Reach D10

County	Dawson
Classification	PCA: Partially confined anabranching
General Location	Lowermost Dawson County, Richland County
General Comments	Vegatated islands

Upstream River Mile	67.8
Downstream River Mile	56.3
Length	11.50 mi (18.51 km)

Narrative Summary

Reach D10 is located in lowermost Dawson County and extends into upper Richland County. The reach is an 11.5 mile long Partially Confined Anabranching (PCA) reach type, indicating some valley wall influence and numerous forested islands.

In 2011 there were just about 730 feet of rock riprap in the reach armoring 0.6 percent of the total stream bank. Prior to that some armor had been lost; between 2001 and 2011, almost 500 feet of rock riprap and 1,050 feet of concrete riprap were destroyed. Some of the greatest damage was at RM 64.2L, where several hundred feet of flow deflectors were flanked, and now are in the river over 100 feet off of the bank. The remaining bank protection in this area continues to flank. Another is at RM 60, where the flanking of concrete riprap has been followed by over 200 feet of erosion behind the original armor.

Similar to many reaches in the Lower Yellowstone Valley, the river channel in Reach D10 has gotten smaller since 1950. The channel contracted by about 404 acres in this reach since 1950, and about 406 acres of riparian vegetation has encroached into old channel areas. This pattern has been consistent in the lower river, and relates primarily to a reduction in flows due to human development. The encroachment was at the expense of open gravel bars; between 1950 and 2001, the reach lost 151 acres of mid-channel bar habitat. Floodplain turnover rates have dropped as well; prior to 1976 measured floodplain turnover rates in this reach were 13.9 acres per year, and post-1976 rages were 7.0 acres per year.

Reach D10 has a relatively high concentration of mapped wetlands; the NWI mapping shows a total of 278 acres of mapped wetland, much of which is emergent marsh and wet meadow.

Land use is dominated by agriculture, with 230 acres of pivot irrigation development since 1950. Some of the irrigation development took place in historic riparian areas; a total of 457 acres of riparian lands were converted for agricultural and other land uses since 1950. This equates to 15 percent of the entire 1950 riparian footprint. There are 97 acres of land under pivot irrigation within the Channel Migration Zone (CMZ) of the river, making these areas especially prone to river erosion.

About 38 percent of the historic 5-year floodplain has become isolated, primarily due to flow alterations.

Reach D10 was sampled as part of the avian study. A total of 57 species were identified in the reach, indicating relatively high bird species richness on the Yellowstone River. Four species identified are considered Potential Species of Concern (PSOC) by the Montana Natural Heritage Center: The Black and White Warbler, Dickscissel, Ovenbird, and Plumbeous Vireo. The Red-headed Woodpecker was also identified which is a Species of Concern. Similar to Reach D9 upstream, Reach D10 has seen an increase in the amount of forest area considered at low risk of cowbird parasitism. In 1950, there were 92 acres per valley mile of such forest, and by 2001, that number had increased to 112 acres per valley mile.

There are about 12 acres of mapped Russian olive in the reach.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,850 cfs to 2,810 cfs with human development, a reduction of 43 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,940 cfs under unregulated conditions to 3,270 cfs under regulated conditions, a reduction of 53 percent.

CEA-Related observations in Reach D10 include: •Armor flanking and accelerated erosion behind

Recommended Practices (May include Yellowstone River Recommended Practices--YRRPs) for Reach D10 include: •Removal of flanked armor at RM 60 and RM 64.2L •Russian olive removal PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

FI	ood His	story				Downstream	Upstream
	Year	Date	Flow on Date	Return Interval	Gage No	Gage 6329500	Gage 6309000
	1978	May 23	111,000	10-25 yr	Location	Sidnev	Miles Citv
	1912	Mar 29	114,000	10-25 yr	Period of Record	1911-2015	1929-2015
	1944	Jun 21	120,000	10-25 yr	Distance To (miles)	25.5	116.2
	2011	May 24	124,000	10-25 yr	Distance To (Innes)	20.0	110.2
	1918	Jun 20	126,000	25-50 yr			
	1943	Mar 29	132,000	25-50 yr			
	1923	Oct 3	134,000	25-50 yr			
	1952	Mar 31	138,000	25-50 yr			
	1921	Jun 21	159,000	100-yr			

Discharge

	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		69,700	90,000	103,000	132,000	144,000	173,000	4,450	6,620
Regulated		54,200	74,700	88,100	118,000	130,000	159,000	2,310	2,840
% Change		-22.24%	-17.00%	-14.47%	-10.61%	-9.72%	-8.09%	-48.09%	-57.10%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010 95% Sum

Season		5%	50%	95%
Spring	Unregulated	67,400	24,900	7,100
	Regulated	52,000	14,600	5,150
	% Change	-23%	-41%	-27%
Summer	Unregulated	47,500	14,700	6,620
	Regulated	35,300	8,540	2,840
	% Change	-26%	-42%	-57%
Fall	Unregulated	9,870	5,870	1,970
	Regulated	11,300	7,370	3,530
	% Change	14%	26%	79%
Winter	Unregulated	15,600	5,500	2,130
	Regulated	16,200	6,670	3,480
	% Change	4%	21%	63%
Annual	Unregulated	49,800	8,860	2,830
	Regulated	37,000	8,000	3,530
	% Change	-26%	-10%	25%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	MDT	28-Oct-77	B/W	1:12,000	6329500	5800
1995	USGS DOQQ	7/9/96 - 7/15/96 - 8/8/96	B/W		6329500	35000
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2004	Merrick	3-Jun-04	Color	1:15,840	6329500	9950
2005	NAIP	07/14/2005	color	1-meter pixels	6329500	15900
2009	NAIP	7/11/2009	Color	1-meter pixels	6329500	32600
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/21/2011	Color	1-meter pixels	6329500	46600
2013	NAIP	07/19/2013	color	1-meter pixels	6329500	
2013	NAIP	07/27/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	1,175	1.0%	728	0.6%	-447
	Concrete RipRap	1,051	0.9%	0	0.0%	-1,051
	Feature Type Totals	2,226	1.9%	728	0.6%	-1,498
Other In C	hannel					
	Bedrock Outcrop	787	0.7%	787	0.7%	0
	Feature Type Totals	787	0.7%	787	0.7%	0
	Reach Totals	3,012	2.5%	1,515	1.3%	-1,498

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap		1,050	0	0	0	0	0	0	0
Rock RipRap		0	1,174	0	0	0	0	0	0
	Totals	1,050	1,174	0	0	0	0	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	59,537	92,853	2.56	1950 to 1976:	-4.18%
1976	60,364	87,686	2.45	1976 to 1995:	-3.62%
1995	61,165	83,424	2.36	1995 to 2001:	11.88%
2001	59,913	98,546	2.64	1950 to 2001:	3.33%
Change 1950 - 2001	376	5,693	0.09		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	94	1.9%			
Agriculture (generally relates to field boundaries)	13	0.3%			
Agriculture (isloated by canal or large ditch)	121	2.5%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	423	8.7%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	4236		2758		
Total Floodplain Area (Ac)	4887		3576		
Total Isolated (Ac)	651	13.3%	818	38.3%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	121	0	0	121

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal I MZ eage	Restricted CMZ Acreage	% Restrict Migratio Area	ted Tota n AHZ Acrea	al Re Z Ige A	estricted AHZ creage	% Restricted Avulsion Area
	526	1,051	4,7	53	95	2%	233	5	0	0%
2011 Re	stricted Mig	ration A	rea Sun	nmary		Note that the	ese data refle	ct the observe	erved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percer CM	nt of Z	Counties, COE for the rest of the river).			Sweet Glass	
Road/Railro	oad Prism									
	Railroad		8	0.2	%					
RipRap										
	Non-Irrigated	l	44	0.9	%					
		Totals	52	1.0	%					
Land Us	es within th	e CMZ (/	Acres)	Flc Irriga	ood ation	Sprinkler Irrigation	Pivot Irrigation	Urban ExUrba	n po	Trans- ortation
				54	0.6	0.0	96.5	5.7		1.8

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Aci	res		%	of Rea	ch Area	à i
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	26	26	26	26	0.3%	0.3%	0.3%	0.3%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	18	18	29	26	0.2%	0.2%	0.4%	0.3%
	Totals	44	44	55	53	0.5%	0.5%	0.7%	0.6%
Agricultural Land	d								
	Non-Irrigated	3,863	4,018	4,158	3,825	47.1%	49.0%	50.7%	46.6%
	Irrigated	723	1,130	1,533	1,505	8.8%	13.8%	18.7%	18.3%
	Totals	4,586	5,148	5,692	5,330	55.9%	62.8%	69.4%	65.0%
Channel									,
	Channel	3,546	2,979	2,424	2,788	43.2%	36.3%	29.6%	34.0%
	Totals	3,546	2,979	2,424	2,788	43.2%	36.3%	29.6%	34.0%
ExUrban									1
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	5	6	6	0.0%	0.1%	0.1%	0.1%
	Totals	0	5	6	6	0.0%	0.1%	0.1%	0.1%
Transportation									
	Public Road	5	5	5	5	0.1%	0.1%	0.1%	0.1%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	21	21	21	21	0.3%	0.3%	0.3%	0.3%
	Totals	26	26	26	26	0.3%	0.3%	0.3%	0.3%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 and	4								Char	ige Betv	ween Y	ears
			Acr	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	232	229	0.0%	0.0%	4.1%	4.3%	0.0%	4.1%	0.2%	4.3%
	Flood	723	1,130	1,301	1,275	15.8%	21.9%	22.9%	23.9%	6.2%	0.9%	1.1%	8.2%
	Totals	723	1,130	1,533	1,505	15.8%	21.9%	26.9%	28.2%	6.2%	5.0%	1.3%	12.5%

Reach D10

Multi-Use	3,442	3,567	3,909	3,594	75.1%	69.3%	68.7%	67.4%	-5.8%	-0.6%	-1.2%	-7.6%
Hay/Pasture	421	452	250	231	9.2%	8.8%	4.4%	4.3%	-0.4%	-4.4%	-0.1%	-4.8%
Totals	3,863	4,018	4,158	3,825	84.2%	78.1%	73.1%	71.8%	-6.2%	-5.0%	-1.3%	-12.5%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (A			res) Cle		ed Timber (A	Acres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.8	0.3	0.1	0.3	1.3	1.6	0.0	7.0	5.6	
Max	148.9	156.3	88.8	213.5	693.9	870.0	80.0	32.7	42.8	
Average	27.8	13.6	16.9	48.9	59.9	53.4	20.8	17.3	24.7	
Sum	1,251.2	680.8	796.1	1,760.9	1,797.3	2,083.2	228.3	138.1	172.7	
Riparian	Turnove	channel (ar		242.0						
Conve	rsion of ripari	an areas to	channel. or		Ripanan	JIES)	545.0			
from cl	hannel to ripa	arian betweel	n the 1950's	Channel to Riparian (acres)				748.9		
and 20	01 data set.			R	iparian Encre	405.9				
Riparian	Recruitn	nent	1950s Cha	nnel Mapped	nnel Mapped as 2011 Riparian (Ac) 758.1					
Creation o	f riparian are	as	1950s Flood	olain Mapped	as 2011 Cha	innel (Ac)	164.3			
between 1950s and 2001.			Total Recruitment (1950s to 2011)(Ac)				922.3			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	21.6	136.8	120.4	0.0	278.7
Acres/Valley Mile	2.3	14.7	12.9	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	11.90	0.22%	5.79	0.02	5.83	2.33

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	307.2	219.2	9.0%
Rip Rap Bottom	115.7	62.0	2.6%
Bluff Pool	188.0	134.9	5.6%
Secondary Channel	103.1	73.2	3.0%
Secondary Channel (Seasonal)	449.9	415.5	17.1%
Channel Crossover	275.2	148.3	6.1%
Point Bar		248.7	10.3%
Side Bar		20.5	0.8%
Mid-channel Bar		21.3	0.9%
Island	985.0	989.2	40.8%
Dry Channel		91.3	3.8%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird Species Observed	in Reach/Region	Species of Concern	Potential Species of Concern
Region	Region	Region	Region Reach
✓ ✓ American Robin	Chipping Sparrow	Killdeer	Song Sparrow
American Crow	✓ ✓ Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
✓ ✓ American Goldfinch	Cliff Swallow	✓ ✓ Lark Sparrow	Spotted Towhee
✓ ✓ American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
✓ ✓ Bald Eagle	🖌 🗹 Common Nighthawk	Mallard	Sandhill Crane
Baltimore Oriole	Common Raven	Mountain Bluebird	Tree Swallow
Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
✓ ✓ Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
V Black-billed Magpie	Downy Woodpecker	Osprey	□ □ Violet-green Swallow
V Black-capped Chickadee	Eastern Bluebird	Venbird	Warbling Vireo
I Black-and-white Warbler	Eastern Kingbird	Plumbeous Vireo	Vestern Kingbird
V Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	Vestern Meadowlark
✓ ✓ Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	Vestern Wood-pewee
Bobolink	Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
Brewer's Blackbird	🗌 🗹 Franklin's Gull	Ring-necked Pheasant	White-throated Swift
V B rown-headed Cowbird	✓ ✓ Grasshopper Sparrow	Red-tailed hawk	Vild Turkey
Brown Creeper	✓ ✓ Gray Catbird	Rock Dove	Wood Duck
V Brown Thrasher	Great Blue Heron	Red-winged Blackbird	Vellow-bellied Sapsucker
V Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Vellow-billed Cuckoo
Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	Vellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

Reach DII

County	Richland	Upstream River Mile	56.3
Classification	PCA: Partially confined anabranching	Downstream River Mile	49.9
General Location	Savage; Elk Island	Length	6.40 mi (10.30 km)

General Comments Elk Island: Very wide riparian; marked change in channel course since 1981 geologic map base

Narrative Summary

Reach D11 is 10.3 miles long, located near Savage and Elk Island. It is a Partially Confined Anabranching reach type (PCA) indicating distinct side channels around vegetated islands with some valley wall influences. The valley wall is comprised of Tertiary-age Fort Union Formation, and a distinct terrace surface borders the active stream corridor. Fort Union Formation rocks are exposed on a right bank bluff on the downstream end of the reach.

There is no mapped bank armor in Reach D11. Prior to 1950, however, about three miles of side channel had been blocked, mostly around Elk Island.

The most striking change in Reach D11 since 1950 is the encroachment of riparian vegetation onto old sand bars. Between 1950 and 2001, the size of the channel has dropped by 313 acres, and there has been 294 acres of riparian encroachment into old channel areas. Much of this encroachment converted open sand bars into forested islands. There has been a loss of over 100 acres of sand bar since 1950. This change has resulted in a conversion of almost 7 miles low flow channels around gravel bars to anabranching side channels around islands.

Reach D11 has had six ice jams-related floods reported since 1943. They all occurred in February or March, and several of them reported flood damages.

Approximately 36 percent of the historic 5-year floodplain has become isolated, largely due to flow alterations.

Land use in the reach is dominated by flood irrigation.

There are about 32 acres of Russian olive mapped in the reach.

Reach D11 was sampled as part of the avian study. A total of 61 bird species were identified in the reach, indicating high bird species richness. Five bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) were found, the Black and white Warbler, Chimney Swift, Dickscissel, Ovenbird, and Plumbeous Vireo. The Red-headed woodpecker was also observed, which has been identified as a Species of Concern (SOC). Reach D11 has seen an increase in the amount of forest area considered at low risk of cowbird parasitism. In 1950, there were 216.4 acres per valley mile of such forest, and by 2001, that number had increased to 247.2 acres per valley mile.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,370 cfs to 2,220 cfs with human development, a reduction of 50 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,540 cfs under unregulated conditions to 2,750 cfs under regulated conditions, a reduction of 59 percent. Fall and winter low flows are about 3,500 cfs; these discharges are about 60 percent to 80 percent higher than they were prior to development.

CEA-Related observations in Reach D11 include:

- •Reduction in 5-year floodplain footprint with flow alterations
- •Increased fall and winter low flows with development
- •Reduced summer low flows with development
- •Reduced channel forming discharge causing channel contraction
- •Extensive riparian encroachment with flow alterations

•Conversion of open sand bars to forested islands

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D11 include: •Side channel reactivation RM 53L •Russian olive removal

PHYSICAL FEATURES MAP (2011)

PHYSICAL FEATURES MAP (2011)

Reach DII

05% Sum

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

FI	ood His	story				Downstream	Upstream	
	Year	Date	Flow on Date	Return Interval	Gage No	Gage 6329500	Gage 6309000	
	1978	May 23	111,000	10-25 yr	Location	Sidnev	Miles Citv	
	1912	Mar 29	114,000	10-25 yr	Period of Record	1911-2015	1929-2015	
	1944	Jun 21	120,000	10-25 yr	Distance To (miles)	10 1	127 7	
	2011	May 24	124,000	10-25 yr	Distance TO (Innes)	19.1	121.1	
	1918	Jun 20	126,000	25-50 yr				
	1943	Mar 29	132,000	25-50 yr				
	1923	Oct 3	134,000	25-50 yr				
	1952	Mar 31	138,000	25-50 yr				
	1921	Jun 21	159,000	100-yr				

Discharge

	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		69,800	90,100	103,000	132,000	144,000	172,000	4,370	6,540
Regulated		54,200	74,800	88,400	118,000	131,000	161,000	2,220	2,750
% Change		-22.35%	-16.98%	-14.17%	-10.61%	-9.03%	-6.40%	-49.20%	-57.95%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010

Season		5%	50%	95%
Spring	Unregulated	67,400	24,800	7,150
	Regulated	52,000	14,500	5,170
	% Change	-23%	-42%	-28%
Summer	Unregulated	47,600	14,700	6,540
	Regulated	35,300	8,440	2,750
	% Change	-26%	-43%	-58%
Fall	Unregulated	9,900	5,850	1,950
	Regulated	11,300	7,350	3,520
	% Change	14%	26%	81%
Winter	Unregulated	15,900	5,550	2,140
	Regulated	16,400	6,720	3,490
	% Change	3%	21%	63%
Annual	Unregulated	49,800	8,840	2,830
	Regulated	37,000	8,000	3,500
	% Change	-26%	-10%	24%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	MDT	28-Oct-77	B/W	1:12,000	6329500	5800
1995	USGS DOQQ	8/22/97 - 7/9/96	B/W		6329500	35000
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2005	NAIP	07/14/2005	color	1-meter pixels	6329500	15900
2007	Woolpert	10/15/2007 - 11/2/0007	Color		6329500	
2009	NAIP	7/11/2009	Color	1-meter pixels	6329500	32600
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/21/2011	Color	1-meter pixels	6329500	46600
2013	NAIP	07/19/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Other In C	hannel					
	Bedrock Outcrop	674	1.0%	674	1.0%	0
	Feature Type Totals	674	1.0%	674	1.0%	0
	Reach Totals	674	1.0%	674	1.0%	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

3/10/1943

3/4/1994

2/13/1996

2/16/1996

3/18/2003

3/20/2009

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	35,949	72,196	3.01	1950 to 1976:	7.56%
1976	40,583	90,731	3.24	1976 to 1995:	1.55%
1995	34,282	78,367	3.29	1995 to 2001:	-17.69%
2001	33,705	57,459	2.70	1950 to 2001:	-10.09%
Change 1950 - 2001	-2,244	-14,738	-0.30		
Length of Side		Pre-1950s (ft)	15,601		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	32	0.8%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	72	1.7%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	4135		2524		
Total Floodplain Area (Ac)	4238		3386		
Total Isolated (Ac)	104	2.5%	862	35.7%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	130	0	0	130

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal Restricte //Z CMZ eage Acreage	ed % Restric Migratic e Area	cted Tota on AHZ Acrea	l Restr 2 Al- ge Acre	icted % Restr IZ Avulsi age Area	ricted ion a		
	686	1,371	4,3	34 62	1%	30	0	0%	0%		
2011 Res	stricted Mig	gration A	rea Sun	nmary	Note that th	ese data refle	ct the observe	ed conditions in t	the		
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, C	Counties, COE for the rest of the river).					
Dike/Levee											
	Railroad		62	1.4%							
		Totals	62	1.4%							
Land Us	es within tl	ne CMZ (A	Acres)	Flood Irrigation 256.4	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 0.4	Trans- portation 8.5			

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	15	15	15	15	0.2%	0.2%	0.2%	0.2%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	25	35	38	35	0.4%	0.5%	0.6%	0.5%
	Totals	40	50	52	50	0.6%	0.8%	0.8%	0.8%
Agricultural Lan	d								
	Non-Irrigated	2,727	3,334	3,768	3,788	42.4%	51.9%	58.6%	58.9%
	Irrigated	610	584	739	670	9.5%	9.1%	11.5%	10.4%
	Totals	3,338	3,918	4,507	4,457	51.9%	61.0%	70.1%	69.4%
Channel									
	Channel	3,003	2,392	1,792	1,845	46.7%	37.2%	27.9%	28.7%
	Totals	3,003	2,392	1,792	1,845	46.7%	37.2%	27.9%	28.7%
ExUrban									1
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	2	2	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	2	2	0	0	0.0%	0.0%	0.0%	0.0%
Transportation									
	Public Road	19	26	27	27	0.3%	0.4%	0.4%	0.4%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	12	12	12	12	0.2%	0.2%	0.2%	0.2%
	Totals	31	37	39	39	0.5%	0.6%	0.6%	0.6%
Urban									
	Urban Other	0	8	18	18	0.0%	0.1%	0.3%	0.3%
	Urban Residential	13	15	17	17	0.2%	0.2%	0.3%	0.3%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	5	0	0	0.0%	0.1%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	13	28	35	35	0.2%	0.4%	0.5%	0.5%

Land Use Til	meline - Tiers 3 and	4								Char	nge Betv	veen Y	ears
			Acr	res		%	of Rea	ch Area	l I	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	11	11	0.0%	0.0%	0.2%	0.3%	0.0%	0.2%	0.0%	0.3%
	Flood	610	584	728	658	18.3%	14.9%	16.1%	14.8%	-3.4%	1.2%	-1.4%	-3.5%
	Totals	610	584	739	670	18.3%	14.9%	16.4%	15.0%	-3.4%	1.5%	-1.4%	-3.3%

Reach D11

Multi-Use	2,328	2,932	3,619	3,641	69.7%	74.8%	80.3%	81.7%	5.1%	5.5%	1.4%	11.9%
Hay/Pasture	400	402	149	147	12.0%	10.3%	3.3%	3.3%	-1.7%	-6.9%	0.0%	-8.7%
Totals	2,727	3,334	3,768	3,788	81.7%	85.1%	83.6%	85.0%	3.4%	-1.5%	1.4%	3.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Clos	ed Timber (A	Acres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min Max Average Sum	0.5 256.8 29.7 1,037.8	0.1 208.6 22.2 756.3	1.0 230.0 17.9 608.7	0.5 415.7 49.9 1,597.1	1.4 493.5 88.4 2,210.6	0.3 391.8 65.9 2,108.3	0.8 232.9 53.7 483.5	1.7 18.4 8.6 25.8	6.7 128.6 46.2 277.2	
Riparian Conve from c and 20	Turnove rsion of ripari hannel to ripa 001 data set.	r ian areas to o arian betwee	channel, or n the 1950's	R	Riparian t Channel t iparian Encr e	to Channel (a to Riparian (a oachment (a	cres) cres) cres)	355.9 650.8 294.9		
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	700.9			
Creation o	Creation of riparian areas 1950			olain Mapped	as 2011 Cha	innel (Ac)	74.3			
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	775.2			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	24.4	119.1	44.7	0.0	188.2
Acres/Valley Mile	4.5	22.1	8.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	31.79	1.05%	34.72	1.00	9.53	3.42	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)				
Habitat Scour Pool	Bankfull 303.0	Low Flow 193.9	% of Low Flow 10.8%		
Secondary Channel	211.9	113.8	6.3%		
Secondary Channel (Seasonal)	303.9	233.5	13.0%		
Channel Crossover	152.9	112.8	6.3%		
Point Bar		56.5	3.2%		
Side Bar		76.0	4.2%		
Mid-channel Bar		44.4	2.5%		
Island	820.7	821.5	45.8%		
Dry Channel		139.9	7.8%		

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird Species Observed	in Reach/Region	Species of Concern	Potential Species of Concern
Region	Region	Region	Region Reach
American Robin	Chipping Sparrow	Killdeer	Song Sparrow
American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
American Goldfinch	Cliff Swallow	✓ ✓ Lark Sparrow	Spotted Towhee
✓ ✓ American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
✓ ✓ American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
Bald Eagle	🖌 🖌 Common Nighthawk	Mallard	Sandhill Crane
Baltimore Oriole	Common Raven	Mountain Bluebird	Tree Swallow
Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
Black-billed Magpie	Downy Woodpecker	Osprey	Violet-green Swallow
Black-capped Chickadee	Eastern Bluebird	Venbird	✓ ✓ Warbling Vireo
Black-and-white Warbler	Eastern Kingbird	Plumbeous Vireo	Vestern Kingbird
Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	Vestern Meadowlark
✓ ✓ Blue Jay	🖌 🖌 European Starling	Red-naped Sapsucker	Vestern Wood-pewee
Bobolink	Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
Brewer's Blackbird	✓ ✓ Franklin's Gull	Ring-necked Pheasant	White-throated Swift
I Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
Brown Creeper	✓ ✓ Gray Catbird	Rock Dove	Vood Duck
Brown Thrasher	Great Blue Heron	Red-winged Blackbird	✓ ✓ Yellow-bellied Sapsucker
Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Vellow-billed Cuckoo
Canada Goose	✓ ✓ Hairy Woodpecker	✓ ✓ Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	✓ ✓ Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

CountyRichlandUpstream River Mile49.9ClassificationPCA: Partially confined anabranchingDownstream River Mile36.3General LocationSeven SistersLength13.60 mi (21.89 km)General CommentsSecondary channel on valley wall; Sinuous; long abandoned secondary channelSecondary channel

Narrative Summary

Reach D12 is located in Richland County at Seven Sisters. The Seven Sisters Fishing Access Site is located in the lower portion of the reach. The reach is a 13.6 mile long Partially Confined Anabranching reach type, indicating some influence of the valley wall along with extensive forested islands. This reach supports over 20 miles of side channels, and islands that are miles long and over ½ mile wide.

There are almost 7,000 feet of bank armor in the reach, and about one third of that was built since 2001. Most of the armor (3,250 feet) is rock riprap, and there are about 2,000 feet each of concrete riprap and flow deflectors. A total of 5 percent of the bank is armored, which is a relatively low concentration of bank armor for the Yellowstone River. All of the armor is protecting agricultural land, most of it against a flood irrigated field on the left bank in the lower end of the reach at RM 37.

Since 1950, a side channel that is almost three miles long was blocked at RM 45.3L. There have also been some gains in side channel length in the reach, such that the net change in length is a loss of approximately one mile. As of 2001, this reach supported almost 21 miles of anabranching channel.

Land use is dominated by agriculture, with 583 acres of pivot irrigation development since 1950. Physical features such as bank armor, dikes, and levees have isolated 3 percent of the Channel Migration Zone in Reach D12, and as of 2011 there were 224 acres of land in the CMZ under pivot irrigation, and 900 acres under flood.

Reach D12 shows, like most other reaches below the Bighorn River, a shrinking channel with reduced rates of erosion and floodplain turnover. For example, the bankfull channel area in the reach dropped by 480 acres since 1950, and there was almost 600 acres of riparian encroachment into old channel areas. Floodplain turnover rates have dropped from 2.1 acres/valley mile/year from 1950-1976 to 1.3 acres/valley mile/year from 1976-2001. This equates to 330 fewer acres of floodplain turnover since 1976. There has also been a net loss of 159 acres of open bar area as the channel has become smaller and more forested. On the floodplain, riparian acreage has decreased; about 350 acres or 9 percent of the total riparian area was cleared for irrigation since 1950.

There are 75 acres of Russian olive in the reach.

The 100-year floodplain has been isolated in this reach, but compared to other reaches the isolation has been fairly minor. About 300 acres of 100-year floodplain has been isolated by human development, which is 5 percent of the total 100-year floodplain. Although only about 5 percent of the 100-year floodplain has been isolated, the impact of flow alterations on the smaller 5-year floodplain has been much more severe; 42 percent of the historic 5-year floodplain is no longer inundated at that frequency. The isolation of the historic 5-year floodplain, which is due primarily to flow alterations, has been associated with increased development in these areas; currently there are about 300 acres of flood irrigated land and within the historic 5-year floodplain footprint.

There is an animal feeding facility on the right bank at RM 46.8.

Reach D12 was sampled as part of the fisheries study. A total of 37 fish species were sampled in the reach. Three species collected in the reach have been identified by the Montana Natural Heritage Program as Species of Concern (SOC): Pallid Sturgeon, Sauger, and Sturgeon Chub.

Reach D12 was also sampled as part of the avian study. A total of 59 bird species were identified in the reach. All five bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) on the Yellowstone River were also found, the Black and White Warbler, the Chimney Swift, the Dickscissel, the Ovenbird, and the Plumbeous Vireo. Similarly, all three bird species identified as Species of Concern (SOC) were identified: the Black-billed Cuckoo, Bobolink, and Red-headed Woodpecker. In contrast to most other reaches, Reach D12 has seen an increase in the forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 103 acres per valley mile of such forest, and that number increased to 115 acres per valley mile by 2001.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,310 cfs to 2,410 cfs with human development, a reduction of 50 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,470 cfs under unregulated conditions to 2,680 cfs under regulated conditions, a reduction of 59 percent.

CEA-Related observations in Reach D12 include: •Increase in area at low risk of cowbird parasitism with riparian encroachment

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D12 include:

•Nutrient management at animal handling facility at RM 46.8R

Side channel reactivation at RM 45.3R

Russian olive removal

Reach D12

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

FI	ood His	story				Downstream	Upstream
	Year	Date	Flow on Date	Return Interval	Gage No	Gage 6329500	Gage 6309000
	1978	May 23	111,000	10-25 yr	Location	Sidnev	Miles Citv
	1912	Mar 29	114,000	10-25 yr	Period of Record	1911-2015	1929-2015
	1944	Jun 21	120,000	10-25 yr	Distanco To (milos)	5 5	13/ 1
	2011	May 24	124,000	10-25 yr	Distance TO (Innes)	5.5	134.1
	1918	Jun 20	126,000	25-50 yr			
	1943	Mar 29	132,000	25-50 yr			
	1923	Oct 3	134,000	25-50 yr			
	1952	Mar 31	138,000	25-50 yr			
	1921	Jun 21	159,000	100-yr			

Discharge

-	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		69,800	90,300	103,000	132,000	144,000	172,000	4,310	6,470
Regulated		54,300	74,900	88,600	119,000	132,000	163,000	2,140	2,680
% Change		-22.21%	-17.05%	-13.98%	-9.85%	-8.33%	-5.23%	-50.35%	-58.58%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010 95% Sum

Spring Unregulated 67,400 24,700 7,180 Regulated 52,000 14,400 5,190 % Change -23% -42% -28% Summer Unregulated 47,700 14,700 6,470 Regulated 35,300 8,370 2,680
Spring Offregulated 67,400 24,700 7,160 Regulated 52,000 14,400 5,190 % Change -23% -42% -28% Summer Unregulated 47,700 14,700 6,470 Regulated 35,300 8,370 2,680
Regulated 52,000 14,400 5,190 % Change -23% -42% -28% Summer Unregulated 47,700 14,700 6,470 Regulated 35,300 8,370 2,680
% Change -23% -42% -28% Summer Unregulated 47,700 14,700 6,470 Regulated 35,300 8,370 2,680
Summer Unregulated 47,700 14,700 6,470 Regulated 35,300 8,370 2,680
Regulated 35,300 8,370 2,680
% Change -26% -43% -59%
Fall Unregulated 9,910 5,830 1,940
Regulated 11,300 7,330 3,510
% Change 14% 26% 81%
Winter Unregulated 16,100 5,580 2,140
Regulated 16,600 6,750 3,490
% Change 3% 21% 63%
Annual Unregulated 49,700 8,830 2,830
Regulated 37,000 8,000 3,480
% Change -26% -9% 23%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1957	USDA	???	B/W	1:20,000	6329500	
1976	MDT	28-Oct-77	B/W	1:12,000	6329500	5800
1995	USGS DOQQ	8/3/97 - 8/22/97	B/W		6329500	23000
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2005	NAIP	07/14/2005	color	1-meter pixels	6329500	15900
2007	Woolpert	10/15/2007 - 11/2/0007	Color		6329500	
2009	NAIP	7/11/2009	Color	1-meter pixels	6329500	32600
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/21/2011	Color	1-meter pixels	6329500	46600
2011	NAIP	7/15/2011	Color	1-meter pixels	6329500	57900
2013	NAIP	07/19/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Tree Revetments	531	0.4%	404	0.3%	-127
	Rock RipRap	595	0.4%	3,251	2.3%	2,656
	Flow Deflectors	356	0.2%	474	0.3%	118
	Concrete RipRap	1,945	1.4%	1,945	1.4%	0
	Between Flow Deflectors	1,328	0.9%	1,328	0.9%	0
	Feature Type Totals	4,755	3.3%	7,402	5.2%	2,647
Floodplain	Control					
	Floodplain Dike/Levee	350	0.2%	350	0.2%	0
	Feature Type Totals	350	0.2%	350	0.2%	0
	Reach Totals	5,106	3.6%	7,752	5.4%	2,647

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap		1,289	0	656	0	0	0	0	0
Flow Deflectors/Between FD	s	1,683	0	0	0	0	0	0	0
Rock RipRap		0	423	171	0	0	0	0	0
Tree Revetments		531	0	0	0	0	0	0	0
	Totals	3,503	423	827	0	0	0	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	75,467	116,193	2.54	1950 to 1976:	-2.36%
1976	72,988	107,995	2.48	1976 to 1995:	9.36%
1995	70,922	121,394	2.71	1995 to 2001:	-6.48%
2001	71,860	110,374	2.54	1950 to 2001:	-0.15%
Change 1950 - 2001	-3,607	-5,818	0.00		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	14,624		
HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	11	0.2%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	285	3.9%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	49	0.7%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	6965		4622		
Total Floodplain Area (Ac)	7310		6736		
Total Isolated (Ac)	345	4.7%	2113	42.4%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	300	0	27	328

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 556	Erosion Buffer (ft) 1,113	Tot CN Acre 7,03	tal IZ age 34	Restricted CMZ Acreage 126	% Restrict Migratio Area 2%	ted T n Ac	Fotal AHZ sreage 639	Restricted AHZ Acreage 0	I % Restricted Avulsion Area 0%
2011 Res	stricted Migr	ation A	rea Sun	nmar	у	Note that the	ese data r	eflect the	observed co	nditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	2011 aerial p Counties, C	ohotograp OE for the	hy (NAIF e rest of t	[•] for Park and he river).	Sweet Grass
RipRap										
	Non-Irrigated		46	0.	6%					
	Irrigated		23	0.	3%					
Flow Deflec	tors									
	Irrigated		122	1.	6%					
Dike/Levee										
	Railroad		7	0.	1%					
		Totals	198	2.	6%					
Land Use	es within the	e CMZ (A	Acres)	F Irri 8	lood gation 96.1	Sprinkler Irrigation 0.0	Pivot Irrigatio 244.1	: U on Ex	rban/ KUrban p 4.1	Trans- portation 6.4

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Aci	res		%	of Rea	ich Area	a I
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								1
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	60	109	166	155	0.6%	1.0%	1.6%	1.5%
	Totals	60	109	166	155	0.6%	1.0%	1.6%	1.5%
Agricultural Lan	d								1
	Non-Irrigated	3,778	3,965	3,128	3,139	36.2%	38.0%	29.9%	30.0%
	Irrigated	2,108	2,241	3,003	2,947	20.2%	21.4%	28.7%	28.2%
	Totals	5,886	6,206	6,131	6,087	56.3%	59.4%	58.7%	58.3%
Channel									1
	Channel	4,458	4,074	4,091	4,146	42.7%	39.0%	39.2%	39.7%
	Totals	4,458	4,074	4,091	4,146	42.7%	39.0%	39.2%	39.7%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	2	2	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	2	2	0.0%	0.0%	0.0%	0.0%
Transportation									
	Public Road	26	42	41	41	0.3%	0.4%	0.4%	0.4%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	17	17	17	17	0.2%	0.2%	0.2%	0.2%
	Totals	44	59	59	59	0.4%	0.6%	0.6%	0.6%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 and	4								Char	nge Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irr													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	360	583	0.0%	0.0%	5.9%	9.6%	0.0%	5.9%	3.7%	9.6%
	Flood	2,108	2,241	2,643	2,365	35.8%	36.1%	43.1%	38.9%	0.3%	7.0%	-4.3%	3.0%
	Totals	2,108	2,241	3,003	2,947	35.8%	36.1%	49.0%	48.4%	0.3%	12.9%	-0.6%	12.6%

Nolrr

Reach D12

Multi-Use	3,111	3,170	2,961	2,986	52.8%	51.1%	48.3%	49.1%	-1.8%	-2.8%	0.8%	-3.8%
Hay/Pasture	668	795	167	154	11.3%	12.8%	2.7%	2.5%	1.5%	-10.1%	-0.2%	-8.8%
Totals	3,778	3,965	3,128	3,139	64.2%	63.9%	51.0%	51.6%	-0.3%	-12.9%	0.6%	-12.6%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	5	Shrub (Acres	s)	Closed Timber (Acres)			Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min Max Average Sum	0.5 247.0 21.5 1,611.4	0.2 140.2 14.0 870.4	0.8 87.4 11.3 473.5	3.1 235.5 64.5 2,128.4	0.6 658.4 81.6 2,856.4	0.2 804.3 71.8 3,517.4	4.0 78.4 27.1 379.5	4.4 137.8 71.1 284.3	4.2 189.5 33.8 337.7
Riparian Conve from c and 20	Turnove rision of ripar hannel to ripa 001 data set.	ian areas to o arian betwee	channel, or n the 1950's	Riparian t Channel t iparian Encr e	to Channel (a to Riparian (a oachment (a	cres) 1 cres) 1	518.6 1115.6 597.0		
Riparian	Recruit	nent	1950s Cha	nnel Mapped	l as 2011 Ripa	arian (Ac)	1123.2		
Creation of	f riparian are	as	1950s Floodp	olain Mapped	as 2011 Cha	annel (Ac)	578.0		
between 1	950s and 20	01.	Tota	Total Recruitment (1950s to 2011)(Ac) 1701.2					

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	28.0	117.2	139.8	0.0	285.0
Acres/Valley Mile	2.6	10.9	13.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	74.77	1.37%	82.86	0.12	25.02	13.06	

Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region	Region	Region	Region
Bigmouth buffalo	✓ ✓ Flathead chub	✓ ✓ Northern redbelly dace	Stonecat
✓ ✓ Black bullhead	Freshwater drum	✓ ✓ Pallid sturgeon	Sturgeon chub
Black crappie	Goldeye	Pumpkinseed	Sucker species
Blue sucker	Green sunfish	Rainbow trout	Sunfish species
V Bluegill	Lake chub	River carpsucker	V Walleye
Brook stickleback	Largemouth bass	Rock bass	Vestern silvery minnov
Brown trout	✓ ✓ Longnose dace	Sand shiner	✓ ✓ White bass
V Burbot	✓ ✓ Longnose sucker	Sauger	V White crappie
Catfish species	Minnow species	Shorthead redhorse	Vite sucker
✓ ✓ Channel catfish	Mottled sculpin	Shortnose gar	Yellow bullhead
Common carp	Mountain sucker	Shovelnose sturgeon	Yellow perch
Creek chub	Mountain whitefish	Sicklefin chub	
Emerald shiner	✓ ✓ Northern pike	Smallmouth bass	
Fathead minnow	✓ ✓ Northern plains killifish	✓ ✓ Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	608.4	334.5	8.2%
Rip Rap Bottom	23.1	16.6	0.4%
Rip Rap Margin	24.4	21.9	0.5%
Bluff Pool	16.3	16.9	0.4%
Terrace Pool	40.1	30.7	0.8%
Secondary Channel	122.7	110.7	2.7%
Secondary Channel (Seasonal)	479.7	402.0	9.8%
Channel Crossover	439.8	269.4	6.6%
Point Bar		247.3	6.0%
Side Bar		107.7	2.6%
Mid-channel Bar		69.6	1.7%
Island	2,336.7	2,336.7	57.1%
Dry Channel		127.5	3.1%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird Species Observed	in Reach/Region	Species of Concern	Potential Species of Concern
Region	Region	Region	Region
American Robin	Chipping Sparrow	Killdeer	Song Sparrow
American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
✓ ✓ American Goldfinch	Cliff Swallow	✓ ✓ Lark Sparrow	Spotted Towhee
✓ ✓ American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
✓ ✓ American Redstart	Common Merganser	✓ ✓ Least Flycatcher	Swainson's Thrush
✓ ✓ Bald Eagle	🗌 ✔ Common Nighthawk	Mallard	Sandhill Crane
✓ ✓ Baltimore Oriole	Common Raven	Mountain Bluebird	Tree Swallow
Barn Swallow	✓ ✓ Common Yellowthroat	Mourning Dove	Turkey Vulture
Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
Black-billed Cuckoo	✓ ✓ Dickcissel	✓ ✓ Orchard Oriole	Vesper Sparrow
V Black-billed Magpie	Downy Woodpecker	Osprey	□ □ Violet-green Swallow
V Black-capped Chickadee	Eastern Bluebird	V Ovenbird	✓ ✓ Warbling Vireo
I Black-and-white Warbler	✓ ✓ Eastern Kingbird	✓ ✓ Plumbeous Vireo	Western Kingbird
V Black-headed Grosbeak	Eurasian Collared-dove	🖌 🗹 Red-headed Woodpecker	Vestern Meadowlark
✓ ✓ Blue Jay	🖌 🖌 European Starling	Red-naped Sapsucker	Vestern Wood-pewee
V Bobolink	✓ ✓ Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
✓ ✓ Brewer's Blackbird	✓ ✓ Franklin's Gull	✓ ✓ Ring-necked Pheasant	White-throated Swift
V Brown-headed Cowbird	Grasshopper Sparrow	✓ ✓ Red-tailed hawk	Wild Turkey
Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
V Brown Thrasher	Great Blue Heron	✓ ✓ Red-winged Blackbird	Vellow-bellied Sapsucker
✓ ✓ Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Vellow-billed Cuckoo
Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	✓ ✓ Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

County	Richland	Upstream River Mile	36.3
Classification	PCM/I: Partly confined meandering/islands	Downstream River Mile	27.8
General Location	To Sidney	Length	8.50 mi (13.68 km)
General Comments			

Narrative Summary

Reach D13 is located just upstream of Sidney. It is 8.5 miles long, and is a PCM/I reach type, indicating a primary meandering channel thread with distinct islands largely formed by historic bendway cutoffs. The reach has multiple pipeline crossings, and the Highway 23 Bridge and approach have confined the river and isolated floodplain area. Floodplain development for irrigated agricultural is extensive, and in many cases irrigated fields intersect the channel bank. These locations are commonly armored, and low field dikes affect floodplain access.

In 2011 there was almost 16,000 feet of bank armor in the reach, protecting 16 percent of the total bank line. That includes 2,440 feet of car bodies. The car body revetments are all located off of the main channel at RM 32.2L. About ½ mile of rock riprap was constructed between 2001 and 2011.

Although no side channels have been intentionally blocked in the reach, there has still been a net loss of almost two miles of side channel since 1950, reflecting passive abandonment of side channels with flow alterations.

There are three mapped pipeline crossings in the reach, two at the Sidney Bridge and another about a mile upstream. The two on the bridge are apparently installed on the bridge structure itself. The one upstream at RM 32.1 is described as an LPG pipeline installed in 1997; however no more information was available.

Reach D13 has had 28 reported ice jam events since 1917. Especially severe damages were reported in the ice jam of March 25, 1943.

Human development has resulted in isolation of 18 percent of the historic 100-year floodplain and 26 percent of the 5-year floodplain. This isolation includes the effects of transportation infrastructure embankments (mainly Highway 23), low agricultural dikes on the edges of irrigated fields, and reduced flood magnitudes. There has been fairly extensive land use encroachment into the Channel Migration Zone: as of 2011 there were 250 acres of pivot irrigation and 137 acres of urban/exurban land uses within the CMZ, making these areas especially prone to the threat of river erosion. One drill pad was mapped within 1,500 feet of the river at RM 32. There is also a large animal handling facility that drains to an irrigation return flow point at RM 29.

Reach D13 shows, like most other reaches below the Bighorn River, a shrinking channel with reduced rates of erosion and floodplain turnover. The bankfull channel area in the reach dropped by 220 acres since 1950, and there was a similar amount of mapped riparian encroachment into old channel areas. Floodplain turnover rates have dropped from 14.3 acres per year from 1950-1976 to 6.1 acres per year from 1976-2001. There has also been a net loss of 45 acres of open bar area as the channel has become smaller and more forested. On the floodplain, riparian acreage has decreased; about 424 acres or 27 percent of the total riparian area was cleared for irrigation since 1950.

Like numerous reaches below the Bighorn River confluence, Reach D13 exhibits a shift from a largely braided pattern in 1950 to an anabranching pattern today. The pattern shift reflects the fact that side channels that used to flow around open bars (braided) now flow around wooded islands (anabranching). This shift appears largely due to riparian encroachment onto sand bars since 1950. This encroachment reflects the flow alterations identified in the reach, and may also be due to the altered sediment regime imposed by upstream influences including Yellowtail Dam. Changes in sediment loading have not been quantified in the CEA.

There are 45 acres of Russian olive mapped in the reach.

Reach D13 was sampled as part of the fisheries study. A total of 38 fish species were sampled in the reach, including six Species of Concern: the Blue Sucker, Pallid Sturgeon, Sauger, Shortnose Gar, Sicklefin Chub, and Sturgeon Chub.

Reach D13 was also sampled as part of the avian study. A total of 39 bird species were identified in the reach. The Red-headed Woodpecker was found, which is a Species of Concern (SOC). In contrast to most other reaches, Reach D12 has seen a reduction in the forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 27.6 acres per valley mile of such forest, and that number decreased to 18.1 acres per valley mile by 2001.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The magnitude of the 100-year flood is now 134,000 cfs, which 6 percent lower than it was pre-development (143,000 cfs). The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,190 cfs to 2,000 cfs with human development, a reduction of 52 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,340 cfs under unregulated conditions to 2,550 cfs under regulated conditions, a reduction of 60 percent.

Seasonal low flows have increased by 82 percent in the fall and 63 percent in the winter. Both fall and winter base flows are currently about 3,500 cfs.

CEA-Related observations in Reach D13 include:

•Conversion of river pattern from braided to anabranching due to riparian encroachment onto sand bars since 1950.

•Passive side channel abandonment due to hydrologic alterations and potentially downcutting due to CMZ confinement.

•100-year floodplain isolation due to low agricultural field dikes.

•100-year floodplain isolation due to transportation infrastructure.

•Channel Migration Zone (CMZ) restrictions that significantly confine the river corridor, potentially causing downcutting. This may be an important Increase in area at low risk of cowbird parasitism with riparian encroachment

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D13 include:

•Nutrient Management at Animal Handling Facility at RM 29L

•Pipeline Crossing PRACTICE RM 32.1

•Old car body removal RM 32.2L

•Russian olive removal

PHYSICAL FEATURES MAP (2011)

05% Sum

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

Flood Hi	story				Downstream	Upstream
Year	Date	Flow on Date	Return Interval	Gage No	Gage	Gage 6329500
1978	May 23	111,000	10-25 yr	Location	#Error	Sidney
1912	Mar 29	114,000	10-25 yr	Period of Record	#Error	1911-2015
1944	Jun 21	120,000	10-25 yr	Distance To (miles)	#Error	-5.5
2011	May 24	124,000	10-25 yr	Distance To (miles)	#Eno	0.0
1918	Jun 20	126,000	25-50 yr			
1943	Mar 29	132,000	25-50 yr			
1923	Oct 3	134,000	25-50 yr			
1952 1921	Mar 31	138,000	25-50 yr			

Discharge

	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		69,900	90,500	104,000	132,000	143,000	170,000	4,190	6,340
Regulated		54,300	75,100	89,100	120,000	134,000	166,000	2,000	2,550
% Change		-22.32%	-17.02%	-14.33%	-9.09%	-6.29%	-2.35%	-52.27%	-59.78%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010

			-	
Season		5%	50%	95%
Spring	Unregulated	67,400	24,600	7,250
	Regulated	52,000	14,300	5,220
	% Change	-23%	-42%	-28%
Summer	Unregulated	47,800	14,600	6,340
	Regulated	35,300	8,230	2,550
	% Change	-26%	-44%	-60%
Fall	Unregulated	9,950	5,800	1,920
	Regulated	11,300	7,300	3,490
	% Change	14%	26%	82%
Winter	Unregulated	16,500	5,640	2,150
	Regulated	17,000	6,810	3,510
	% Change	3%	21%	63%
Annual	Unregulated	49,700	8,810	2,830
	Regulated	36,900	7,990	3,440
	% Change	-26%	-9%	22%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	MDT	28-Oct-77	B/W	1:12,000	6329500	5800
1995	USGS DOQQ	7/28/95 - 8/3/97	B/W		6329500	23000
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2005	NAIP	07/14/2005	color	1-meter pixels	6329500	15900
2007	Woolpert	10/15/2007 - 11/2/0007	Color		6329500	
2009	NAIP	7/11/2009	Color	1-meter pixels	6329500	32600
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/15/2011	Color	1-meter pixels	6329500	57900
2013	NAIP	07/19/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	bilization					
	Tire Revetment	520	0.6%	0	0.0%	-520
	Rock RipRap	3,976	4.4%	6,387	7.1%	2,410
	Flow Deflectors	962	1.1%	944	1.0%	-18
	Concrete RipRap	3,329	3.7%	3,329	3.7%	0
	Car Bodies	2,437	2.7%	2,437	2.7%	0
	Between Flow Deflectors	3,074	3.4%	3,235	3.6%	161
	Feature Type Totals	14,298	15.8%	16,332	18.1%	2,033
	Reach Totals	14,298	15.8%	16,332	18.1%	2,033

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type	Irriga	ted Non-	Irrig. Ag. I	nfrastr. R	Road	nterstate	Railroad	Urban	Exurban
Car Bodies	2,20	63 (C	0	0	0	0	0	174
Concrete RipRap	2,52	22 (C	0	0	0	0	0	807
Flow Deflectors/Between FDs	1,49	96 2,3	394	0	0	0	0	0	0
Rock RipRap	74	8 () <u>(</u>	984	66	0	0	0	2,178
Tire Revetment	51	8 (C	0	0	0	0	0	0
Tot	als 7,54	47 2,3	394 9	984	66	0	0	0	3,159

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

Jam Date	Jam Type	River Mile	Damages
	NA	31	35K USD estimated rural damages
4/3/1917	NA	31	?
3/31/1923	NA	31	?
1/1/1927	NA	31	21,400 USD estimated rural damages
3/2/1938	NA	31	?
3/22/1939	NA	31	?
3/25/1943	NA	31	484,800 USD estimated rural damages
1/1/1944	NA	31	86,600 USD estimated rural damages
1/1/1946	NA	31	50,400 USD estimated rural damages
1/1/1948	NA	31	11,300 USD estimated rural damages
3/8/1949	NA	31	50,500 USD estimated rural damages
4/4/1950	NA	31	?
3/27/1951	NA	31	Severe flooding, evacuations, 100,000s USD in damages
4/1/1952	Freeze-up	31	44,900 USD estimated rural damages, severe flooding
4/3/1955	NA	31	1,800 USD estimated rural damages
3/26/1956	NA	31	?
3/21/1959	NA	31	30K USD estimated rural damages
3/21/1960	NA	31	69K USD estimated rural damages
3/17/1961	NA	31	?
4/7/1965	NA	31	?
4/7/1965	NA	31	?
3/26/1969	Break-up	31	230K USD and 14,000 acres flooded
3/19/1979	NA	31	?
2/27/1986	NA	31	?
3/6/1994	NA	31	?
2/13/1996	Break-up	31	High water
2/14/1997	NA	31	?
3/19/2011	Break-up		

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)			Bankfull		
	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Braiding Parameter		% Change in Braiding
1950	44,020	49,325	2.12	1950 to 1976:	-1.37%
1976	43,740	47,743	2.09	1976 to 1995:	1.60%
1995	44,321	49,858	2.12	1995 to 2001:	-12.40%
2001	45,127	38,872	1.86	1950 to 2001:	-12.22%
Change 1950 - 2001	1,106	-10,453	-0.26		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	31	0.7%			
Agriculture (generally relates to field boundaries)	552	13.1%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	38	0.9%			
Levee/Riprap (protecting urban, industrial, etc.)	16	0.4%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	129	3.1%			
Total Not Isolated (Ac)	3434		2297		
Total Floodplain Area (Ac)	4200		2764		
Total Isolated (Ac)	766	18.2%	467	25.6%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	163	0	19	183

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 521	Erosion Buffer (ft) 1,042	To CN Acre 3,54	tal //Z eage 41	Restricted CMZ Acreage 598	% Restrict Migration Area 17%	ted Tot n Al- Acre C	tal IZ age	Restricted AHZ Acreage 0	% Restricted Avulsion Area 0%
2011 Res	stricted Mig	ration A	rea Sun	nmai	Y	Note that the	ese data refl	ect the c	bserved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	2011 aerial p Counties, CO	bhotography DE for the re	<pre>/ (NAIP for est of the</pre>	or Park and S e river).	Sweet Grass
Road/Railro	oad Prism									
	Public Road		177	5	.0%					
RipRap/Flo	w Deflectors									
	Irrigated		233	6	.6%					
RipRap										
	Irrigated		128	3	.6%					
Flow Deflect	tors									
	Irrigated		101	2	.9%					
		Totals	639	18	8.1%					
Land Us	es within the	e CMZ (A	Acres)	F Irri	Flood igation 585.1	Sprinkler Irrigation 0.0	Pivot Irrigation 250.7	Urb ExU 13	oan/ T rban po 6.9	Frans- ortation 9.9

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	73	163	209	210	1.1%	2.4%	3.0%	3.1%	
	Totals	73	163	209	210	1.1%	2.4%	3.0%	3.1%	
Agricultural Lan	d									
	Non-Irrigated	1,843	1,799	1,831	1,780	26.8%	26.2%	26.6%	25.9%	
	Irrigated	3,210	3,141	3,230	3,218	46.7%	45.7%	46.9%	46.8%	
	Totals	5,052	4,940	5,061	4,998	73.4%	71.8%	73.6%	72.7%	
Channel									1	
	Channel	1,695	1,543	1,343	1,398	24.6%	22.4%	19.5%	20.3%	
	Totals	1,695	1,543	1,343	1,398	24.6%	22.4%	19.5%	20.3%	
ExUrban									l	
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	158	185	192	0.0%	2.3%	2.7%	2.8%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	5	19	24	24	0.1%	0.3%	0.4%	0.4%	
	Totals	5	176	209	216	0.1%	2.6%	3.0%	3.1%	
Transportation									· · · · ·	
	Public Road	44	47	47	47	0.6%	0.7%	0.7%	0.7%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	9	9	9	9	0.1%	0.1%	0.1%	0.1%	
	Totals	53	57	57	57	0.8%	0.8%	0.8%	0.8%	
Urban									· · · · ·	
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	neline - Tiers 3 and	d 4								Char	ige Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	l .	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irr													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	316	894	0.0%	0.0%	6.3%	17.9%	0.0%	6.3%	11.6%	17.9%
	Flood	3,210	3,141	2,913	2,324	63.5%	63.6%	57.6%	46.5%	0.0%	-6.0%	-11.0%	-17.0%
	Totals	3,210	3,141	3,230	3,218	63.5%	63.6%	63.8%	64.4%	0.1%	0.2%	0.6%	0.9%

Nolrr

Reach D13

Multi-Use	1,549	1,546	1,731	1,747	30.7%	31.3%	34.2%	35.0%	0.6%	2.9%	0.7%	4.3%
Hay/Pasture	293	253	100	33	5.8%	5.1%	2.0%	0.7%	-0.7%	-3.2%	-1.3%	-5.1%
Totals	1,843	1,799	1,831	1,780	36.5%	36.4%	36.2%	35.6%	-0.1%	-0.2%	-0.6%	-0.9%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Clos	ed Timber (A	(cres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.5	0.2	0.7	2.2	0.3	2.0	3.7	5.3	8.8
Max	175.6	31.2	43.2	110.3	279.9	346.3	51.5	31.8	19.4
Average	26.7	6.6	11.6	32.0	31.7	41.1	22.9	16.8	14.1
Sum	987.8	277.2	372.7	641.0	1,014.0	1,273.4	114.5	67.4	28.2
Riparian	Turnove	er			Diparian t	o Channol (a	croc)	021 0	
Conver	sion of ripar	ian areas to o	channel. or		Кірапан і	o channel (a	(165)	231.2	
from ch	nannel to ripa	arian betweel	n the 1950's		Channel to Riparian (acres) 522.9				
and 20	01 data set.			R	Riparian Encroachment (acres) 291.7				
Riparian	Recruit	nent	1950s Char	nnel Mappeo	l as 2011 Ripa	arian (Ac)	546.4		
Creation of	f riparian are	eas	1950s Floodplain Mapped as 2011 Channel (Ac) 104.1						
between 1950s and 2001.			Total Recruitment (1950s to 2011)(Ac) 650.5						

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	65.0	126.5	60.6	0.0	252.0
Acres/Valley Mile	8.5	16.6	7.9	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	44.74	3.16%	145.58	2.81	22.19	6.15	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region	Region	Region Reach	Region Reach
 Bigmouth buffalo 	Flathead chub	Northern redbelly dace	Stonecat
 Black bullhead 	Freshwater drum	✓ ✓ Pallid sturgeon	Sturgeon chub
Black crappie	Goldeye	Pumpkinseed	Sucker species
✓ ✓ Blue sucker	Green sunfish	Rainbow trout	Sunfish species
✓ ✓ Bluegill	Lake chub	River carpsucker	V Walleye
Brook stickleback	Largemouth bass	Rock bass	Vestern silvery minnow
Brown trout	Longnose dace	Sand shiner	✓ ✓ White bass
✓ ✓ Burbot	Longnose sucker	✓ ✓ Sauger	V White crappie
Catfish species	Minnow species	Shorthead redhorse	V White sucker
Channel catfish	Mottled sculpin	Shortnose gar	Yellow bullhead
Common carp	Mountain sucker	✓ ✓ Shovelnose sturgeon	Yellow perch
Creek chub	Mountain whitefish	Sicklefin chub	
Emerald shiner	✓ ✓ Northern pike	Smallmouth bass	
✓ ✓ Fathead minnow	✓ ✓ Northern plains killifish	🗌 🔽 Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat Scour Pool	Bankfull 256.0	Low Flow 134.5	% of Low Flow 10.0%
Rip Rap Bottom	262.2	125.6	9.4%
Rip Rap Margin	25.8	18.2	1.4%
Secondary Channel (Seasonal)	222.7	209.0	15.6%
Channel Crossover	176.1	163.4	12.2%
Point Bar		88.1	6.6%
Side Bar		27.8	2.1%
Mid-channel Bar		37.7	2.8%
Island	400.6	401.2	29.9%
Dry Channel		137.9	10.3%

Species of Concern

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird Species Obse	erved in Reach/Region	Species of Concern	Potential Species of Concern
Region	Region	Region Reach	Region
American Robin	Chipping Sparrow	✓ ✓ Killdeer	Song Sparrow
American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
American Goldfinch		✓ ✓ Lark Sparrow	Spotted Towhee
American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
✓ ✓ Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
Black-billed Magpie	Downy Woodpecker	Osprey	Violet-green Swallow
Black-capped Chick	adee 🖌 🖌 Eastern Bluebird	Ovenbird	✓ ✓ Warbling Vireo
Black-and-white Wa	rbler 🖌 🖌 Eastern Kingbird	Plumbeous Vireo	Western Kingbird
Black-headed Gros	beak 🔄 🗌 Eurasian Collared-dove	✓ ✓ Red-headed Woodpecker	Vestern Meadowlark
Blue Jay	European Starling	Red-naped Sapsucker	Vestern Wood-pewee
Bobolink	Field Sparrow	Red Crossbill	V White-breasted Nuthatch
Brewer's Blackbird	🗌 🗹 Franklin's Gull	Ring-necked Pheasant	White-throated Swift
Brown-headed Cow	bird 🛛 🗹 Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
Brown Thrasher	Great Blue Heron	Red-winged Blackbird	☐ ✓ Yellow-bellied Sapsucker
Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	☐ ✓ Yellow-billed Cuckoo
Canada Goose	Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	V Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

County	Richland
Classification	PCM/I: Partly confined meandering/islands
General Location	To Fariview
General Comments	Into Mckenzie County, North Dakota: High sinuosity

Upstream River Mile	27.8
Downstream River Mile	13.5
Length	14.30 mi (23.01 km)

Reach D

Narrative Summary

Reach D14 is located upstream of Fairview. The reach is a 14.3 mile long Partially Confined Meandering with Islands (PCM/I), indicating some valley wall influence, and a meandering main thread with cutoff channels through meander cores forming persistent forested islands.

There is just over a mile of bank armor in the reach, including 3,900 feet of rock riprap and 2,500 feet of flow deflectors. Most of the rock riprap was constructed between 2001 and 2011 (2,300 feet).

Prior to 1950, 3,600 feet of side channel was blocked in the reach at RM 23L.

Similar to many reaches in the Lower Yellowstone Valley, the river channel in Reach D14 has gotten smaller since 1950. The channel contracted by about 309 acres in this reach since 1950, and about 460 acres of riparian vegetation has encroached into old channel areas. This pattern has been consistent in the lower river, and relates primarily to a reduction in flows due to human development. Floodplain turnover rates have dropped from 14.4 acres per year pre-1976 to 6.1 acres per year post-1976. There has also been a major loss of open bar habitat area in the channel; between 1950 and 2001, there was a loss of 510 acres of mid-channel bar area, which can be important habitat to certain species such as least tern.

Land use is predominantly agricultural, with just over a thousand acres of pivot irrigation development since 1950. Development in the reach included conversion of 1,063 acres of 1950s riparian area to other land uses (mostly irrigated agriculture); that represented 36 percent of the entire 1950s riparian footprint. There are 93 acres of pivot irrigated land and 113 acres of urban/exurban development within the Channel Migration Zone (CMZ), making these areas especially susceptible to river erosion. At RM 26L there are three drill pads within the CMZ.

Several dump sites have been mapped on the banks: RM 25R, RM 24.3L, RM 17L, RM 15.8L, and RM 15.8R.

There is one pipeline crossing in Reach D14 at RM 27. It is an 8-inch crude oil pipeline that has been Horizontally Directionally Drilled.

About 41 percent of the historic 5-year floodplain has become isolated, primarily due to flow alterations.

One ice jam was reported in the reach. It was a break-up flood event on March 17, 2011.

There are about 36 acres of mapped Russian olive in the reach.

Reach D14 was sampled as part of the avian study. A total of 30 bird species were identified in the reach. Two bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) on the Yellowstone River were found, the Ovenbird and the Plumbeous Vireo. Reach D14 has seen a decrease in the forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 25.6 acres per valley mile of such forest, and that number dropped to 19.6 acres per valley mile by 2001.

CEA-Related observations in Reach D14 include: •Flow alteration impacts on floodplain access

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D14 include: •Solid waste removal at dump sites at RM 25R, RM 24.3L, RM 17L, RM 15.8L, and RM 15.8R. •Side channel reactivation at RM 23L

•Pipeline crossing Management at RM 27.

•Russian olive removal

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

Flood Hi	story							Downstream	Upstream
Year	Date	Flow on Date	Return I	nterval			Gago No	Gage	6329500
1978	May 23	111,000	10-28	10-25 yr			Location	#Error	Sidney
1912	Mar 29	114,000	10-28	10-25 yr		/r Deviad of Decend #Error		#Error	1011 2015
1944	Jun 21	120,000	10-25	10-25 yr		Period		#EII0	1911-2013
2011	May 24	124,000	10-25	5 yr		Distance	e To (miles)	#Error	3.0
1918	Jun 20	126,000	25-50) yr					
1943	Mar 29	132,000	25-50) yr					
1923	Oct 3	134,000	25-50) yr					
1952	Mar 31	138,000	25-50) yr					
1921	Jun 21	159,000	100-	-yr					
Dischar	ge							7Q10	95% Sum.
	1.0	1 Yr 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregu	lated							NA	NA
Regu	lated							NA	NA
% Cł	nange							NA	NA

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1949	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	MDT	28-Oct-77	B/W	1:12,000	6329500	5800
1995	USGS DOQQ	28-Jul-95	B/W		6329500	25000
2001	NRCS	???	CIR	1:24,000	6329500	4000
2005	NAIP	07/14/2005	color	1-meter pixels	6329500	15900
2007	Woolpert	10/15/2007 - 11/2/0007	Color		6329500	
2009	NAIP	7/11/2009	Color	1-meter pixels	6329500	32600
2009	NAIP	7/9/2009	Color	1-meter pixels	6329500	35400
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/25/2011	Color	1-meter pixels	6329500	41100
2011	NAIP	7/15/2011	Color	1-meter pixels	6329500	57900
2013	NAIP	07/19/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	1,613	1.1%	3,906	2.6%	2,293
	Flow Deflectors	935	0.6%	1,208	0.8%	273
	Between Flow Deflectors	1,297	0.9%	1,297	0.9%	0
	Feature Type Totals	3,845	2.5%	6,411	4.2%	2,566
	Reach Totals	3,845	2.5%	6,411	4.2%	2,566

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FDs		1,971	0	0	0	0	0	0	259
Rock RipRap		0	0	446	0	0	0	0	1,168
т	otals	1,971	0	446	0	0	0	0	1,427

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

3/17/2011

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	76,083	3,723	1.05	1950 to 1976:	31.63%
1976	75,267	28,654	1.38	1976 to 1995:	24.21%
1995	75,888	54,254	1.71	1995 to 2001:	-16.71%
2001	75,901	32,508	1.43	1950 to 2001:	36.17%
Change 1950 - 2001	-182	28,786	0.38		
Length of Side		Pre-1950s (ft)	3,595		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-`	/ear
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%		
Agriculture (generally relates to field boundaries)	1451	17.4%		
Agriculture (isloated by canal or large ditch)	0	0.0%		
Levee/Riprap (protecting agricultural lands)	0	0.0%		
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%		
Railroad	0	0.0%		
Abandoned Railroad	0	0.0%		
Transportation (Interstate and other roads)	0	0.0%		
Total Not Isolated (Ac)	6895		3410	
Total Floodplain Area (Ac)	8346		4456	
Total Isolated (Ac)	1451	17.4%	1046	40.9%

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	132	0	33	164

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal IZ age	Restricted CMZ Acreage	% Restrict Migratio Area	ted To n Al Acre	tal IZ eage	Restricted AHZ Acreage	% Restricted Avulsion Area
	538	1,077	5,42	28	118	2%	63	33	0	0%
2011 Res	stricted Migr	ation A	ea Sun	nma	ry	Note that the	ese data ref	lect the o	observed con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc	cent of MZ	Counties, Co	DE for the r	est of the	e river).	Sweet Grass
Road/Railro	ad Prism									
	Public Road		14	0	.2%					
RipRap/Flo	w Deflectors									
	Irrigated		1	0	.0%					
RipRap										
	Non-Irrigated		12	0	.2%					
	Exurban Indu	strial	69	1	.1%					
Flow Deflect	tors									
	Irrigated		65	1	.1%					
		Totals	161	2	.7%					
Land Us	es within the	e CMZ (A	Acres)	i Irr 1	Flood igation 586.3	Sprinkler Irrigation 0.0	Pivot Irrigation 93.1	Url ExU	ban/ Jrban po 13.0	Trans- ortation 10.9

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Acı	res		%	of Rea	ich Area	a j
Feature Class	Feature Type	1950	1976	2001	2011	1950 1976 2001			2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	49	98	143	153	0.5%	0.9%	1.3%	1.4%
	Totals	49	98	143	153	0.5%	0.9%	1.3%	1.4%
Agricultural Lan	d								
	Non-Irrigated	4,570	3,488	3,179	3,085	42.6%	32.6%	29.7%	28.8%
	Irrigated	3,833	4,692	4,966	4,994	35.8%	43.8%	46.3%	46.6%
	Totals	8,402	8,180	8,145	8,079	78.4%	76.3%	76.0%	75.4%
Channel									
	Channel	2,199	2,353	2,196	2,249	20.5%	22.0%	20.5%	21.0%
	Totals	2,199	2,353	2,196	2,249	20.5%	22.0%	20.5%	21.0%
ExUrban									
	ExUrban Other	0	0	23	23	0.0%	0.0%	0.2%	0.2%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	15	135	139	0.0%	0.1%	1.3%	1.3%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	15	158	161	0.0%	0.1%	1.5%	1.5%
Transportation									
	Public Road	62	66	70	70	0.6%	0.6%	0.7%	0.7%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	3	3	3	3	0.0%	0.0%	0.0%	0.0%
	Totals	65	69	73	73	0.6%	0.6%	0.7%	0.7%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	meline - Tiers 3	and 4								Char	ige Beti	ween Y	ears
			Acı	res		%	of Rea	ch Area	a l	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irr													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	436	1,003	0.0%	0.0%	5.3%	12.4%	0.0%	5.3%	7.1%	12.4%
	Flood	3,833	4,692	4,530	3,990	45.6%	57.4%	55.6%	49.4%	11.7%	-1.7%	-6.2%	3.8%
	Totals	3,833	4,692	4,966	4,994	45.6%	57.4%	61.0%	61.8%	11.7%	3.6%	0.8%	16.2%

Nolrr

Reach DI4

Multi-Use	3,964	3,206	2,956	2,842	47.2%	39.2%	36.3%	35.2%	-8.0%	-2.9%	-1.1%	-12.0%
Hay/Pasture	606	283	223	243	7.2%	3.5%	2.7%	3.0%	-3.8%	-0.7%	0.3%	-4.2%
Totals	4,570	3,488	3,179	3,085	54.4%	42.6%	39.0%	38.2%	-11.7%	-3.6%	-0.8%	-16.2%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	5	Shrub (Acres	5)	Clos	ed Timber (A	Acres)	Ор	en Timber (A	cres)
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.8	0.2	0.8	2.6	0.0	0.7	6.5	3.7	5.5
Max	500.7	159.2	118.8	246.1	421.8	478.2	28.9	8.4	13.3
Average	58.8	28.6	13.9	55.5	70.4	74.5	14.4	6.2	9.6
Sum	2,000.5	885.6	556.3	1,110.9	1,479.0	1,863.1	129.7	18.7	38.4
Riparian	Turnove	er			Diparian (to Channol (a	croc)	270.6	
Conve	rsion of ripar	ian areas to o	channel. or		Ripanan	to Channel (a	cres)	270.0	
from c	hannel to ripa	arian betweel	n the 1950's		Channel f	to Riparian (a	cres)	729.7	
and 20	01 data set.			R	iparian Encr	oachment (a	cres)	459.1	
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	736.1		
Creation o	f riparian are	as	1950s Floodp	olain Mapped	as 2011 Cha	nnel (Ac)	97.3		
between 1	950s and 20	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	833.4		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	8.1	137.1	144.3	0.0	289.5
Acres/Valley Mile	0.6	10.9	11.5	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	35.69	0.77%	53.75	0.15	15.92	0.02
FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)		
Habitat Scour Pool	Bankfull 805.0	Low Flow 536.5	% of Low Flow 24.0%
Rip Rap Bottom	149.6	127.5	5.7%
Rip Rap Margin	61.0	48.0	2.1%
Bluff Pool	71.9	69.6	3.1%
Terrace Pool	40.0	57.3	2.6%
Secondary Channel	53.2	73.2	3.3%
Secondary Channel (Seasonal)	232.9	175.0	7.8%
Channel Crossover	486.2	301.4	13.5%
Point Bar		65.0	2.9%
Side Bar		113.1	5.1%
Mid-channel Bar		138.6	6.2%
Island	337.6	337.6	15.1%
Dry Channel		191.5	8.6%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
	American Robin	Chipping Sparrow	✓ ✓ Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	🗹 🗹 Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	□ □ Vesper Sparrow
	Black-billed Magpie	🖌 🖌 Downy Woodpecker	Osprey	☐ ☐ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	V Ovenbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	Eastern Kingbird	✓ ✓ Plumbeous Vireo	🗌 🗹 Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	🗌 🗹 Western Meadowlark
	Blue Jay	European Starling	Red-naped Sapsucker	✓ ✓ Western Wood-pewee
	Bobolink	☐ ✓ Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
	Brewer's Blackbird	🗌 🗹 Franklin's Gull	✓ ✓ Ring-necked Pheasant	White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	🗌 🗹 Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	□ ✔ Wood Duck
	Brown Thrasher	✓ ✓ Great Blue Heron	✓ ✓ Red-winged Blackbird	☐ ✔ Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	☐ ✔ Yellow-billed Cuckoo
	Canada Goose	Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Vellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	Vellow Warbler

Yellowstone River Reach Narratives

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.