8.7%	9.3%	10.4%	10.1%
	Totals	91	97	109	106	8.7%	9.3%	10.4%	10.1%
ExUrban									I
	ExUrban Other	5	0	0	0	0.5%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	3	17	51	14	0.3%	1.6%	4.9%	1.3%
	ExUrban Commercial	0	0	0	20	0.0%	0.0%	0.0%	1.9%
	ExUrban Residential	0	4	17	17	0.0%	0.4%	1.6%	1.6%
	Totals	8	21	69	51	0.7%	2.0%	6.5%	4.8%
Transportation									
	Public Road	18	18	18	18	1.7%	1.7%	1.7%	1.7%
	Interstate	0	3	3	3	0.0%	0.3%	0.3%	0.3%
	Railroad	14	14	13	13	1.3%	1.3%	1.2%	1.2%
	Totals	31	34	34	34	3.0%	3.3%	3.2%	3.2%
Urban						1			
	Urban Other	21	86	123	123	2.0%	8.2%	11.7%	11.7%
	Urban Residential	205	236	246	246	19.6%	22.5%	23.5%	23.5%
	Urban Commercial	49	68	68	49	4.7%	6.5%	6.5%	4.7%
	Urban Undeveloped	78	17	0	0	7.4%	1.7%	0.0%	0.0%
	Urban Industrial	41	45	46	46	3.9%	4.3%	4.4%	4.4%
	Totals	394	453	483	463	37.6%	43.2%	46.1%	44.2%

Land Use Ti	meline - Tiers 3 and	4								Chan	ge Betv	veen Y	ears
			Acr	es		%	of Rea	ch Area		(% of	Agricul	tural La	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	18	18	0.0%	0.0%	5.5%	4.9%	0.0%	5.5%	-0.6%	4.9%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	14	18	0	0	2.6%	4.2%	0.0%	0.0%	1.6%	-4.2%	0.0%	-2.6%
	Totals	14	18	18	18	2.6%	4.2%	5.5%	4.9%	1.6%	1.3%	-0.6%	2.3%

Reach PC15

Non-Irrigated													
	Multi-Use	327	316	246	282	63.2%	73.3%	75.2%	76.4%	10.2%	1.8%	1.2%	13.2%
	Hay/Pasture	177	97	63	69	34.2%	22.4%	19.3%	18.7%	-11.8%	-3.2%	-0.6%	-15.6%
	Totals	504	413	310	350	97.4%	95.8%	94.5%	95.1%	-1.6%	-1.3%	0.6%	-2.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	2.8	36.7	10.9	0.0	50.5
Acres/Valley Mile	1.6	20.9	6.2	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.72	0.23%	0.49	0.34	0.07	0.00	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC16

County	Park	Upstream River Mile	499.9
Classification	PCA: Partially confined anabranching	Downstream River Mile	495.6
General Location	To just upstream of Hwy 89 bridge	Length	4.30 mi (6.92 km)
General Comments			

Narrative Summary

Reach PC16 is 4.3 miles long, extending from the KPRK Bridge (Hwy 89) in Livingston almost to the Highway 89 Bridge downstream. Within the reach, the river makes a large swing from a northerly trend to an easterly trend. The reach is dynamic, as multiple wooded islands, and intermittently flows along the north valley wall. In 2001, there were about 4.2 miles of side channels in the reach, indicating that there is as almost much side channel as main channel in this segment of the Yellowstone River. In some areas the river corridor is over 2,000 feet wide.

There are over 8,000 feet of bank armor in Reach PC16, about 6,500 feet of which is rock riprap. In 2011, there were 1,700 feet of flow deflectors in the reach, after about 200 feet had been destroyed between 2001 and 2011. These flow deflectors were on a large meander bend; they were flanked, and the river has migrated to the southeast about 200 feet beyond their original location. This erosion also damaged a large diversion structure. Bank armor covers about 18 percent of the total bankline. There are also 8,200 feet of mapped floodplain dikes in the reach. Prior to 1950, a 1,900-foot long channel was blocked at its upper end by the highway and Railroad Bridge approaches at the KPRK Bridge.

Land uses in Reach PC16 are mixed, including urban/exurban, irrigated agriculture, and non-irrigated agriculture. In 1950, over 660 acres were in flood irrigation and by 2011 that number had been reduced to 70 acres, with 173 acres being converted to sprinkler irrigation and 246 to pivot. Exurban development is most dense on the left (north) bank of the river, where the valley wall consists of erosion-resistant sandstone that is out of the Channel Migration Zone.

Over 200 acres of wetlands have been mapped in Reach PC16, most of which are emergent marshes and wet meadows. Most of these wetlands are in non-irrigated hay pastures.

There is one pipeline crossing in this reach. The crossing is near Rustad Lane, and is a natural gas line owned by NW Energy, LLC.

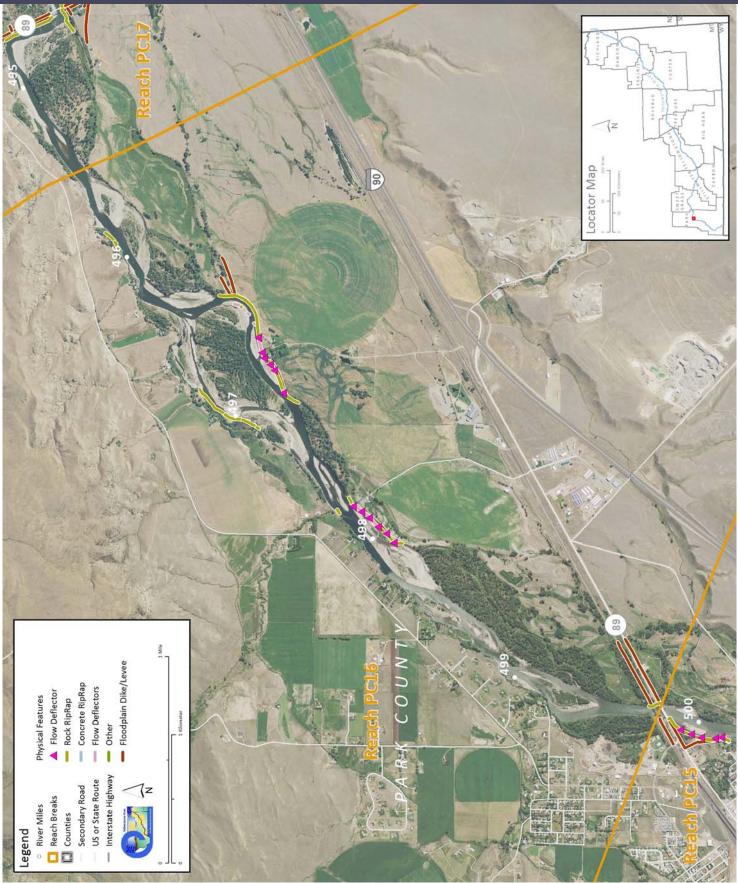
This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,580 cfs to 1,510 cfs with human development, a reduction of 4.4 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC16 include: •Flanking of flow deflectors and sever erosion behind.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC16 include: •Side channel restoration below transportation embankment at RM 499.4L

•Flanked bank armor removal at RM 496.8


•CMZ Management due to current restriction of 14 percent of the Channel Migration Zone

•Pipeline Practices at natural gas crossing at RM 497.9 (natural gas may have special consideration in Practice)

•Irrigation diversion management at Vallis Ditch Diversion at RM 496.5

Reach PC16

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood His Year 1971	Dat Jun	e Flo 23	ow on Date 29,200	Return Ir 10-25	5 yr			Gage No Location	Downstream Gage 6214500 Billings	Upstream Gage 6192500 Livingston
1902	Jun		30,100	10-25	5 yr		Period	l of Record	1929-2015	1929-2015
1943 1974	Jun Jun		30,600 36,300	10-25 50-10			Distance	To (miles)	131.2	6.7
1996	Jun	10	37,100	50-10	0 yr					
1997	Jun	6	38,000	50-10	0 yr					
2011	Jun	30	40,600	>100	-yr					
Discharg	е								7Q10	95% Sum.
		1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregul	ated	10,400	20,600	25,900	29,200	35,900	38,700	44,900	1,580	1,760
Regul	lated	10,300	20,500	25,800	29,100	35,800	38,600	44,800	1,510	1,680
% Ch	ange	-0.96%	-0.49%	-0.39%	-0.34%	-0.28%	-0.26%	-0.22%	-4.43%	-4.55%

AERIAL PHOTOGRAPHY

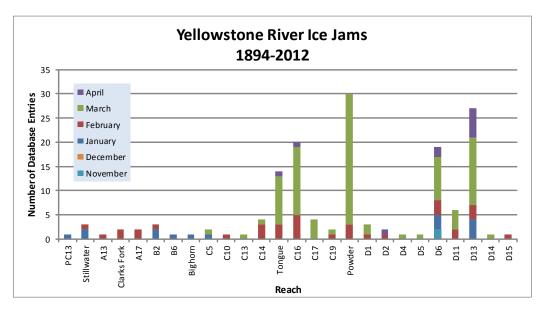
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Stabilization						
	Rock RipRap	4,199	9.2%	6,475	14.2%	2,276
	Flow Deflectors	784	1.7%	759	1.7%	-25
	Between Flow Deflectors	1,126	2.5%	944	2.1%	-182
	Feature Type Totals	6,109	13.4%	8,178	18.0%	2,069
Floodplain	n Control					
	Floodplain Dike/Levee	8,196	18.0%	7,453	16.4%	-744
	Feature Type Totals	8,196	18.0%	7,453	16.4%	-744
	Reach Totals	14,305	31.4%	15,631	34.3%	1,326

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	23,645	25,912	2.10	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	22,759	22,182	1.97	1950 to 2001:	-5.78%
Change 1950 - 2001	-887	-3,729	-0.12		
Length of Side		Pre-1950s (ft)	1,901		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 212	Erosion Buffer (ft) 423	Tot CN Acre 75	IZ age	Restricted CMZ Acreage 52	% Restric Migratio Area 7%		IZ age	Restricted AHZ Acreage 84	% Restricted Avulsion Area 38%		
2011 Re	stricted Migr	ation A	rea Sun	nmar	у	Note that these data reflect the observed conditions in the						
Reason for Restriction	Land Use Protected		RMA Acres		ent of MZ	Counties, C				Sweet Grass		
Road/Railro	oad Prism											
	Public Road		1	0.	1%							
	Non-Irrigated		89	9.	0%							
RipRap/Flo	w Deflectors											
	Non-Irrigated		18	1.	9%							
	Irrigated		15	1.	5%							
RipRap												
	Non-Irrigated		6	0.	6%							
	Irrigated		10	1.	0%							
		Totals	140	14	.3%							
Land Us	es within the	e CMZ (/	Acres)			Sprinkler Irrigation 18.1	Pivot Irrigation 8.2			Frans- ortation 5.4		

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Tim	eline - Tiers 2 and 3			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infrastr	ructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	47	130	182	156	1.9%	5.2%	7.3%	6.3%
	Totals	47	130	182	156	1.9%	5.2%	7.3%	6.3%
Agricultural Land									
-	Non-Irrigated	1,299	956	824	1,042	52.3%	38.5%	33.2%	42.0%
	Irrigated	662	802	708	488	26.7%	32.3%	28.5%	19.7%
	Totals	1,961	1,758	1,532	1,530	79.0%	70.8%	61.7%	61.6%
Channel		,	,	,					
	Channel	433	388	463	485	17.4%	15.6%	18.6%	19.6%
	Totals	433	388	463	485	17.4%		18.6%	19.6%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	17	0	0	0.0%	0.7%	0.0%	0.0%
	ExUrban Industrial	0	31	0	0	0.0%	1.3%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	1	100	203	208	0.0%	4.0%	8.2%	8.4%
	Totals	1	149	203	208	0.0%	6.0%	8.2%	8.4%
Transportation									· · · ·
	Public Road	27	28	28	28	1.1%	1.1%	1.1%	1.1%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	5	5	5	5	0.2%	0.2%	0.2%	0.2%
	Totals	32	33	33	33	1.3%	1.3%	1.3%	1.3%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	8	24	37	37	0.3%	1.0%	1.5%	1.5%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	33	33	0.0%	0.0%	1.3%	1.3%
	Totals	8	24	69	69	0.3%	1.0%	2.8%	2.8%

Land Use Ti	meline - Tiers 3 and		Change Between Years										
			Acr	es		%	of Rea	ch Area	1	(% of	f Agricul	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '(01-11	'50-11
Irrigated													
	Sprinkler	0	0	151	173	0.0%	0.0%	9.8%	11.3%	0.0%	9.8%	1.5%	11.3%
	Pivot	0	0	244	246	0.0%	0.0%	15.9%	16.1%	0.0%	15.9%	0.1%	16.1%
	Flood	662	802	314	70	33.8%	45.6%	20.5%	4.6%	11.8%	-25.1% -	15.9%	-29.2%
	Totals	662	802	708	488	33.8%	45.6%	46.2%	31.9%	11.8%	0.6% -	14.3%	-1.8%

Reach PCI6

Non-Irrigated													
	Multi-Use	1,119	880	550	593	57.1%	50.0%	35.9%	38.7%	-7.0%	-14.1%	2.8%	-18.3%
	Hay/Pasture	180	77	274	449	9.2%	4.4%	17.9%	29.3%	-4.8%	13.5%	11.5%	20.2%
	Totals	1,299	956	824	1,042	66.2%	54.4%	53.8%	68.1%	-11.8%	-0.6%	14.3%	1.8%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	10.6	154.4	51.5	0.0	216.5
Acres/Valley Mile	2.7	39.4	13.1	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.84	0.12%	0.83	0.29	0.12	0.05	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC17

County	Park
Classification	PCB: Partially confined braided
General Location	Through Hwy 89 bridge crossing to Shields River
Conorol Commonto	

Upstream River Mile	495.6
Downstream River Mile	493.6
Length	2.00 mi (3.22 km)

General Comments

Narrative Summary

Reach PC17 is 2.0 miles long, extending from just above the Highway 89 Bridge to just below the mouth of the Shields River. The reach is highly impacted by the two bridges that cross the river in the middle of the reach. One is the Highway 89 Bridge and the other is an abandoned railroad bridge that runs parallel to it just upstream.

There is over a mile of bank armor in Reach PC17, about 5,700 feet of which is rock riprap and another 130 feet is flow deflectors. About 28 percent of the total bankline, including those of side channels, is armored. Most of the armor is associated with the bridges.

About 25 percent of the Channel Migration Zone in Reach PC17 has been restricted by physical features. Much of this restriction takes place near the upper end of the reach, where the Highway 89 Bridge has restricted the natural CMZ from a width of 1800 feet down to 300 feet, isolating about 90 acres of ground downstream of the bridge approach. This constriction at the bridge has also caused extensive deposition upstream, and as a result the river currently flows parallel to the highway before "doglegging" through the bridge opening.

There are also 7,300 feet of mapped floodplain dikes in the reach. These dikes are all associated with the transportation prisms at the bridges. Construction of the bridges also resulted in the blockage of about 3,950 feet of side channel prior to 1950 on the north floodplain just downstream.

Land uses in Reach PC17 are almost entirely agricultural, with historic flood irrigation converting to sprinkler and pivot, and some exurban development. The major land use in the reach, however, is non-irrigated agriculture.

About 85 acres of wetlands have been mapped in Reach PC17, most of which are emergent marshes and wet meadows. Most of these wetlands are in non-irrigated hay pastures or multi-use riparian bottoms.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

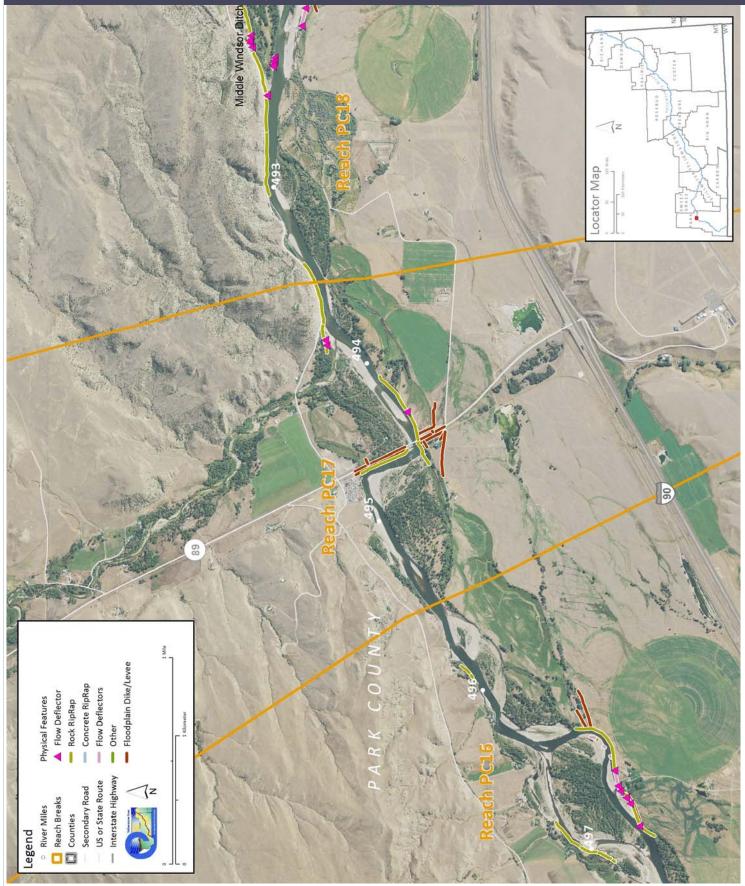
A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,720 cfs to 1,560 cfs with human development, a reduction of 9.3 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC17 include:

•Constriction of CMZ at bridge and poor river alignment to structure. Side channel blockage by transportation embankment.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC17 include:

•Floodplain restoration/connectivity below transportation embankment at RM 494.5


•Side channel restoration below transportation embankment at RM 494.5

•CMZ Management due to current restriction of 25 percent of the Channel Migration Zone

•Bank Stabilization Recommended Practices due to the extent of armoring in the reach (28 percent armored banks)

Reach PC17

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood His Year 1971 1902	Date Jun 23 Jun 1 ⁻	3	w on Date 29,200 30,100	Return Ir 10-25 10-25	5 yr 5 yr		Period	Gage No Location I of Record	Downstream Gage 6214500 Billings 1929-2015	Upstream Gage 6192500 Livingston 1929-2015	
1943 1974 1996 1997 2011	Jun 20 Jun 17 Jun 10 Jun 6 Jun 30	7 D	30,600 36,300 37,100 38,000 40,600	10-25 50-100 50-100 50-100 >100	D yr D yr D yr		Distance	e To (miles)	129.2	11.0	
Discharge Unregul Regul	ated	1.01 Yr 10,400 10,300	2 Yr 20,600 20,500	5 Yr 25,900 25,800	10 Yr 29,200 29,100	50 Yr 35,900 35,800	100 Yr 38,700 38,600	500 Yr 44,900 44,800	7Q10 Summer 1,720 1,560	95% Sum. Duration 1,760 1,680	
% Cha		-0.96%	-0.49%	-0.39%	-0.34%	-0.28%	-0.26%	-0.22%	-9.30%	-4.55%	

AERIAL PHOTOGRAPHY

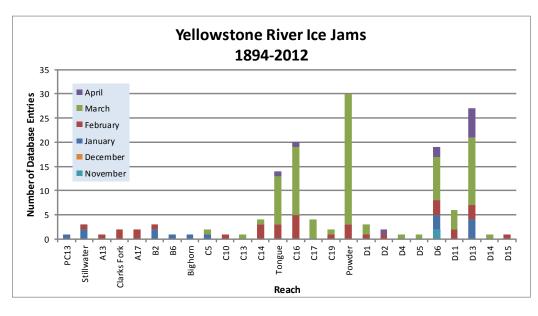
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	5,760	27.6%	5,704	27.3%	-56
	Flow Deflectors	78	0.4%	134	0.6%	56
	Feature Type Totals	5,838	28.0%	5,838	28.0%	0
Floodplair	n Control					
	Floodplain Dike/Levee	7,290	34.9%	7,290	34.9%	0
	Feature Type Totals	7,290	34.9%	7,290	34.9%	0
	Reach Totals	13,128	62.9%	13,128	62.9%	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	10,030	2,384	1.24	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	10,430	2,345	1.22	1950 to 2001:	-1.04%
Change 1950 - 2001	400	-39	-0.01		
Length of Side		Pre-1950s (ft)	3,948		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 112	Erosion Buffer (ft) 223	Tot CN Acre 209	IZ CMZ age Acreage	Migratio		Restricted AHZ Acreage 81	% Restricted Avulsion Area 38%
2011 Res	stricted Migr	ation A	ea Sun	nmary			the observed cor	
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ		OE for the rest	AIP for Park and of the river).	Sweet Glass
Road/Railro	oad Prism							
	Non-Irrigated		90	21.2%				
RipRap/Flo	w Deflectors							
	Public Road		2	0.4%				
RipRap								
	Railroad		4	1.0%				
	Non-Irrigated		10	2.4%				
		Totals	106	25.1%				
Land Us	es within the	e CMZ (A	Acres)	Flood Irrigation 18.3	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0		Trans- ortation 2.3

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti			% of Reach Area						
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	structure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	11	31	38	44	1.1%	3.2%	3.9%	4.5%
	Totals		31	38	44	1.1%	3.2%	3.9%	4.5%
Agricultural Land									
•	Non-Irrigated	462	521	493	611	47.6%	53.6%	50.8%	62.9%
	Irrigated	384	255	255	125	39.5%	26.3%	26.2%	12.9%
	Totals	846	776	748	736	87.1%	79.8%	77.0%	75.8%
Channel									1
	Channel	96	126	131	132	9.9%	13.0%	13.5%	13.6%
	Totals	96	126	131	132		13.0%		13.6%
ExUrban									
	ExUrban Other	0	9	10	10	0.0%	1.0%	1.0%	1.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	8	8	8	0.0%	0.8%	0.8%	0.8%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	1	17	22	0.0%	0.1%	1.8%	2.2%
	Totals	0	19	35	40	0.0%	1.9%	3.6%	4.1%
Transportation	- Otalo								
ranoportation	Public Road	11	20	20	20	1.2%	2.1%	2.1%	2.1%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	7	0	0	0	0.7%	0.0%	0.0%	0.0%
	Totals	18	20	20	20	1.9%	2.1%	2.1%	2.1%
Urban	Totalo								
Ciban	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	i Utais	U	U	U	U	0.070	0.0 /0	0.070	0.070

Land Use Timeline - Tiers 3 and 4									Change Between Years				
			Acr	es		% of Reach Area			l I	(% of Agricultural Land)			and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '(01-11	'50-11
Irrigated													
	Sprinkler	0	0	40	60	0.0%	0.0%	5.4%	8.2%	0.0%	5.4%	2.9%	8.2%
	Pivot	0	0	0	47	0.0%	0.0%	0.0%	6.3%	0.0%	0.0%	6.3%	6.3%
	Flood	384	255	215	18	45.4%	32.9%	28.7%	2.5%	-12.5%	-4.2% -	26.2%	-42.9%
	Totals	384	255	255	125	45.4%	32.9%	34.1%	17.0%	-12.5%	1.2% -	17.0%	-28.3%

Reach PC17

Non-Irrigated													
	Multi-Use	441	446	463	478	52.1%	57.4%	61.9%	64.9%	5.3%	4.5%	3.0%	12.8%
	Hay/Pasture	21	75	30	133	2.5%	9.7%	4.0%	18.1%	7.1%	-5.7%	14.0%	15.5%
	Totals	462	521	493	611	54.6%	67.1%	65.9%	83.0%	12.5%	-1.2%	17.0%	28.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	2.0	65.1	19.0	0.0	86.1
Acres/Valley Mile	1.2	37.9	11.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.27	0.07%	0.09	0.01	0.00	0.00	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC18

County	Park	Upstream River Mile	493.6
Classification	UA: Unconfined anabranching	Downstream River Mile	488.3
General Location	To below Mission Creek	Length	5.30 mi (8.53 km)
General Comments	Reach PC18, located near Mission Creek in Park County, pro	vides an example of both a	ctive (structure-related)

ments Reach PC18, located near Mission Creek in Park County, provides an example of both active (structure-related) and passive side channel loss, and also demonstrates CES data gaps in Park County.

Narrative Summary

Reach PC18 is located in Park County, downstream of Livingston at Mission Creek. It is 5.3 miles long, extending from RM 488.2 to RM 493.5. Reach PC 18 is an Unconfined Anabranching (UA) reach type. In the uppermost portion of the Reach (RM 492.5-493.5), the river flows along bluffs of the Fort Union Formation, which is made up of massive cliff-forming sedimentary rocks. The south side of the river consists primarily of young river deposits that form the modern valley bottom and low terraces. Sheep Mountain Fishing Access Site is located at RM 491.5. Just upstream of the fishing access site, the Middle Windsor Ditch diverts water off of a side channel.

In 2001, there was 9,650 feet of rock riprap in the reach and by 2011 that had expanded to 11,486 feet. Similarly, the extent of flow deflectors expanded from 1,710 feet to 3,370 feet from 2001 to 2011. Approximately 27 percent of the total bankline was armored in 2011. There is also one floodplain dike on the south floodplain near RM 492 that is about 3,400 feet long.

Over two miles of side channel have been blocked by dikes in Reach PC18. All of these lost side channels are located in the lower end of the reach below the mouth of Mission Creek. On the order of 3,370 feet were blocked prior to 1950, and about 8,000 feet since then.

Land uses in Reach PC18 are almost entirely agricultural, with historic flood irrigation converting to sprinkler and pivot, and some exurban development since 1950. There are still 302 acres of ground under flood irrigation in the reach. The major land use in the reach, however, is non-irrigated agriculture. There is one series of corrals associated with an animal holding facility that is within 200 feet of an abandoned channel at RM 490.3. Exurban Residential land use has expanded from zero acres in the1950s to 155 acres in 2011.

About 580 acres of wetlands have been mapped in Reach PC18, most of which are emergent marshes and wet meadows. Most of these wetlands are on the south side of the river in non-irrigated hay pastures or multi-use riparian bottoms.

Reach PC18 has 17 acres of Russian olive, which is the most of in any reach in Park County. This Russian olive is concentrated in one area on the south floodplain at RM 492.8; this area also has extensive mapped emergent wetlands.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,720 cfs to 1,560 cfs with human development, a reduction of 9.3 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC18 include:

•Blocked side channels that are thousands of feet long.

•Concentrated Russian olive infestation within mapped emergent wetland.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC18 include: •Side channel restoration at RM 490R

•CMZ Management due to current restriction of 14 percent of the Channel Migration Zone

•Russian olive removal

•Nutrient management at corrals that are part of an animal handling facility at RM 490.3L

•Bank Stabilization Recommended due to the extent of armoring in the reach (27 percent armored banks)

•Irrigation diversion structure management at Middle Windsor Ditch diversion

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood Hist Year 1971 1902	Date Jun 23 Jun 11	Flow on Date 29,200 30,100	10-2 10-2	5 yr 5 yr		Period	Gage No Location d of Record	Downstream Gage 6214500 Billings 1929-2015	Upstream Gage 6192500 Livingston 1929-2015	
1943 1974 1996 1997 2011	Jun 20 Jun 17 Jun 10 Jun 6 Jun 30	30,600 36,300 37,100 38,000 40,600	50-10 50-10 50-10	10-25 yr 50-100 yr 50-100 yr 50-100 yr >100-yr		Distance To (miles)			13.0	
Discharge Unregula Regula % Char	1.0 ted 11 ted 11	11 Yr 2 Yr ,400 22,400 ,100 22,000 63% -1.79%	27,800	10 Yr 31,700 31,400 -0.95%	50 Yr 38,900 38,600 -0.77%	100 Yr 41,800 41,600 -0.48%	500 Yr 48,500 48,400 -0.21%	7Q10 Summer 1,720 1,560 -9.30%	95% Sum. Duration 1,760 1,680 -4,55%	

AERIAL PHOTOGRAPHY

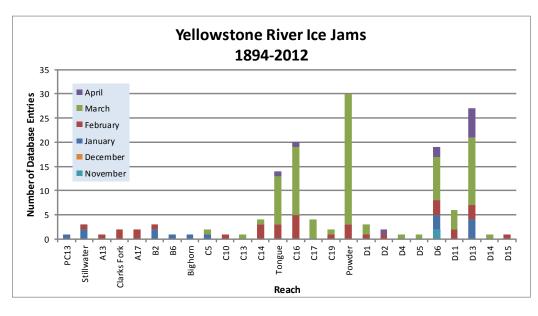
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
1948	NA		DNR B/W			
1954	NA		DNR B/W			
1965	NA		DNR B/W			
1973	NA		DNR B/W			
1976	NA		DNR B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2005	USDA FSA		NAIP Color			
2007	Wolpert??		Color			
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	9,650	17.3%	11,486	20.6%	1,836
	Flow Deflectors	1,170	2.1%	1,352	2.4%	182
	Between Flow Deflectors	544	1.0%	2,110	3.8%	1,566
	Feature Type Totals	11,364	20.4%	14,949	26.8%	3,584
Floodplain	n Control					
	Floodplain Dike/Levee	3,339	6.0%	3,319	6.0%	-19
	Feature Type Totals	3,339	6.0%	3,319	6.0%	-19
	Reach Totals	14,703	26.4%	18,268	32.8%	3,565

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	27,144	39,797	2.47	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	27,886	27,224	1.98	1950 to 2001:	-19.86%
Change 1950 - 2001	742	-12,573	-0.49		
Length of Side		Pre-1950s (ft)	3,369		
Channels Blocked		Post-1950s (ft)	7,999		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 266	Erosion Buffer (ft) 532	Tot CN Acre 1,03	NZ age	Restricted CMZ Acreage 117	% Restric Migratic Area 11%		Z age A	AHZ Creage 53	% Restricted Avulsion Area 19%	
2011 Restricted Migration Area Summary						Note that these data reflect the observed conditions in the					
Reason for Restriction	Land Use Protected		RMA Acres		ent of MZ	2011 aerial photography (NAIP for Park and Sweet Gras Counties, COE for the rest of the river).					
RipRap/Flo	w Deflectors										
	Non-Irrigated		5		.4%						
	Irrigated		113	8	.3%						
RipRap			05	•	00/						
	Irrigated		35		.6%						
	Exurban Resi	dential	7		.5%						
	Canal		21	1	.6%						
Flow Deflect											
	Other Infrastru	ucture	3	0	.2%						
		Totals	185	13	8.5%						
Land Us	es within the	e CMZ (/	Acres)	Irri		Sprinkler Irrigation 0.0	Pivot Irrigation 13.5	Urban ExUrba 31.1		Trans- ortation 1.8	

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Tim	neline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infrast	tructure								
	Canal	23	23	23	23	0.6%	0.6%	0.6%	0.6%
	Agricultural Roads	0	0	6	6	0.0%	0.0%	0.2%	0.2%
	Other Infrastructure	64	92	131	142	1.7%	2.4%	3.5%	3.7%
	Totals	86	115	160	171	2.3%	3.0%	4.2%	4.5%
Agricultural Land									
•	Non-Irrigated	1,728	1,663	1,671	1,885	45.6%	43.8%	44.1%	49.7%
	Irrigated	1,365	1,351	1,124	843	36.0%	35.6%	29.6%	22.2%
	Totals	3,093	3,014	2,795	2,728	81.6%	79.5%	73.7%	71.9%
Channel									
	Channel	530	528	565	583	14.0%	13.9%	14.9%	15.4%
	Totals	530	528	565	583	14.0%	13.9%	14.9%	15.4%
ExUrban									
ExUrban Other		0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped		0	12	12	0.0%	0.0%	0.3%	0.3%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	23	104	143	0.0%	0.6%	2.7%	3.8%
	Totals	0	23	116	155	0.0%	0.6%	3.1%	4.1%
Transportation									
	Public Road	62	24	47	47	1.6%	0.6%	1.2%	1.2%
	Interstate	0	67	88	88	0.0%	1.8%	2.3%	2.3%
	Railroad	21	21	21	21	0.6%	0.6%	0.6%	0.6%
	Totals	84	112	155	155	2.2%	3.0%	4.1%	4.1%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	Land Use Timeline - Tiers 3 and 4					Change Between Years							
			Acr	es		%	of Rea	ch Area	ı –	(% o	f Agricul	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	91	128	0.0%	0.0%	3.2%	4.7%	0.0%	3.2%	1.5%	4.7%
	Pivot	0	0	275	412	0.0%	0.0%	9.8%	15.1%	0.0%	9.8%	5.3%	15.1%
	Flood	1,365	1,351	759	303	44.1%	44.8%	27.1%	11.1%	0.7%	-17.7% -	-16.0%	-33.0%
	Totals	1,365	1,351	1,124	843	44.1%	44.8%	40.2%	30.9%	0.7%	-4.6%	-9.3%	-13.2%

Reach PC18

Non-Irrigated													
	Multi-Use	1,487	1,399	1,459	1,410	48.1%	46.4%	52.2%	51.7%	-1.7%	5.8%	-0.5%	3.6%
	Hay/Pasture	241	264	212	475	7.8%	8.8%	7.6%	17.4%	1.0%	-1.2%	9.8%	9.6%
	Totals	1,728	1,663	1,671	1,885	55.9%	55.2%	59.8%	69.1%	-0.7%	4.6%	9.3%	13.2%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	6.5	504.8	68.1	0.0	579.4
Acres/Valley Mile	1.4	105.6	14.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	16.66	0.79%	1.63	0.33	0.14	0.32	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PCI9

CountyParkClassificationCS: Confined straightGeneral LocationTo near Locke CrGeneral Comments

Upstream River Mile488.3Downstream River Mile485.4Length2.90 mi (4.67 km)

Narrative Summary

Reach PC19 is located in Park County, downstream of Livingston near Locke Creek. It is 2.9 miles long, and is a Confined Straight (CS) reach type indicating that it is highly confined between the valley wall to the north, and by the railroad/Interstate corridor to the south. The transportation corridor has isolated on the order of 40acres of historic floodplain from the river. These broad fields south of the river that are historic floodplain areas are now irrigated. The primary land use in the reach is agriculture, with about 200 acres each of flood, pivot, and sprinkler irrigation. More than half of the agricultural land is non-irrigated (~750 acres). In 1950, the transportation corridor footprint consumed about 50 acres in the reach, and that area was doubled with the construction of the Interstate in the late 1960s.

The stability of the reach is indicated by the fact that less than 3 percent of the bankline is armored. That 805 feet of armor was all constructed on the right bank sometime since 2001 where the river flows within a few hundred feet of the rail line. There are no side channels in the reach and the CMZ is relatively narrow.

Although the corridor confined and relatively narrow, there are about 50 acres of wetlands mapped in Reach PC19. These wetlands are consistently along low areas of the active riverbanks that support emergent and scrub/shrub wetland types. Only 0.03 acres of Russian olive was mapped in the reach.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events now considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,730 cfs to 1,560 cfs with human development, a reduction of 9.8 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC19 include:

•Corridor confinement by transportation infrastructure.

•Agricultural development and irrigation of historic floodplain area that has become isolated from the river by transportation infrastructure.

No reach-specific Practices were identified for Reach PC19.

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood History Year Date 1971 Jun 23 1902 Jun 11	30,100	Return In 10-25 10-25	yr yr		Period	Gage No Location I of Record	Downstream Gage 6214500 Billings 1929-2015	Upstream Gage 6192500 Livingston 1929-2015
1943 Jun 20 1974 Jun 17 1996 Jun 10 1997 Jun 6 2011 Jun 30	36,300 37,100 38,000	10-25 yr 50-100 yr 50-100 yr 50-100 yr >100-yr			Distance To (miles)		121.0	18.3
Unregulated Regulated	.01 Yr 2 Yr 11,400 22,400 11,100 22,000 2.63% -1.79%	5 Yr 28,100 27,800 -1.07%	10 Yr 31,700 31,400 -0,95%	50 Yr 38,900 38,600 -0.77%	100 Yr 41,800 41,600 -0.48%	500 Yr 48,500 48,400 -0.21%	7Q10 Summer 1,730 1,560 -9.83%	95% Sum. Duration 1,760 1,680 -4.55%

AERIAL PHOTOGRAPHY

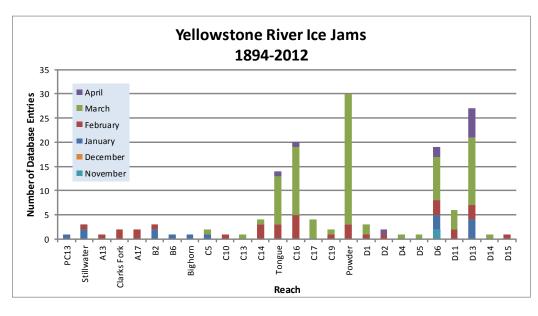
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	0	0.0%	805	2.8%	805
	Feature Type Totals		0.0%	805	2.8%	
	Reach Totals	5	0.0%	805	2.8%	

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	14,505		1.00	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	14,533		1.00	1950 to 2001:	0.00%
Change 1950 - 2001	28		0.00		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-Year		5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tota CM2 Acrea	Z CMZ age Acreage	Migration Area	AHZ Acreag		Avulsion e Area		
	19	38	153	0	0%	0	0	0%		
2011 Restricted Migration Area Summary					Note that these data reflect the observed conditions in the 2011 aerial photography (NAIP for Park and Sweet Grass					
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, COI					
RipRap										
	Non-Irrigated	l	2	1.4%						
		Totals	2	1.4%						
Land Us	es within th	e CMZ (A	cres)	Flood Irrigation 4.1	Sprinkler Irrigation 0.0	Pivot Irrigation 2.0	Urban/ ExUrban 0.0	Trans- portation 0.8		

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Tir	neline - Tiers 2 and 3		Acr	es		%	of Rea	ch Area	. j
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infras	structure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	9	16	19	22	0.5%	1.0%	1.1%	1.3%
	Totals	9	16	19	22	0.5%	1.0%	1.1%	1.3%
Agricultural Land									I.
0	Non-Irrigated	837	885	842	797	49.4%	52.2%	49.7%	47.0%
	Irrigated	686	613	611	654	40.5%	36.2%	36.1%	38.6%
	Totals	1,522	1,498	1,453	1,450		88.4%		85.6%
Channel				,	,				1
	Channel	116	119	119	119	6.9%	7.0%	7.0%	7.0%
	Totals	116	119	119	119	6.9%	7.0%	7.0%	7.0%
ExUrban									1
ExUrban Other		0	0	0	0	0.0%	0.0%	0.0%	0.0%
ExUrban Undeveloped		0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	1	0	0	0.0%	0.1%	0.0%	0.0%
	Totals	0	1	0	0	0.0%	0.1%	0.0%	0.0%
Transportation									1
	Public Road	31	45	15	15	1.8%	2.7%	0.9%	0.9%
	Interstate	0	0	72	72	0.0%	0.0%	4.3%	4.3%
	Railroad	16	16	16	16	0.9%	0.9%	0.9%	0.9%
	Totals	47	61	103	103	2.8%	3.6%	6.1%	6.1%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	meline - Tiers 3 and	4									nge Betw		
			Acres			% of Reach Area			(% of Agricultural Land)			and)	
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '(01-11	'50-11
Irrigated													
	Sprinkler	0	0	201	201	0.0%	0.0%	13.9%	13.9%	0.0%	13.9%	0.0%	13.9%
	Pivot	0	0	26	241	0.0%	0.0%	1.8%	16.6%	0.0%	1.8%	14.8%	16.6%
	Flood	686	613	383	211	45.0%	40.9%	26.4%	14.6%	-4.1%	-14.5% -	-11.8%	-30.5%
	Totals	686	613	611	654	45.0%	40.9%	42.1%	45.1%	-4.1%	1.1%	3.0%	0.0%

Reach PC19

Non-Irrigated													
	Multi-Use	663	742	733	727	43.6%	49.5%	50.4%	50.1%	6.0%	0.9%	-0.3%	6.5%
	Hay/Pasture	173	143	109	70	11.4%	9.6%	7.5%	4.8%	-1.8%	-2.0%	-2.7%	-6.6%
	Totals	837	885	842	797	55.0%	59.1%	57.9%	54.9%	4.1%	-1.1%	-3.0%	0.0%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	2.2	40.7	8.9	0.0	51.9
Acres/Valley Mile	0.8	15.2	3.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.03	0.08%	0.42	0.00	0.00	0.00	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

PCS: Partially confined straight

Reach PC20

Upstream River Mile485.4Downstream River Mile481Length4.40 mi (7.08 km)

General Location General Comments

County

Classification

Park

Fast End

Narrative Summary

Reach PC20 is 4.4 miles long and flows through a narrow canyon known as East End just above Springdale. The reach is Partially Confined Straight (PCS); the river flows through a canyon that provides some curvature however that sinuosity is created by the canyon itself and does not reflect river meandering. Within Reach PC20, the river is closely bound by both the railroad line and Interstate. In places, the transportation infrastructure has been cut into the valley wall; in other areas it encroaches into the historic river floodplain. As a result, numerous slivers of historic floodplain area have become isolated from the river through the canyon, and most of these isolated floodplain areas are currently irrigated. Within the floor of the canyon, the river does show come migration, side channel formation, and habitat complexity, although those dynamics are relatively suppressed due to the natural and human-induced confinement.

Because of the moderately dynamic nature of the river and the encroachment by transportation infrastructure, there are over two miles of bank armor in Reach PC20, and about 1,100 feet of that armor was constructed since 2001. All of the armor is on the right bank of the river where the channel is against the railroad line. Over a quarter of the banks are armored.

The primary land use in Reach PC20 is non-irrigated agriculture, although there are 79 acres of ground under sprinkler irrigation, and 115 acres under pivot. All of the irrigation is well out of the Channel Migration Zone (CMZ).

Over 100 acres of wetlands have been mapped in Reach PC20 and there is some minor Russian olive present. All of the wetlands are in the active river corridor, on low surfaces that host emergent and scrub/shrub wetland types.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,730 cfs to 1,570 cfs with human development, a reduction of 9.3 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC20 include:

•Corridor confinement by transportation infrastructure.

•Agricultural development and irrigation of historic floodplain area that has become isolated from the river by transportation infrastructure.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC20 include: •CMZ Management due to current restriction of 11 percent of the Channel Migration Zone •Bank Stabilization Recommended due to 27 percent of banks being armored in reach PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood His Year 1971 1902	Date Jun 23 Jun 11	-	w on Date 29,200 30,100	Return Ir 10-25 10-25	yr yr		Perioc	Gage No Location d of Record	Downstream Gage 6214500 Billings 1929-2015	Upstream Gage 6192500 Livingston 1929-2015	
1943 1974 1996 1997 2011	Jun 20 Jun 17 Jun 10 Jun 6 Jun 30		30,600 36,300 37,100 38,000 40,600	10-25 yr 50-100 yr 50-100 yr 50-100 yr >100-yr			Distance To (miles)		116.6	21.2	
Discharge Unregula Regula % Cha	1 ated 1 ated 1	.01 Yr 11,400 11,100 2.63%	2 Yr 22,400 22,000 -1.79%	5 Yr 28,100 27,800 -1.07%	10 Yr 31,700 31,400 -0.95%	50 Yr 38,900 38,600 -0.77%	100 Yr 41,800 41,600 -0.48%	500 Yr 48,500 48,400 -0.21%	7Q10 Summer 1,730 1,570 -9.25%	95% Sum. Duration 1,760 1,680 -4.55%	

AERIAL PHOTOGRAPHY

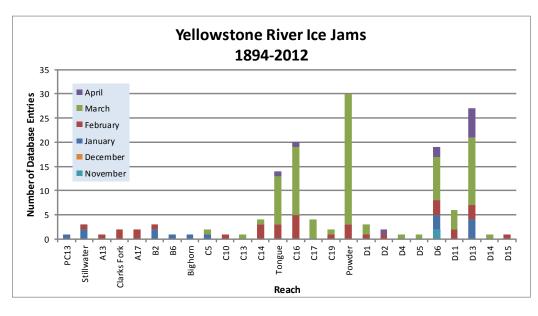
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	11,665	24.6%	12,764	27.0%	1,099
	Flow Deflectors	0	0.0%	56	0.1%	56
	Feature Type Totals	11,665	24.6%	12,820	27.1%	1,155
Floodplair	n Control					
	Floodplain Dike/Levee	3,181	6.7%	3,181	6.7%	0
	Feature Type Totals	3,181	6.7%	3,181	6.7%	0
	Reach Totals	14,846	31.4%	16,001	33.8%	1,155

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	23,758	10,972	1.46	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	23,666	15,234	1.64	1950 to 2001:	12.44%
Change 1950 - 2001	-92	4,262	0.18		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-	Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tot CM Acrea	IZ CMZ	Migratio		AHZ	Avulsion	
	142	284	539	9 57	11%	43	0	0%	
2011 Res	stricted Mig	ration A	rea Sun	nmary				conditions in the	
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	2011 aerial photography (NAIP for Park a Counties, COE for the rest of the river).				
RipRap									
	Railroad		59	10.1%					
	Non-Irrigated	ł	8	1.4%					
		Totals	67	11.5%					
Land Us	es within th	e CMZ (A	Acres)	Flood Irrigation	Sprinkler Irrigation	Pivot Irrigation	Urban/ ExUrban	Trans- portation	

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3		Acı	es		%	of Rea	ch Area	i j
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infras	structure								- C
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	27	33	60	72	1.1%	1.3%	2.4%	2.8%
	Totals	27	33	60	72	1.1%	1.3%	2.4%	2.8%
Agricultural Land									1 - C
	Non-Irrigated	2,032	1,987	1,819	1,784	79.5%	77.7%	71.2%	69.8%
	Irrigated	133	117	193	203	5.2%	4.6%	7.6%	8.0%
	Totals	2,166	2,104	2,012	1,987	84.7%	82.3%	78.7%	77.8%
Channel					l				1 - C
	Channel	281	312	333	346	11.0%	12.2%	13.0%	13.5%
	Totals	281	312	333	346	11.0%	12.2%	13.0%	13.5%
ExUrban									1 - C
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%
Transportation					,				
	Public Road	54	0	13	13	2.1%	0.0%	0.5%	0.5%
	Interstate	0	81	112	112	0.0%	3.2%	4.4%	4.4%
	Railroad	28	26	26	26	1.1%	1.0%	1.0%	1.0%
	Totals	82	107	151	151	3.2%	4.2%	5.9%	5.9%
Urban					,				
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	meline - Tiers 3 and	4									ige Betw		
			Acr	es		%	of Rea	ch Area	ı	(% 01	Agricul	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '(01-11	'50-11
Irrigated													
	Sprinkler	0	0	79	79	0.0%	0.0%	3.9%	4.0%	0.0%	3.9%	0.0%	4.0%
	Pivot	0	0	105	115	0.0%	0.0%	5.2%	5.8%	0.0%	5.2%	0.6%	5.8%
	Flood	133	117	9	9	6.2%	5.6%	0.5%	0.5%	-0.6%	-5.1%	0.0%	-5.7%
	Totals	133	117	193	203	6.2%	5.6%	9.6%	10.2%	-0.6%	4.0%	0.6%	4.1%

Reach PC20

Non	Irrightod
	Irrigated

	4 000	4 00 4	4	4 700	00.00/	04.00/	00.00/	00.00/	0.00/	0.40/	0.00/	0.40/	
Multi-Use	1,998	1,934	1,788	1,766	92.2%	91.9%	88.8%	88.9%	-0.3%	-3.1%	0.0%	-3.4%	
Hay/Pasture	34	53	31	18	1.6%	2.5%	1.5%	0.9%	0.9%	-1.0%	-0.6%	-0.7%	
Totals	2,032	1,987	1,819	1,784	93.8%	94.4%	90.4%	89.8%	0.6%	-4.0%	-0.6%	-4.1%	

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	1.0	64.3	45.8	0.0	111.1
Acres/Valley Mile	0.3	15.8	11.2	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.22	0.05%	0.12	0.01	0.02	0.04	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC21

CountyParkClassificationPCA: Partially confined anabranchingGeneral LocationTo SpringdaleGeneral Comments

Upstream River Mile481Downstream River Mile478.8Length2.20 mi (3.54 km)

Narrative Summary

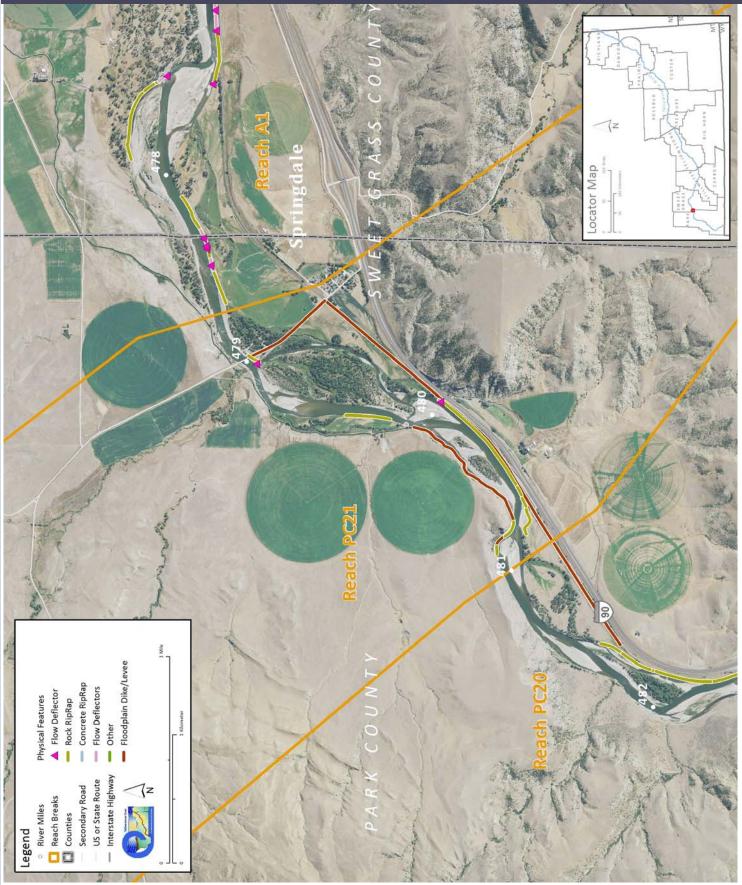
Reach PC21 is the downstream-most reach in Park County, emerging from a narrow canyon just above Springdale. The reach is 2.2 miles long, and is classified as Partially Confined Anabranching, reflecting some influence of the valley wall on channel form coupled by islands and side channels. At the upstream end of the reach, the Hunters Hot Springs Canal Diversion diverts water along the left bank of the river where it flows along the valley wall. This canal carries water about 11 miles down the river valley.

Reach PC21 is fairly heavily armored, with over a mile of bank armor in the reach, and most of that is rock riprap. Most of the armor is on the right bank against the railroad line, but there is also armor protecting the Hunters Hot Springs Canal Diversion as well as hayfields along the left bank. In the lower end of the reach the left bank is a high terrace that has bedrock exposed at its toe.

The primary land use in Reach PC21 is non-irrigated agriculture, although there are 266 acres of ground under pivot irrigation. All of the pivot irrigation is well out of the Channel Migration Zone (CMZ). The Springdale Bridge Fishing Access Site is located in at the downstream end of the reach at Springdale Bridge. The bridge narrows the CMZ width from about 2,500 feet upstream to 1,000 feet downstream of the structure. Just upstream of the bridge, there are remnants of an older bridge, including a large pier in the river. Bedrock is exposed in the riverbed just upstream of the bridge.

About 90 acres of wetlands have been mapped in Reach PC21 and about 18 of those acres consist of emergent wetlands in low historic floodplain area that has been isolated from the river by the railroad and interstate. Although the Russian olive mapping shows 0.2 acres of RO in the reach, some of that had been eroded out by the river by fall 2011.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.


A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,730 cfs to 1,570 cfs with human development, a reduction of 9.3 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC21 include: •Corridor confinement by transportation infrastructure. •Emergent wetlands located in isolated floodplain area. •Narrowing of CMZ by Springdale Bridge.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC21 include: •CMZ Management due to current restriction of 19 percent of the Channel Migration Zone •Bank Stabilization Recommended Practices due to 27 percent of banks being armored in reach •Irrigation diversion structure management at Hunters Hot Springs Canal diversion.

Reach PC21

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood History Year Date 1971 Jun 2 1902 Jun 1	23 29,200 1 30,100	Return Inter 10-25 yr 10-25 yr			Period	Gage No Location	Downstream Gage 6214500 Billings 1929-2015	Upstream Gage 6192500 Livingston 1929-2015
1943 Jun 2 1974 Jun 1 1996 Jun 1 1997 Jun 2011 Jun 3	7 36,300 10 37,100 6 38,000	50-100 yı 50-100 yı	10-25 yr 50-100 yr 50-100 yr 50-100 yr >100-yr		Distance To (miles)		114.4	25.6
Discharge Unregulated Regulated % Change	1.01 Yr 2 Yr 11,400 22,400 11,100 22,000 -2.63% -1.79%	27,800	10 Yr 31,700 31,400 0.95%	50 Yr 38,900 38,600 -0.77%	100 Yr 41,800 41,600 -0.48%	500 Yr 48,500 48,400 -0.21%	7Q10 Summer 1,730 1,570 -9.25%	95% Sum. Duration 1,760 1,680 -4.55%

AERIAL PHOTOGRAPHY

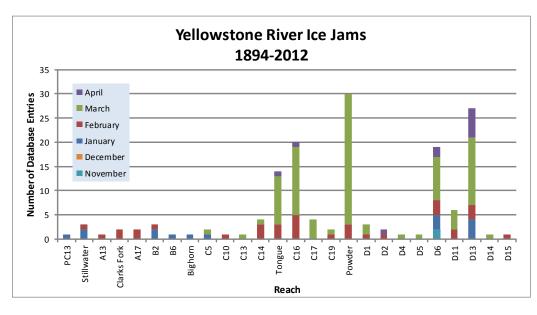
A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2005	NAIP	08/25/2005	color	1-meter pixels	6192500	2390
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.


Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	6,101	25.5%	6,270	26.2%	169
	Flow Deflectors	60	0.3%	123	0.5%	62
	Feature Type Totals	6,161	25.7%	6,393	26.7%	232
Floodplair	n Control					
	Floodplain Dike/Levee	15,601	65.1%	15,612	65.1%	12
	Feature Type Totals	15,601	65.1%	15,612	65.1%	12
	Reach Totals	21,762	90.8%	22,005	91.8%	244

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	11,658	14,314	2.23	1950 to 1976:	
1976	1,552			1976 to 1995:	
1995				1995 to 2001:	
2001	11,983	14,978	2.25	1950 to 2001:	1.00%
Change 1950 - 2001	325	664	0.02		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-Year		5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)				
Agriculture (generally relates to field boundaries)				
Agriculture (isloated by canal or large ditch)				
Levee/Riprap (protecting agricultural lands)				
Levee/Riprap (protecting urban, industrial, etc.)				
Railroad				
Abandoned Railroad				
Transportation (Interstate and other roads)				
Total Not Isolated (Ac)				
Total Floodplain Area (Ac)				
Total Isolated (Ac)				
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.				

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 131	Erosion Buffer (ft) 261	Total CMZ Acreag 328	CMZ	% Restrict Migration Area 17%		Restricted AHZ Acreage 9	% Restricted Avulsion Area 82%
ZVII Nestlicted Migration Area Summary						the observed co		
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, CC	Sweet Grass		
Road/Railroad Prism								
	Public Road		25	7.3%				
RipRap								
	Railroad		30	8.7%				
	Irrigated		11	3.1%				
		Totals	65	19.2%				
Land Us	es within th	e CMZ (A	cres)	Flood Irrigation 9.5	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban p 6.7	Trans- ortation 22.9

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Tir	meline - Tiers 2 and 3		Acres			% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infras	structure								
	Canal	18	20	20	20	1.5%	1.6%	1.6%	1.6%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	0	17	28	54	0.0%	1.4%	2.3%	4.4%
	Totals	18	37	48	74	1.5%	3.0%	3.9%	6.0%
Agricultural Land									· · · ·
-	Non-Irrigated	770	623	555	496	63.0%	51.0%	45.4%	40.6%
	Irrigated	148	264	291	336	12.1%	21.6%	23.8%	27.5%
	Totals	918	887	846	832	75.1%	72.6%	69.2%	68.1%
Channel									
	Channel	235	231	249	237	19.3%	18.9%	20.4%	19.4%
	Totals	235	231	249	237	19.3%	18.9%	20.4%	19.4%
ExUrban									
	ExUrban Other	0	0	7	7	0.0%	0.0%	0.5%	0.5%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	13	13	15	15	1.0%	1.0%	1.2%	1.2%
	Totals	13	13	21	21	1.0%	1.0%	1.7%	1.7%
Transportation									
-	Public Road	28	3	6	6	2.3%	0.2%	0.5%	0.5%
	Interstate	0	43	43	43	0.0%	3.6%	3.6%	3.6%
	Railroad	10	9	9	9	0.8%	0.7%	0.7%	0.7%
	Totals	38	55	58	58	3.1%	4.5%	4.8%	4.8%
Urban									· · · ·
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	Land Use Timeline - Tiers 3 and 4						Change Between Years						
			Acr	es		%	of Rea	ch Area	1	(% of	f Agricul	tural La	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '()1-11	'50-11
Irrigated													
	Sprinkler	0	0	9	9	0.0%	0.0%	1.1%	1.1%	0.0%	1.1%	0.0%	1.1%
	Pivot	0	155	224	257	0.0%	17.5%	26.5%	30.8%	17.5%	9.0%	4.4%	30.8%
	Flood	148	109	58	70	16.1%	12.3%	6.8%	8.4%	-3.8%	-5.5%	1.6%	-7.7%
	Totals	148	264	291	336	16.1%	29.8%	34.4%	40.3%	13.6%	4.6%	5.9%	24.2%

Reach PC21

Non-Irrigated	

Hay/Pasture 230 105 49 20 25.1% 11.9% 5.8% 2.4% -13.2% -6.0% -3.5% -2	2.1 /0	
	27%	
Multi-Use 540 518 506 477 58.8% 58.4% 59.8% 57.3% -0.4% 1.4% -2.5% -	1.5%	

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	1.9	61.8	25.6	0.0	89.3
Acres/Valley Mile	1.0	31.4	13.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)		Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.17	0.23%	1.07	0.03	0.02	0.06	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

County	Sweet Grass	Upstream River Mile	478.8			
Classification	PCB: Partially confined braided	Downstream River Mile	475.4			
General Location	Springdale	Length	3.40 mi (5.47 km)			
General Comments	Springdale: Low primary sinuosity; large open bar area; extensive armoring					

Narrative Summary

Reach A1 is located just downstream of the Springdale Bridge in western-most Sweet Grass County. It is a Partially Confined Braided (PCB) reach type, indicating some influence of the valley wall on river geomorphology, as well as abundant un-vegetated mid-channel bars. The reach is 3.4 miles long. This reach is most prominently characterized by a large meander located at RM 478 that has been very dynamic over recent years. The meander bend has repeatedly migrated to the north and then cut off, leaving broad open gravel bars and a wide active channel corridor. The bendway has been heavily armored on its apex, and partially armored on its downstream limb. With all of the changes at this meander, there has been a net gain of total channel area in the reach of about 50 acres since 1950.

There are about 6,800 feet of rock riprap in the reach, over 1,500 feet of which was constructed since 2001. Several flow deflectors have been eroded out in Reach A1 since 2001. About 25 percent of the bankline was armored as of 2011. There are also over 6,800 feet of mapped transportation encroachment in the river corridor, most of which is the rail line that follows the south bank.

Although the rail line runs along the edge of the river, it is situated on higher terraces and as such has not isolated any 100-year historic floodplain area. However, about 9 percent of the total Channel Migration Zone (CMZ) footprint has become restricted, and these restrictions are due to armoring against both the rail line and irrigated fields. This demonstrates how terraces that may be out of the 100-year floodplain can still be prone to erosion and thus within the CMZ.

The primary land use in the reach is non-irrigated agriculture (~1,100 acres), although there are about 650 acres under some form of irrigation. Pivot irrigation has expanded from 0 acres in 1950 to 302 acres in 2011. Similarly, sprinkler irrigation has expanded from 0 to 250 acres during the same time frame, and the extent of flood irrigated lands dropped from 803 to 123 acres over those 61 years. About 46 acres of land under sprinkler and 10 acres of land under pivot are located within the CMZ.

About 120 acres of wetland have been mapped in the reach, with most of that (84 acres) emergent wetland marsh that is located primarily in the active stream corridor. About 20 acres of wetland have been isolated from the corridor by the rail line near RM 477.8. About 0.7 acres of Russian olive have been mapped in the reach, and these trees are dispersed throughout the corridor.

Hydraulic modeling of the reach shows an extensive network of floodplain channels on the floodplain in Reach A1 that creates some avulsion risk north of the river. Much of the armoring on the large meander at RM 478 has reduced the risk of an avulsion and potential bypass of the Prather Mayborn Westfall Ditch Diversion. In addition, one of the overflow channels has been allowed to activate, which has reduced the potential for additional avulsions. The strategic allowance of channel migration and secondary channel activation has prevented the creation of a severe pinch point at RM 477.4 that may have created long-term instability in the reach.

A large dike at RM 476.7 blocks a ~3,000-foot long side channel and focuses the river towards the south bank and the Prather Mayborn Westfall Ditch Diversion. Although the dike blocks the head of the channel, it is still seasonally accessed by other overflow points from the main river.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

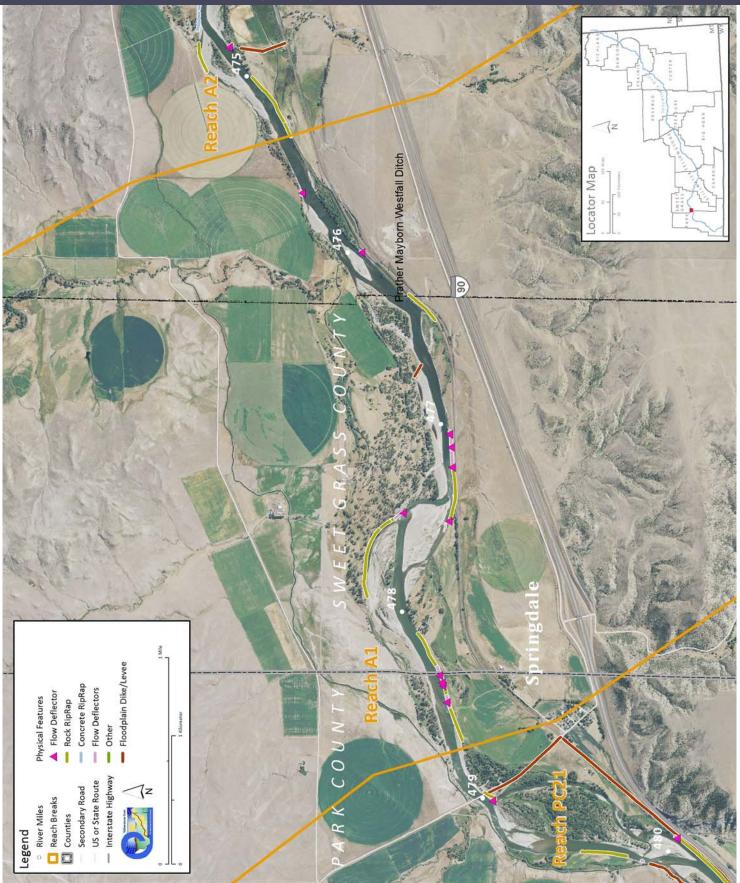
A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,750 cfs to 1,570 cfs with human development, a reduction of 10.3 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A1 include:

•Strategic allowance of side channel activation to reduce overall avulsion risk •Isolation of emergent wetlands by transportation infrastructure •Blockage of a 3,000-foot long side channel to focus flows to a diversion structure.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A1 include:

•CMZ management due to level of restriction and avulsion risks on north floodplain


- •Bank Stabilization Recommended Practices due to current extent of bank armoring (25 percent of total bankline)
- •Irrigation diversion structure management at Prather Mayborn Westfall

•Wetland management/restoration due to high wetland concentrations

Reach AI

Reach AI

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood Hist Year 1971 1902	Date Jun 23 Jun 11	Flow or 29,2 30,1	00 00	Return In 10-25 10-25	yr yr		Perioc	Gage No Location d of Record	Downstream Gage 6214500 Billings 1929-2015	Upstream Gage 6192500 Livingston 1929-2015
1943 1974 1996 1997 2011	Jun 20 Jun 17 Jun 10 Jun 6 Jun 30	30,6 36,3 37,1 38,0 40,6	00 00 00	10-25 yr 50-100 yr 50-100 yr 50-100 yr >100-yr			Distance To (miles)			27.8
Discharge Unregula Regula % Char	1.0 Ited 11 Ited 11	,500 2	2 Yr 23,300 22,900 1.72%	5 Yr 29,200 28,800 -1,37%	10 Yr 32,900 32,500 -1,22%	50 Yr 40,300 40,000 -0.74%	100 Yr 43,400 43,200 -0,46%	500 Yr 50,300 50,100 -0.40%	7Q10 Summer 1,750 1,570 -10,29%	95% Sum. Duration 1,760 1,680 -4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	5-Jul-48	B/W	1:23,600	6192500	9810
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS-DOQ	23-Aug-97	B/W	1:24,000	6192500	4840
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	08/25/2005	color	1-meter pixels	6192500	2390
2007	Woolpert	29-Jun-05	Color	1:	6192500	
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

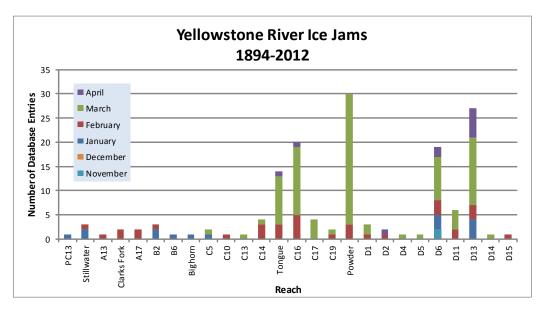
Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 % of Length (ft) Bankline L		2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	tabilization					
	Rock RipRap	5,160	14.5%	6,839	19.2%	1,678
	Flow Deflectors	1,406	3.9%	573	1.6%	-832
	Between Flow Deflectors	995	2.8%	1,518	4.3%	523
	Feature Type Totals	7,561	21.2%	8,930	25.1%	1,370
Floodplair	n Control					
	Transportation Encroachment	6,845	19.2%	6,845	19.2%	0
	Floodplain Dike/Levee	331	0.9%	331	0.9%	0
	Feature Type Totals	7,176	20.1%	7,176	20.1%	0
	Reach Totals	14,737	41.3%	16,107	45.2%	1,370


Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type	Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FDs	0	522	0	0	0	895	0	0
Totals	0	522	0	0	0	895	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	18,968	6,571	1.35	1950 to 1976:	9.83%
1976	18,838	9,020	1.48	1976 to 1995:	25.57%
1995	17,553	15,040	1.86	1995 to 2001:	-9.38%
2001	17,825	12,169	1.68	1950 to 2001:	24.97%
Change 1950 - 2001	-1,143	5,598	0.34		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	2,970		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	344		422		
Total Floodplain Area (Ac)	344		435		
Total Isolated (Ac)	0	0.0%	13	7.4%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	5	0	5

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 190	Erosion Buffer (ft) 379	Tot CN Acre 58	IZ age	Restricted CMZ Acreage 82	% Restric Migratic Area 14%	n	Total AHZ creage 157	Restricted AHZ Acreage 0	Westricted Avulsion Area 0%		
2011 Po	stricted Mig	ration Au			Note that these data reflect the observed conditions in the							
2011 Re:	stricted Mig		ea Suii	У								
Reason for Restriction	Land Use Protected		RMA Acres		ent of MZ	2011 aerial photography (NAIP for Park and Sweet Grass Counties, COE for the rest of the river).						
Road/Railro	ad Prism											
	Railroad		2	0.	3%							
RipRap/Flo	w Deflectors											
	Railroad		28	3.	8%							
	Irrigated		30	4.	0%							
RipRap	Ū											
r -r	Railroad		6	0.	8%							
		Totals	66	8.	9%							
Land Us	es within th	e CMZ (A	Acres)	Irri		Sprinkler Irrigation 46.1	Pivo Irrigati 10.0	ion Ex	rban/ KUrban j 0.0	Trans- portation 9.8		

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Time	eline - Tiers 2 and 3		Acres			% of Reach Area			
Feature Class F	eature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infrastru	cture								
С	Canal	16	16	16	16	0.7%	0.7%	0.7%	0.7%
A	gricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
) Ther Infrastructure	36	33	65	93	1.5%	1.4%	2.8%	4.0%
	Totals	52	50	81	109	2.2%	2.1%	3.5%	4.7%
Agricultural Land						1			· · · ·
N	Non-Irrigated		1,207	1,152	1,112	51.3%	52.1%	49.7%	47.9%
	rigated	803	766	700	678	34.7%	33.1%	30.2%	29.3%
	Totals	1,993	1,973	1,852	1,790	86.0%	85.1%	79.9%	77.2%
Channel									
С	Channel	220	243	298	332	9.5%	10.5%	12.9%	14.3%
-	Totals	220	243	298	332	9.5%	10.5%	12.9%	14.3%
ExUrban									1
ExUrban Other		0	0	0	0	0.0%	0.0%	0.0%	0.0%
E	ExUrban Undeveloped		0	0	0	0.0%	0.0%	0.0%	0.0%
	xUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
E	xUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
E	xUrban Residential	5	5	5	5	0.2%	0.2%	0.2%	0.2%
	Totals	5	5	5	5	0.2%	0.2%	0.2%	0.2%
Transportation						1			· · · ·
Р	Public Road	28	28	14	14	1.2%	1.2%	0.6%	0.6%
In	nterstate	0	0	48	48	0.0%	0.0%	2.1%	2.1%
R	Railroad	20	20	20	20	0.8%	0.8%	0.8%	0.8%
	Totals	48	48	82	82	2.1%	2.1%	3.5%	3.5%
Urban						1			· · · ·
U	Irban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Irban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Irban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Irban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Irban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Timeline - Tiers 3 and 4						Change Between Years							
			Acr	es		%	of Rea	ch Area	1	(% o	f Agricul	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '(01-11	'50-11
Irrigated													
	Sprinkler	0	0	260	254	0.0%	0.0%	14.0%	14.2%	0.0%	14.0%	0.2%	14.2%
	Pivot	0	0	287	302	0.0%	0.0%	15.5%	16.9%	0.0%	15.5%	1.4%	16.9%
	Flood	803	766	153	123	40.3%	38.8%	8.3%	6.8%	-1.5%	-30.6%	-1.4%	-33.5%
	Totals	803	766	700	678	40.3%	38.8%	37.8%	37.9%	-1.5%	-1.1%	0.1%	-2.4%

Reach AI

Non-Irrigated													
	Multi-Use	1,119	1,059	1,100	1,046	56.2%	53.7%	59.4%	58.5%	-2.5%	5.7%	-0.9%	2.3%
	Hay/Pasture	70	147	52	65	3.5%	7.5%	2.8%	3.6%	3.9%	-4.6%	0.8%	0.1%
	Totals	1,189	1,207	1,152	1,112	59.7%	61.2%	62.2%	62.1%	1.5%	1.1%	-0.1%	2.4%

26.4

-45.5

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

from channel to riparian between the 1950's

Shrub (Acres)			Closed Timber (Acres)				Open Timber (Acres)				
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001		
Min	0.9	0.3	0.0	0.8	0.3	0.4	14.7	16.0	6.2		
Max	20.0	11.9	5.3	219.1	149.9	171.1	14.7	29.8	26.6		
Average	8.3	3.6	2.6	39.0	28.0	23.4	14.7	24.2	18.9		
Sum	49.7	21.7	20.7	312.2	223.7	233.7	14.7	72.6	56.8		
Riparian	Turnove	er			Pinarian	to Channel (a	cres)	71.8			
Conver	Conversion of riparian areas to channel, or					× ×	,	71.0			
								00.4			

WETLANDS

and 2001 data set.

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

Channel to Riparian (acres)

Riparian Encroachment (acres)

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	7.4	84.3	38.0	0.0	129.8
Acres/Valley Mile	2.3	26.0	11.7	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)		Inside '50s Channel (Ac)		
Russian Olive in Reach	0.67	0.18%	1.19	0.03	0.03	0.01	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.