Reach PC21

CountyParkClassificationPCA: Partially confined anabranchingGeneral LocationTo SpringdaleGeneral Comments

Upstream River Mile481Downstream River Mile478.8Length2.20 mi (3.54 km)

Narrative Summary

Reach PC21 is the downstream-most reach in Park County, emerging from a narrow canyon just above Springdale. The reach is 2.2 miles long, and is classified as Partially Confined Anabranching, reflecting some influence of the valley wall on channel form coupled by islands and side channels. At the upstream end of the reach, the Hunters Hot Springs Canal Diversion diverts water along the left bank of the river where it flows along the valley wall. This canal carries water about 11 miles down the river valley.

Reach PC21 is fairly heavily armored, with over a mile of bank armor in the reach, and most of that is rock riprap. Most of the armor is on the right bank against the railroad line, but there is also armor protecting the Hunters Hot Springs Canal Diversion as well as hayfields along the left bank. In the lower end of the reach the left bank is a high terrace that has bedrock exposed at its toe.

The primary land use in Reach PC21 is non-irrigated agriculture, although there are 266 acres of ground under pivot irrigation. All of the pivot irrigation is well out of the Channel Migration Zone (CMZ). The Springdale Bridge Fishing Access Site is located in at the downstream end of the reach at Springdale Bridge. The bridge narrows the CMZ width from about 2,500 feet upstream to 1,000 feet downstream of the structure. Just upstream of the bridge, there are remnants of an older bridge, including a large pier in the river. Bedrock is exposed in the riverbed just upstream of the bridge.

About 90 acres of wetlands have been mapped in Reach PC21 and about 18 of those acres consist of emergent wetlands in low historic floodplain area that has been isolated from the river by the railroad and interstate. Although the Russian olive mapping shows 0.2 acres of RO in the reach, some of that had been eroded out by the river by fall 2011.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,730 cfs to 1,570 cfs with human development, a reduction of 9.3 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC21 include: •Corridor confinement by transportation infrastructure. •Emergent wetlands located in isolated floodplain area. •Narrowing of CMZ by Springdale Bridge.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC21 include: •CMZ Management due to current restriction of 19 percent of the Channel Migration Zone •Bank Stabilization Recommended Practices due to 27 percent of banks being armored in reach •Irrigation diversion structure management at Hunters Hot Springs Canal diversion.

Reach PC21

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500
	1971	Jun 2	23	29,200	10-25	10-25 yr 10-25 yr			Location	Billings	Livingston
	1902	Jun 1	1	30,100	10-25			Period		1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Distance		1020 2010	1020 2010
	1974	Jun 1	17	36,300	50-10	0 yr		Distance	lo (miles)	114.4	25.6
	1996	Jun 1	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	11,400	22,400	28,100	31,700	38,900	41,800	48,500	1,730	1,760
	Regul	ated	11,100	22,000	27,800	31,400	38,600	41,600	48,400	1,570	1,680
	% Cha	ange	-2.63%	-1.79%	-1.07%	-0.95%	-0.77%	-0.48%	-0.21%	-9.25%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2005	NAIP	08/25/2005	color	1-meter pixels	6192500	2390
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	6,101	25.5%	6,270	26.2%	169
	Flow Deflectors	60	0.3%	123	0.5%	62
	Feature Type Totals	6,161	25.7%	6,393	26.7%	232
Floodplain	Control					
	Floodplain Dike/Levee	15,601	65.1%	15,612	65.1%	12
	Feature Type Totals	15,601	65.1%	15,612	65.1%	12
	Reach Totals	21,762	90.8%	22,005	91.8%	244

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	11,658	14,314	2.23	1950 to 1976:	
1976	1,552			1976 to 1995:	
1995				1995 to 2001:	
2001	11,983	14,978	2.25	1950 to 2001:	1.00%
Change 1950 - 2001	325	664	0.02		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of the riparian zones that have been converted to agrigulture and irrigation infrastructure.	he riparian zor d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pro	ne 5-year floodplain tend otect the agricultural pro	to represent

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tot CN Acre	tal //Z eage	Restricted CMZ Acreage	% Restrict Migratio Area	ted Tota n AHZ Acrea	l Res 2 A ge Act	tricted AHZ reage	% Restricted Avulsion Area
	131	261	32	8	56	17%	11		9	82%
2011 Res	stricted Mig	ration A	rea Sun	nmary	/	Note that the	ese data refle	ct the obser	ved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perce CN	ent of /IZ	Counties, CO	DE for the res	t of the river	r).	Sweet Glass
Road/Railro	oad Prism									
	Public Road		25	7.3	8%					
RipRap										
	Railroad		30	8.7	%					
	Irrigated		11	3.1	%					
		Totals	65	19.:	2%					
Land Us	es within the	e CMZ (/	Acres)	Fl Irrig	ood jation 9.5	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 6.7	ד pc	Frans- ortation 22.9

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	18	20	20	20	1.5%	1.6%	1.6%	1.6%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	0	17	28	54	0.0%	1.4%	2.3%	4.4%
	Totals	18	37	48	74	1.5%	3.0%	3.9%	6.0%
Agricultural Lan	d								
	Non-Irrigated	770	623	555	496	63.0%	51.0%	45.4%	40.6%
	Irrigated	148	264	291	336	12.1%	21.6%	23.8%	27.5%
	Totals	918	887	846	832	75.1%	72.6%	69.2%	68.1%
Channel						•			
	Channel	235	231	249	237	19.3%	18.9%	20.4%	19.4%
	Totals	235	231	249	237	19.3%	18.9%	20.4%	19.4%
ExUrban									
	ExUrban Other	0	0	7	7	0.0%	0.0%	0.5%	0.5%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	13	13	15	15	1.0%	1.0%	1.2%	1.2%
	Totals	13	13	21	21	1.0%	1.0%	1.7%	1.7%
Transportation									
	Public Road	28	3	6	6	2.3%	0.2%	0.5%	0.5%
	Interstate	0	43	43	43	0.0%	3.6%	3.6%	3.6%
	Railroad	10	9	9	9	0.8%	0.7%	0.7%	0.7%
	Totals	38	55	58	58	3.1%	4.5%	4.8%	4.8%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	meline - Tiers 3 and	4								Char	ige Betv	veen Y	ears
		Acres			% of Reach Area				(% of Agricultural Land)				
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	9	9	0.0%	0.0%	1.1%	1.1%	0.0%	1.1%	0.0%	1.1%
	Pivot	0	155	224	257	0.0%	17.5%	26.5%	30.8%	17.5%	9.0%	4.4%	30.8%
	Flood	148	109	58	70	16.1%	12.3%	6.8%	8.4%	-3.8%	-5.5%	1.6%	-7.7%
	Totals	148	264	291	336	16.1%	29.8%	34.4%	40.3%	13.6%	4.6%	5.9%	24.2%

Reach PC21

Non-Irrigated	

	Totals	770	623	555	496	83.9%	70.2%	65.6%	59.7%	-13.6%	-4.6%	-5.9%	-24.2%
	Hay/Pasture	230	105	49	20	25.1%	11.9%	5.8%	2.4%	-13.2%	-6.0%	-3.5%	-22.7%
	Multi-Use	540	518	506	477	58.8%	58.4%	59.8%	57.3%	-0.4%	1.4%	-2.5%	-1.5%
licu													

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	1.9	61.8	25.6	0.0	89.3
Acres/Valley Mile	1.0	31.4	13.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.17	0.23%	1.07	0.03	0.02	0.06

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

County	Sweet Grass	Upstream River Mile	478.8
Classification	PCB: Partially confined braided	Downstream River Mile	475.4
General Location	Springdale	Length	3.40 mi (5.47 km)
General Comments	Springdale: Low primary sinuosity; large open bar area; extension	sive armoring	

Narrative Summary

Reach A1 is located just downstream of the Springdale Bridge in western-most Sweet Grass County. It is a Partially Confined Braided (PCB) reach type, indicating some influence of the valley wall on river geomorphology, as well as abundant un-vegetated mid-channel bars. The reach is 3.4 miles long. This reach is most prominently characterized by a large meander located at RM 478 that has been very dynamic over recent years. The meander bend has repeatedly migrated to the north and then cut off, leaving broad open gravel bars and a wide active channel corridor. The bendway has been heavily armored on its apex, and partially armored on its downstream limb. With all of the changes at this meander, there has been a net gain of total channel area in the reach of about 50 acres since 1950.

There are about 6,800 feet of rock riprap in the reach, over 1,500 feet of which was constructed since 2001. Several flow deflectors have been eroded out in Reach A1 since 2001. About 25 percent of the bankline was armored as of 2011. There are also over 6,800 feet of mapped transportation encroachment in the river corridor, most of which is the rail line that follows the south bank.

Although the rail line runs along the edge of the river, it is situated on higher terraces and as such has not isolated any 100-year historic floodplain area. However, about 9 percent of the total Channel Migration Zone (CMZ) footprint has become restricted, and these restrictions are due to armoring against both the rail line and irrigated fields. This demonstrates how terraces that may be out of the 100-year floodplain can still be prone to erosion and thus within the CMZ.

The primary land use in the reach is non-irrigated agriculture (~1,100 acres), although there are about 650 acres under some form of irrigation. Pivot irrigation has expanded from 0 acres in 1950 to 302 acres in 2011. Similarly, sprinkler irrigation has expanded from 0 to 250 acres during the same time frame, and the extent of flood irrigated lands dropped from 803 to 123 acres over those 61 years. About 46 acres of land under sprinkler and 10 acres of land under pivot are located within the CMZ.

About 120 acres of wetland have been mapped in the reach, with most of that (84 acres) emergent wetland marsh that is located primarily in the active stream corridor. About 20 acres of wetland have been isolated from the corridor by the rail line near RM 477.8. About 0.7 acres of Russian olive have been mapped in the reach, and these trees are dispersed throughout the corridor.

Hydraulic modeling of the reach shows an extensive network of floodplain channels on the floodplain in Reach A1 that creates some avulsion risk north of the river. Much of the armoring on the large meander at RM 478 has reduced the risk of an avulsion and potential bypass of the Prather Mayborn Westfall Ditch Diversion. In addition, one of the overflow channels has been allowed to activate, which has reduced the potential for additional avulsions. The strategic allowance of channel migration and secondary channel activation has prevented the creation of a severe pinch point at RM 477.4 that may have created long-term instability in the reach.

A large dike at RM 476.7 blocks a ~3,000-foot long side channel and focuses the river towards the south bank and the Prather Mayborn Westfall Ditch Diversion. Although the dike blocks the head of the channel, it is still seasonally accessed by other overflow points from the main river.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,750 cfs to 1,570 cfs with human development, a reduction of 10.3 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A1 include:

•Strategic allowance of side channel activation to reduce overall avulsion risk •Isolation of emergent wetlands by transportation infrastructure •Blockage of a 3,000-foot long side channel to focus flows to a diversion structure.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A1 include:

•CMZ management due to level of restriction and avulsion risks on north floodplain

- •Bank Stabilization Recommended Practices due to current extent of bank armoring (25 percent of total bankline)
- •Irrigation diversion structure management at Prather Mayborn Westfall

•Wetland management/restoration due to high wetland concentrations

Reach AI

Reach AI

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500
	1971	Jun 2	23	29,200	10-25	10-25 yr 10-25 yr			Location	Billings	Livingston
	1902	Jun ´	11	30,100	10-25	5 yr		Period	of Record	1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Dist		1020 2010	1020 2010
	1974	Jun ´	17	36,300	50-10	0 yr		Distance	To (miles)	111.0	27.8
	1996	Jun ´	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	11,900	23,300	29,200	32,900	40,300	43,400	50,300	1,750	1,760
	Regul	ated	11,500	22,900	28,800	32,500	40,000	43,200	50,100	1,570	1,680
	% Cha	ange	-3.36%	-1.72%	-1.37%	-1.22%	-0.74%	-0.46%	-0.40%	-10.29%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	5-Jul-48	B/W	1:23,600	6192500	9810
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS-DOQ	23-Aug-97	B/W	1:24,000	6192500	4840
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	08/25/2005	color	1-meter pixels	6192500	2390
2007	Woolpert	29-Jun-05	Color	1:	6192500	
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	5,160	14.5%	6,839	19.2%	1,678
	Flow Deflectors	1,406	3.9%	573	1.6%	-832
	Between Flow Deflectors	995	2.8%	1,518	4.3%	523
	Feature Type Totals	7,561	21.2%	8,930	25.1%	1,370
Floodplain	Control					
	Transportation Encroachment	6,845	19.2%	6,845	19.2%	0
	Floodplain Dike/Levee	331	0.9%	331	0.9%	0
	Feature Type Totals	7,176	20.1%	7,176	20.1%	0
	Reach Totals	14,737	41.3%	16,107	45.2%	1,370

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FDs		0	522	0	0	0	895	0	0
т	otals	0	522	0	0	0	895	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan.	Anab. Ch.	Bankfull Braiding Parameter		% Change in Braiding
1950	18,968	6,571	1.35	1950 to 1976:	9.83%
1976	18,838	9,020	1.48	1976 to 1995:	25.57%
1995	17,553	15,040	1.86	1995 to 2001:	-9.38%
2001	17,825	12,169	1.68	1950 to 2001:	24.97%
Change 1950 - 2001	-1,143	5,598	0.34		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	2,970		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year			
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain		
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%				
Agriculture (generally relates to field boundaries)	0	0.0%				
Agriculture (isloated by canal or large ditch)	0	0.0%				
Levee/Riprap (protecting agricultural lands)	0	0.0%				
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%				
Railroad	0	0.0%				
Abandoned Railroad	0	0.0%				
Transportation (Interstate and other roads)	0	0.0%				
Total Not Isolated (Ac)	344		422			
Total Floodplain Area (Ac)	344		435			
Total Isolated (Ac)	0	0.0%	13	7.4%		

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	5	0	5

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal Res NZ dage Ad	stricted CMZ creage	% Restric Migratio Area	ted To on Al- Acre	tal IZ eage	Restricted AHZ Acreage	% Restricted Avulsion Area
	190	579	50	2	02	14 70	i.	<i>)</i> /	0	0%
2011 Re	stricted Mig	ration A	rea Sun	nmary		Note that the	ese data ref	lect the o	bserved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent o CMZ	of	2011 aerial Counties, C	DE for the r	est of the	or Park and s river).	Sweet Grass
Road/Railro	oad Prism									
	Railroad		2	0.3%						
RipRap/Flo	w Deflectors									
	Railroad		28	3.8%						
	Irrigated		30	4.0%						
RipRap										
	Railroad		6	0.8%						
		Totals	66	8.9%						
Land Us	es within th	ne CMZ (/	Acres)	Flood Irrigatio 15.7	i on	Sprinkler Irrigation 46.1	Pivot Irrigation 10.0	Urb ExUi O	an/ T rban po .0	Frans- ortation 9.8

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Aci	res		% of Reach Area				
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure								1.1	
	Canal	16	16	16	16	0.7%	0.7%	0.7%	0.7%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	36	33	65	93	1.5%	1.4%	2.8%	4.0%	
	Totals	52	50	81	109	2.2%	2.1%	3.5%	4.7%	
Agricultural Lan	d									
	Non-Irrigated	1,189	1,207	1,152	1,112	51.3%	52.1%	49.7%	47.9%	
	Irrigated	803	766	700	678	34.7%	33.1%	30.2%	29.3%	
	Totals	1,993	1,973	1,852	1,790	86.0%	85.1%	79.9%	77.2%	
Channel									1.1	
	Channel	220	243	298	332	9.5%	10.5%	12.9%	14.3%	
	Totals	220	243	298	332	9.5%	10.5%	12.9%	14.3%	
ExUrban										
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	5	5	5	5	0.2%	0.2%	0.2%	0.2%	
	Totals	5	5	5	5	0.2%	0.2%	0.2%	0.2%	
Transportation										
	Public Road	28	28	14	14	1.2%	1.2%	0.6%	0.6%	
	Interstate	0	0	48	48	0.0%	0.0%	2.1%	2.1%	
	Railroad	20	20	20	20	0.8%	0.8%	0.8%	0.8%	
	Totals	48	48	82	82	2.1%	2.1%	3.5%	3.5%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	meline - Tiers 3 and	4								Char	ige Betv	veen Y	ears
			Acı	res		%	of Rea	ch Area	l I	(% o	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	260	254	0.0%	0.0%	14.0%	14.2%	0.0%	14.0%	0.2%	14.2%
	Pivot	0	0	287	302	0.0%	0.0%	15.5%	16.9%	0.0%	15.5%	1.4%	16.9%
	Flood	803	766	153	123	40.3%	38.8%	8.3%	6.8%	-1.5%	-30.6%	-1.4%	-33.5%
	Totals	803	766	700	678	40.3%	38.8%	37.8%	37.9%	-1.5%	-1.1%	0.1%	-2.4%

Reach AI

Non-Irrigated													
	Multi-Use	1,119	1,059	1,100	1,046	56.2%	53.7%	59.4%	58.5%	-2.5%	5.7%	-0.9%	2.3%
	Hay/Pasture	70	147	52	65	3.5%	7.5%	2.8%	3.6%	3.9%	-4.6%	0.8%	0.1%
	Totals	1,189	1,207	1,152	1,112	59.7%	61.2%	62.2%	62.1%	1.5%	1.1%	-0.1%	2.4%

26.4

-45.5

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

and 2001 data set.

from channel to riparian between the 1950's

	;	Shrub (Acres	5)	Clos	ed Timber (A	Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.9	0.3	0.0	0.8	0.3	0.4	14.7	16.0	6.2
Max	20.0	11.9	5.3	219.1	149.9	171.1	14.7	29.8	26.6
Average	8.3	3.6	2.6	39.0	28.0	23.4	14.7	24.2	18.9
Sum	49.7	21.7	20.7	312.2	223.7	233.7	14.7	72.6	56.8
Riparian	Turnove)r			Riparian f	to Channel (a	cres)	71.8	
Conver	sion of ripar	ian areas to	channel, or						

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

Channel to Riparian (acres)

Riparian Encroachment (acres)

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	7.4	84.3	38.0	0.0	129.8
Acres/Valley Mile	2.3	26.0	11.7	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.67	0.18%	1.19	0.03	0.03	0.01

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Sweet Grass	Upstream River Mile	475.4
Classification	UB: Unconfined braided	Downstream River Mile	468.5
General Location	Grey Bear fishing access	Length	6.90 mi (11.10 km)
General Comments	Grey Bear fishing access		

Narrative Summary

Reach A2 is 6.9 miles long and extends from about one mile below the Prather Mayborn Westfall Ditch Diversion to about a mile below the Grey Bear fishing access. Reach A2 is classified as Unconfined Braided (UB), indicating a relatively small influence of the valley wall on reach geomorphology as well as a preponderance of open gravel bars in the channel. Reach A2 has changed markedly since the 1950s due to loss of riparian forest and side channel length.

As a consequence of its unconfined and dynamic nature, there are over two miles of rock riprap in the reach that cover almost 18 percent of the total bankline. Of those 10,633 feet of rock riprap, 1,673 feet was constructed since 2001. The physical features mapping also indicated 945 feet of tree revetments in the reach in 2001, however these were not identified in the 2011 mapping. This is the most upstream-reach with mapped concrete rubble riprap; there are over 1,000 feet of concrete riprap on the left bank at RM 474.6.

Sometime prior to 1950, one 3,125 foot long channel was blocked at RM 473. In 1950, there were still over 6 miles of active anabranching channels, but by 2011 that side channel length had dropped to 4 miles, resulting in a 15 percent reduction of braiding parameter in the reach.

There is also intermittent transportation encroachment by the railroad on the south side of the river. The transportation encroachment, which is due to the rail line, extends over two miles along the south bank and isolates 23 acres of historic floodplain. Similarly, 140 acres of the natural Channel Migration Zone (CMZ) area has been restricted by bank armor and the railroad prism.

Floodplain turnover values show that turnover rates have dropped from 4.5 acres per year to 3.7 acres per year since 1976. The channel has also enlarged by over 30 acres as anabranching channels have consolidated into a larger single thread. About 23 acres of 100-year floodplain area has been isolated by dikes.

Land uses in Reach A2 are primarily agriculture, with about ½ of the total agricultural land in some form of irrigation. About 26 acres of the existing 5-year floodplain are currently under irrigation, most of which is in flood.

Over 300 acres of wetland have mapped in the reach, most of which is emergent marsh-type areas. About 40 acres of emergent wetland are in an area of historic floodplain isolated by the railroad at RM 471.2. Approximately ½ of an acre of Russian olive was mapped in Reach A2.

Reach A2 has had extensive riparian clearing over the last century. In 1950, there were 431 acres of closed timber in the reach, and that footprint had contracted to 275 acres by 2001. Almost 12 acres of riparian forest in the reach per valley mile have been identified as being at low risk of cowbird parasitism due to the distance of those areas from agricultural infrastructure.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,760 cfs to 1,580 cfs with human development, a reduction of 10.2 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A2 include:

•Blockage of over 3,000 feet of side channel prior to 1950

•Passive abandonment of over two additional miles of side channel since 1950.

•Loss of over 150 acres of closed timber since 1950, most of which is in the 5-year floodplain.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A2 include: •Side Channel Restoration (RM 473)

•CMZ management due to extent of encroachment (140acres restricted)

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	6192500
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun 1	1	30,100	10-25	5 yr		Period	l of Record	1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Distance		1020 2010	1020 2010
	1974	Jun 1	17	36,300	50-10	0 yr		Distance	lo (miles)	104.1	31.2
	1996	Jun 1	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	11,900	23,300	29,200	32,900	40,300	43,400	50,300	1,760	1,760
	Regul	ated	11,500	22,900	28,800	32,500	40,000	43,200	50,100	1,580	1,680
	% Cha	ange	-3.36%	-1.72%	-1.37%	-1.22%	-0.74%	-0.46%	-0.40%	-10.23%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	5-Jul-48	B/W	1:23,600	6192500	9810
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	23-Aug-97	B/W	1:24,000	6192500	4840
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	08/25/2005	color	1-meter pixels	6192500	2390
2007	Woolpert		Color		6192500	
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature	Feature	2001	% of	2011	% of	2001-2011
Class	Туре	Length (ft)	Bankline	Length (ft)	Bankline	Change
Stream St	abilization					
	Tree Revetments	945	1.3%	0	0.0%	-945
	Rock RipRap	10,633	14.6%	12,306	16.9%	1,673
	Flow Deflectors	0	0.0%	154	0.2%	154
	Concrete RipRap	0	0.0%	1,015	1.4%	1,015
	Feature Type Totals	11,578	15.9%	13,475	18.5%	1,897
Floodplair	n Control					'
	Transportation Encroachment	12,335	16.9%	12,335	16.9%	0
	Floodplain Dike/Levee	1,169	1.6%	1,169	1.6%	0
	Feature Type Totals	13,504	18.5%	13,504	18.5%	0
	Reach Totals	25,082	34.4%	26,979	37.0%	1,897

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		2,729	2,588	1,204	3,093	0	0	0	0
Rock RipRap		925	2,870	0	0	0	2,352	0	0
	Totals	3,654	5,458	1,204	3,093	0	2,352	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan.	Anab. Ch.	Bankfull Braiding Parameter		% Change in Braiding
1950	38.287	33.176	1.87	1950 to 1976:	-7.11%
1976	36,820	27,020	1.73	1976 to 1995:	-4.04%
1995	36,672	24,344	1.66	1995 to 2001:	-4.33%
2001	36,483	21,587	1.59	1950 to 2001:	-14.72%
Change 1950 - 2001	-1,805	-11,588	-0.27		
Lenath of Side		Pre-1950s (ft)	3,125		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	23	3.1%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	723		853		
Total Floodplain Area (Ac)	747		870		
Total Isolated (Ac)	23	3.1%	16	4.1%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	26	0	0	26

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 213	Erosion Buffer (ft) 425	Total CMZ Acreage 1,096		Restricted CMZ Acreage 139	% Restrictor Migration Area 13%	ed Tota AH2 Acrea 130	al F Z Age)	AHZ ACreage	% Restricted Avulsion Area 0%
2011 Restricted Migration Area Summary						Note that these data reflect the observed conditions in the				
Reason for Restriction	eason for Land Use estriction Protected		RMA Acres	Percent of CMZ		Counties, COE for the rest of the river).				
Road/Railro	oad Prism									
	Railroad		19	1	.5%					
RipRap										
	Public Road Other Infrastructure Non-Irrigated Irrigated		8	0	.7%					
			13	1	.1%					
			38	3	.1%					
			40	3	.2%					
	Canal		20	1	.6%					
	Agricultural Roads		3	0	.3%					
		Totals	140	11	1.5%					
Land Uses within the CMZ (Acres)				l Irr	Flood igation 87.8	Sprinkler Irrigation 0.8	Pivot Irrigation 4.5	Urba ExUrb 0.0	n/ T ban pc	frans- ortation 5.4
LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	55	55	54	54	1.2%	1.2%	1.2%	1.2%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	86	119	129	163	1.9%	2.6%	2.8%	3.6%
	Totals	141	174	183	218	3.1%	3.8%	4.0%	4.8%
Agricultural Lan	d								1.1
	Non-Irrigated	1,699	1,339	1,531	1,505	37.3%	29.4%	33.6%	33.0%
	Irrigated	2,015	2,327	2,114	2,044	44.2%	51.1%	46.4%	44.9%
	Totals	3,713	3,667	3,646	3,549	81.5%	80.5%	80.1%	77.9%
Channel									1
	Channel	608	622	575	623	13.4%	13.7%	12.6%	13.7%
	Totals	608	622	575	623	13.4%	13.7%	12.6%	13.7%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	13	0.0%	0.0%	0.0%	0.3%
	Totals	0	0	0	13	0.0%	0.0%	0.0%	0.3%
Transportation									1.1
	Public Road	52	52	49	49	1.1%	1.1%	1.1%	1.1%
	Interstate	0	0	62	62	0.0%	0.0%	1.4%	1.4%
	Railroad	40	40	40	40	0.9%	0.9%	0.9%	0.9%
	Totals	92	91	150	150	2.0%	2.0%	3.3%	3.3%
Urban									1.1
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 and	4								Char	nge Betv	ween Y	ears
			Acr	es		%	of Rea	ch Area	1	(% of	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	0	14	95	94	0.0%	0.4%	2.6%	2.6%	0.4%	2.2%	0.0%	2.6%
	Pivot	0	0	454	737	0.0%	0.0%	12.4%	20.8%	0.0%	12.4%	8.3%	20.8%
	Flood	2,015	2,314	1,565	1,213	54.3%	63.1%	42.9%	34.2%	8.8%	-20.2%	-8.7%	-20.1%
	Totals	2,015	2,327	2,114	2,044	54.3%	63.5%	58.0%	57.6%	9.2%	-5.5%	-0.4%	3.3%

Reach A2

Non-Irrigated													
	Multi-Use	1,400	1,127	1,374	1,348	37.7%	30.7%	37.7%	38.0%	-7.0%	6.9%	0.3%	0.3%
	Hay/Pasture	298	212	158	156	8.0%	5.8%	4.3%	4.4%	-2.2%	-1.5%	0.1%	-3.6%
	Totals	1,699	1,339	1,531	1,505	45.7%	36.5%	42.0%	42.4%	-9.2%	5.5%	0.4%	-3.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Close	ed Timber (A	Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.5	0.3	0.2	0.2	0.4	0.4	1.5	2.7	2.2
Max	20.4	13.8	13.6	56.5	51.0	35.6	18.5	42.6	39.2
Average	3.7	3.3	3.4	13.5	10.1	11.5	7.6	14.4	11.1
Sum	66.2	69.9	106.7	430.9	352.8	275.2	45.9	100.9	121.8
Riparian	Turnove	er			Disorios	to Channel (a		104 4	

Conversion of riparian areas to channel, or from channel to riparian between the 1950's and 2001 data set.

Riparian Encroachment (acres)	-30.6
Channel to Riparian (acres)	100.5
Riparian to Channel (acres)	131.1
1	

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	17.0	257.8	80.9	0.0	355.7
Acres/Valley Mile	2.6	39.9	12.5	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.44	0.10%	1.38	0.12	0.04	0.04

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

Reach A	13
---------	----

County	Sweet Grass	Upstream River Mile	468.5
Classification	PCB: Partially confined braided	Downstream River Mile	463
General Location	Upstream of Big Timber	Length	5.50 mi (8.85 km)
General Comments	Upstream of Big Timber; Hell Creek Formation valley wall		

Narrative Summary

Reach A3 is 5.5 miles long and is just located upstream of the town of Big Timber. It is classified as a Partially Confined Braided (PCB) reach type indicating some valley wall influence and relative extensive open gravel bars and low flow secondary channels. This reach shows the passive loss of miles of anabranching channel length since 1950, similar to Reach A2 just upstream. The river has converted from having more than one primary channel to having a dominant main thread with intermittent side channels.

About 12.5 percent of the banks in Reach A3 are armored, with the majority of that armor being rock riprap. Between 2001 and 2011, about 1,700 feet of new bank armor, of which 277 feet are flow deflectors, were installed. There are about 2,000 feet of floodplain dikes in the reach.

Similar to Reach A2 just upstream, this reach has experienced extensive loss of anabranching channel length since 1950. In 1950, the total length of anabranching channels was 6.7 miles, and by 2001 that length had dropped to 4.7 miles, resulting in a reduction in braiding parameter of 17 percent.

Reach A3 shows a reduction in floodplain turnover rates since 1976; prior to that time, average rates of turnover were 103 acres per year, and since that time the average rate of floodplain erosion by the river has been reduced to 65.4 acres per year.

Land use in Reach A3 is predominantly agricultural, with about ½ of all agricultural acreage in flood irrigation. Approximately 13 percent of the 5-year floodplain has been isolated in the reach. This isolation reflects the slight reduction in the magnitude flows in this reach due primarily to irrigation-related withdrawals upstream.

Over 600 acres of wetland have been mapped in Reach A3, most of which is emergent marshes and wet meadows on the south side of the river. The 4.6 acres of Russian olive mapped is dispersed throughout the riparian corridor.

Almost 50 acres of riparian forest per valley mile is considered at low risk of cowbird infestation due to its relative distance from agricultural infrastructure that provides cowbird foraging habitat.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 11,900 cfs to 11,500 cfs, a drop of about 3.4 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,770 cfs to 1,580 cfs with human development, a reduction of 11 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A3 include:

•Passive abandonment of over two miles of side channel since 1950.

•Conversion from a river channel with multiple large primary channels to a single main thread with small anabranches. •Reduced floodplain turnover rates.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A3 include: •Russian olive removal

•Wetland management/restoration due to high density of mapped emergent wetland

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Dat	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun '	11	30,100	10-25	5 yr		Period		1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Distance		00.0	1020 2010
	1974	Jun '	17	36,300	50-10	0 yr		Distance	lo (miles)	98.6	38.1
	1996	Jun '	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	11,900	23,300	29,200	32,900	40,300	43,400	50,300	1,770	1,760
	Regul	ated	11,500	22,900	28,800	32,500	40,000	43,200	50,100	1,580	1,680
	% Cha	ange	-3.36%	-1.72%	-1.37%	-1.22%	-0.74%	-0.46%	-0.40%	-10.73%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	5-Jul-48	B/W	1:23,600	6192500	9810
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	8/23/97 - 8/28/97	B/W		6192500	4840
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	08/25/2005	color	1-meter pixels	6192500	2390
2007	Woolpert	10/15/2007 - 11/2/2007	Color		6192500	
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2013	NAIP	08/25/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	5,474	9.7%	6,765	12.0%	1,291
	Flow Deflectors	0	0.0%	277	0.5%	277
	Feature Type Totals	5,474	9.7%	7,043	12.5%	1,568
Floodplain	Control					
	Floodplain Dike/Levee	1,949	3.5%	1,971	3.5%	22
	Feature Type Totals	1,949	3.5%	1,971	3.5%	22
	Reach Totals	7,424	13.2%	9,013	16.0%	1,590

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		1,092	3,592	0	0	0	0	0	0
Tree Revetments		945	0	0	0	0	0	0	0
	Totals	2,037	3,592	0	0	0	0	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	27,827	35,195	2.26	1950 to 1976:	-4.80%
1976	28,236	32,641	2.16	1976 to 1995:	-14.37%
1995	28,264	23,919	1.85	1995 to 2001:	1.97%
2001	28,191	24,882	1.88	1950 to 2001:	-16.87%
Change 1950 - 2001	364	-10,312	-0.38		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	864		882		
Total Floodplain Area (Ac)	864		895		
Total Isolated (Ac)	0	0.0%	13	2.5%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	104	0	0	104

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tot CN Acre	tal IZ age	Restricted CMZ Acreage	% Restrict Migratio Area	ted Tota n AHA Acrea	al Res Z age Ad	stricted AHZ creage	% Restricted Avulsion Area
	217	435	99	4	67	7%	170	C	21	12%
2011 Res	stricted Migr	ration A	rea Sun	nmar	y	Note that the	ese data refle	ect the obse	rved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perce Cl	ent of MZ	Counties, CO	DE for the re	st of the rive	er).	Sweet Glass
RipRap/Flo	w Deflectors									
	Non-Irrigated		27	2.3	3%					
RipRap										
	Non-Irrigated		40	3.4	4%					
	Irrigated		33	2.8	3%					
		Totals	99	8.	5%					
Land Us	es within the	e CMZ (/	Acres)	Fl Irrig 10	ood gation 67.0	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrba 0.0	n pc	Frans- ortation 0.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Aci	res		% of Reach Area			à i
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	7	12	22	22	0.2%	0.3%	0.6%	0.6%
	Totals	7	12	22	22	0.2%	0.3%	0.6%	0.6%
Agricultural Lan	d								
	Non-Irrigated	1,558	1,351	1,315	1,311	43.2%	37.4%	36.5%	36.3%
	Irrigated	1,492	1,627	1,668	1,670	41.4%	45.1%	46.3%	46.3%
	Totals	3,050	2,977	2,984	2,981	84.6%	82.6%	82.7%	82.7%
Channel									
	Channel	546	611	594	597	15.1%	16.9%	16.5%	16.6%
	Totals	546	611	594	597	15.1%	16.9%	16.5%	16.6%
ExUrban									1
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%
Transportation						•			1
	Public Road	1	3	4	4	0.0%	0.1%	0.1%	0.1%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	2	2	2	2	0.1%	0.1%	0.1%	0.1%
	Totals	3	6	6	6	0.1%	0.2%	0.2%	0.2%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	meline - Tiers 3 a	nd 4								Char	nge Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	1,492	1,627	1,668	1,670	48.9%	54.6%	55.9%	56.0%	5.7%	1.3%	0.1%	7.1%
	Totals	1,492	1,627	1,668	1,670	48.9%	54.6%	55.9%	56.0%	5.7%	1.3%	0.1%	7.1%

Non-Irrigated

Multi-Use	1,249	1,114	1,226	1,224	41.0%	37.4%	41.1%	41.1%	-3.5%	3.7%	0.0%	0.1%
Hay/Pasture	308	237	89	87	10.1%	7.9%	3.0%	2.9%	-2.2%	-5.0%	-0.1%	-7.2%
Totals	1,558	1,351	1,315	1,311	51.1%	45.4%	44.1%	44.0%	-5.7%	-1.3%	-0.1%	-7.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	5	Shrub (Acres	cres) Closed Timber (Acre			(cres)) Open Timber (Acres)				
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001		
Min	1.1	0.0	1.4	0.5	0.1	0.9		2.0	9.0		
Max	43.3	29.5	38.3	116.9	108.3	104.6		20.9	32.0		
Average	15.8	4.4	10.8	12.8	13.2	20.5		11.5	17.9		
Sum	142.0	74.5	97.3	358.4	410.6	347.8		23.0	53.7		
Riparian	Turnove	r			Riparian t	to Channel (a	cres)	83.0			
from ch	rsion of ripar nannel to ripa	an areas to a	n the 1950's		Channel t	to Riparian (a	cres)	75.0			
and 20	01 data set.			R	iparian Encre	oachment (a	cres)	-8.0			
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	0.0				
Creation of	f riparian are	as	1950s Flood	olain Mapped	as 2011 Cha	innel (Ac)	7.8				
between 19	950s and 20	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	7.8				

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	5.1	558.7	86.5	0.0	650.3
Acres/Valley Mile	1.1	120.5	18.7	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	4.64	0.30%	0.64	1.66	0.92	0.67

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Sweet Grass	Upstream River Mile	463				
Classification	UB: Unconfined braided	Downstream River Mile	459.7				
General Location	Big Timber	Length	3.30 mi (5.31 km)				
General Comments	To Boulder River confluence; encroachment at Big Timber; extensive armor						

Narrative Summary

Reach A4 is approximately 3.3 miles long, extending from near the Sweet Grass County Fairgrounds downstream to the Boulder River confluence. Reach A4 is very dynamic with active channel migration, threats to infrastructure, bank armor, flanked barbs, and active riparian recruitment on raw gravel bars. The most dynamic portion of the reach is upstream of the Highway 191 Bridge; in spring of 2013 a large meander formed a 1,500 foot long chute cutoff near the fairgrounds which abandoned about 3,500 feet of channel to the south.

About 19 percent of the banks in Reach A4 are armored, with the majority of that armor being rock riprap. Between 2001 and 2011, there was a loss of about 1,000 feet of armor in the reach. Over 800 feet of that lost bank protection was flow deflectors; flanked barbs are visible in the middle of the channel downstream of the fairgrounds. With the avulsion of 2013, those flanked barbs are now sitting in the abandoned channel. Similar to reaches upstream, the river channel in Reach A4 has increased in size since 1950 by about 19 acres, and the channel expansion has been at the expense of riparian cover. Almost a quarter of the Channel Migration Zone (CMZ) has been restricted by physical features, and the restrictions are primarily due to bank armor that is protecting agricultural land.

Since 1950, over 7,500 feet of side channels in Reach A4 have been blocked by berms, which have caused a 25 percent drop in braiding parameter for the reach. Russian olive has colonized these historic channels. Like many other reaches the loss of active side channels in this reach has been accompanied by a lengthening of the main thread. Between 1950 and 2001, the main channel lengthened by about 1,000 feet through the 3.3 mile reach.

Land use in Reach A4 is predominantly agricultural, although there are several hundred acres of urban/exurban development associated with the town of Big Timber. Most of the agricultural land is non-irrigated; however there are hundreds of acres of flood, sprinkler, and pivot irrigation in the reach. Almost 150 acres of irrigated ground are within the 5-year floodplain in Reach A4, and most of that commonly flooded ground is south of the fairgrounds. This area also has most of the 160 acres of mapped wetlands in the reach.

There is one mapped dump site in Reach A4, which is on the high terrace edge at Big Timber. There is also one major petroleum product pipeline in the reach that runs parallel to the river on its north side. The pipeline is owned by ConocoPhillips, and passes under both Big Timber Creek and Otter Creek within 1,500 feet of the Yellowstone River.

Almost 200 acres of land in Reach A4 are within the mapped Channel Migration Zone. This includes 83 acres of flood, 42 acres of sprinkler, and 37 acres of pivot. A total of 21 acres of land in the CMZ has been developed to urban/exurban use.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 11,900 cfs to 11,500 cfs, a drop of about 3.4 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,880 cfs to 1,620 cfs with human development, a reduction of 14 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A4 include:

•Restriction of the Historic Migration Zone (HMZ) isolating side channels and reducing riparian turnover.

•Primary channel lengthening in association with loss of side channels.

•Rapid migration and channel realignment resulting in barb flanking and abandonment of rock in channel.

•Isolation of historic channels (over 7,500 feet) by berms.

•Russian olive colonization within isolated side channels.

•Riparian recruitment (cottonwood establishment) on islands created by channel migration.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A4 include: •Removal of flanked armor at RM 462.3

•Side channel restoration/management (RM 461.2, RM 462)

•CMZ management due to encroachment (200 acres restricted)

•Russian olive removal (2.7 acres)

•Solid waste removal from dump on right bank at RM 461

•Pipeline management at Big Timber Creek and Otter Creek tributary crossings just north of Yellowstone River.

Reach A

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Dat	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun '	11	30,100	10-25	5 yr		Period		1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Distance		05.0	1020 2010
	1974	Jun '	17	36,300	50-10	0 yr		Distance	lo (miles)	95.3	43.6
	1996	Jun '	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	11,900	23,300	29,200	32,900	40,300	43,400	50,300	1,880	1,760
	Regul	ated	11,500	22,900	28,800	32,500	40,000	43,200	50,100	1,620	1,680
	% Cha	ange	-3.36%	-1.72%	-1.37%	-1.22%	-0.74%	-0.46%	-0.40%	-13.83%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	7/5/1948 - 7/13/51	B/W	1:23,600	6192500	9810
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	8/28/97 - 9/11/96	B/W		6192500	4840
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	08/25/2005	color	1-meter pixels	6192500	2390
2005	NAIP	08/21/2005	color	1-meter pixels	6192500	2630
2007	Woolpert	10/15/2007 - 11/2/2007	Color		6192500	
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	
2013	NAIP	08/21/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	6,311	17.2%	6,143	16.8%	-168
	Flow Deflectors	449	1.2%	352	1.0%	-98
	Between Flow Deflectors	1,337	3.7%	581	1.6%	-757
	Feature Type Totals	8,097	22.1%	7,075	19.3%	-1,022
Floodplain	Control					I
	Transportation Encroachment	429	1.2%	429	1.2%	0
	Floodplain Dike/Levee	986	2.7%	986	2.7%	0
	Feature Type Totals	1,415	3.9%	1,415	3.9%	0
	Reach Totals	9,512	26.0%	8,490	23.2%	-1,022

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FDs		0	0	1,788	0	0	0	0	0
Rock RipRap		272	1,312	466	0	0	0	1,351	456
Т	otals	272	1,312	2,253	0	0	0	1,351	456

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan.	Anab. Ch.	Bankfull Braiding		% Change in
	Length (ft)	Length (ft)	Parameter		Braiding
1950	17,375	16,020	1.92	1950 to 1976:	-8.19%
1976	17,028	13,019	1.76	1976 to 1995:	-17.10%
1995	18,251	8,448	1.46	1995 to 2001:	-2.22%
2001	18,302	7,877	1.43	1950 to 2001:	-25.58%
Change 1950 - 2001	928	-8,143	-0.49		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	7,575		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year			
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain		
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%				
Agriculture (generally relates to field boundaries)	0	0.0%				
Agriculture (isloated by canal or large ditch)	0	0.0%				
Levee/Riprap (protecting agricultural lands)	0	0.0%				
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%				
Railroad	0	0.0%				
Abandoned Railroad	0	0.0%				
Transportation (Interstate and other roads)	0	0.0%				
Total Not Isolated (Ac)	481		565			
Total Floodplain Area (Ac)	481		573			
Total Isolated (Ac)	0	0.0%	9	2.7%		

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	95	41	14	150

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 376	Erosion Buffer (ft) 753	To CM Acre 77	tal IZ age 9	Restricted CMZ Acreage 169	% Restricte Migration Area 22%	ed Tota AHZ Acreag 12	I Rest A ge Acr	ricted HZ eage 12	% Restricted Avulsion Area 100%
2011 Res	stricted Migr	ation A	rea Sun	nma	ry	Note that the	se data reflec	ct the observ	/ed conc	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Pero	cent of CMZ	2011 aerial pl Counties, CO	notography (E for the res	NAIP for Pa t of the river	rk and S).	weet Grass
Road/Railro	ad Prism									
RipRap	Public Road		19	2	.4%					
	Urban Reside	ential	5	0	.6%					
	Non-Irrigated		52	6	.6%					
	Irrigated		50	6	.4%					
	Exurban Resi	idential	20	2	.6%					
Dike/Levee										
	Non-Irrigated		37	4	.6%					
		Totals	183	23	3.1%					
Land Use	es within the	e CMZ (A	Acres)	l Irr	Flood igation 84.9	Sprinkler Irrigation 42.2	Pivot Irrigation 37.6	Urban/ ExUrban 20.5	T po	rans- rtation 5.8

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3		Aci	res		% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	113	146	129	139	3.7%	4.8%	4.2%	4.6%
	Totals	113	146	129	139	3.7%	4.8%	4.2%	4.6%
Agricultural Lan	d								
	Non-Irrigated	1,219	1,431	1,249	1,273	40.2%	47.2%	41.2%	42.0%
	Irrigated	1,162	858	900	882	38.3%	28.3%	29.7%	29.1%
	Totals	2,381	2,289	2,148	2,155	78.5%	75.5%	70.9%	71.1%
Channel									
	Channel	278	283	292	299	9.2%	9.3%	9.6%	9.9%
	Totals	278	283	292	299	9.2%	9.3%	9.6%	9.9%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	28	19	0.0%	0.0%	0.9%	0.6%
	ExUrban Industrial	0	0	14	0	0.0%	0.0%	0.5%	0.0%
	ExUrban Commercial	22	22	36	44	0.7%	0.7%	1.2%	1.5%
	ExUrban Residential	0	0	42	42	0.0%	0.0%	1.4%	1.4%
	Totals	22	23	120	105	0.7%	0.7%	3.9%	3.5%
Transportation									
	Public Road	42	42	45	45	1.4%	1.4%	1.5%	1.5%
	Interstate	0	0	1	1	0.0%	0.0%	0.0%	0.0%
	Railroad	19	19	19	19	0.6%	0.6%	0.6%	0.6%
	Totals	61	61	64	64	2.0%	2.0%	2.1%	2.1%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	61	60	78	78	2.0%	2.0%	2.6%	2.6%
	Urban Commercial	50	89	142	120	1.7%	2.9%	4.7%	4.0%
	Urban Undeveloped	65	63	53	66	2.2%	2.1%	1.8%	2.2%
	Urban Industrial	0	17	5	5	0.0%	0.6%	0.2%	0.2%
	Totals	177	229	278	269	5.8%	7.6%	9.2%	8.9%

Land Use Tir	neline - Tiers 3 and	4								Char	ige Betv	veen Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricul	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	208	195	0.0%	0.0%	9.7%	9.0%	0.0%	9.7%	-0.7%	9.0%
	Pivot	0	0	0	302	0.0%	0.0%	0.0%	14.0%	0.0%	0.0%	14.0%	14.0%
	Flood	1,162	858	692	385	48.8%	37.5%	32.2%	17.9%	-11.3%	-5.3% -	-14.3%	-30.9%
	Totals	1,162	858	900	882	48.8%	37.5%	41.9%	40.9%	-11.3%	4.4%	-1.0%	-7.9%

Non-	Irrigated	
	0	

Multi-Use	1,027	1,167	1,123	1,128	43.1%	51.0%	52.3%	52.3%	7.9%	1.3%	0.1%	9.2%
Hay/Pasture	192	263	125	145	8.1%	11.5%	5.8%	6.7%	3.4%	-5.7%	0.9%	-1.3%
Totals	1,219	1,431	1,249	1,273	51.2%	62.5%	58.1%	59.1%	11.3%	-4.4%	1.0%	7.9%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Closed Timber (Acres)			Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.5	0.1	1.7	1.9	1.5	1.5	0.7	3.9	5.6
Max	5.1	23.0	7.3	57.5	40.4	48.0	8.9	9.7	12.3
Average	2.4	2.7	3.6	18.4	11.3	14.7	5.6	6.4	8.4
Sum	22.0	46.6	21.7	275.5	181.0	205.3	22.6	19.1	25.2
Riparian Turnover Riparian to Chann					to Channel (a	cres)	78.5		
Conversion of riparian areas to channel, or from channel to riparian between the 1950's				Channel to Riparian (acres)					
and 2001 data set. Ripa				iparian Encroachment (acres)			-35.8		
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	0.0		
Creation of riparian areas 1950s Floodpl			ain Mapped as 2011 Channel (Ac)			19.7			
between 1950s and 2001.		01.	Total Recruitment (1950s to 2011)(Ac)			2011)(Ac)	19.7		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	3.7	140.0	20.5	0.0	164.1
Acres/Valley Mile	1.3	47.6	7.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	2.70	0.35%	1.27	1.16	1.36	0.92

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

<u>Reach</u> A

Narrative Summary

Reach A5 is approximately 3.3 miles long, and is located just below Big Timber near the Otter Creek Fishing Access Site starting just below the mouth of the Boulder River. Reach A5 is shows low migration rates and has a relatively narrow CMZ as a result. Similar to other reaches in Region A, the channel footprint has enlarged since 1950; in this reach the channel shows continual expansion from 1950 to 2001 of about 24 acres. This has been accompanied by a loss of 16 acres of riparian area in the main river corridor.

About 7 percent of the banks in Reach A5 are armored by rock riprap. Another 250 feet of bank is protected by tree revetments which are unusual on the Yellowstone River.

Land use in Reach A5 is predominantly agricultural, although there over 60 acres of urban/exurban development on the outskirts of Big Timber. Most of the agricultural land is non-irrigated, although there are almost 400 acres of ground under flood irrigation and another 150 acres under pivot. There are corrals associated with an Animal Holding Facility on the left bank of the river at RM 459.

Reach A5 has substantial irrigated land in the Channel Migration Zone. Land use mapping for 2011 conditions show 62 acres of flood, 2 acres of sprinkler, and 9 acres of pivot irrigated land within the CMZ boundary.

Reach A5 has seen almost a quarter (18 acres) of its riparian corridor converted to developed land uses since 1950. Most of that (17 acres) was conversion to irrigation.

Over 170 acres of wetland have been mapped in Reach A5. Most of the wetland area is on the eastern portion of the large alluvial fan formed at the mouth of the Boulder River, where there are open water wetlands and wet marsh areas.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 12,600 to 12,100 cfs, a drop of about 4 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,910 cfs to 1,630 cfs with human development, a reduction of 15 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A5 include:

- •Riparian clearing in support of irrigation.
- •Presence of corrals on the edge of the corridor at RM 459.
- •Extensive wetland complex on low alluvial ground at the toe of a terrace.
- •Encroachment of irrigated land into Channel Migration Zone.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A5 include: •Nutrient management at corrals at RM 459

•Wetland management/restoration due to extent of emergent marsh (>170 acres)

Reach A5

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Dat	e F	low on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500
	1971	Jun	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun	11	Flow on Date Retu 29,200 30,100 30,600 36,300 36,300 5 37,100 5 38,000 5 40,600 5 Yr 5 24,500 30,8 224,000 30,3	10-25	10-25 yr				1929-2015	1929-2015
	1943	Jun	20	30,600	10-25	5 yr		Dist		1020 2010	1020 2010
	1974	Jun	17	36,300	50-10	0 yr		Distance	lo (miles)	92.0	46.9
	1996	Jun	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Y	r 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	12,600	24,500	30,800	34,600	42,400	45,500	52,700	1,910	1,760
	Regul	ated	12,100	24,000	30,300	34,100	42,000	45,200	52,500	1,630	1,680
	% Cha	ange	-3.97%	-2.04%	-1.62%	-1.45%	-0.94%	-0.66%	-0.38%	-14.66%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	13-Jul-51	B/W	1:28,400	6192500	9640
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	11-Sep-96	B/W		6192500	2560
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	08/21/2005	color	1-meter pixels	6192500	2630
2005	NAIP	07/28/2005	color	1-meter pixels	6192500	3380
2007	Woolpert	10/15/2007 - 11/2/2007	Color		6192500	
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Tree Revetments	248	0.7%	248	0.7%	0
	Rock RipRap	1,266	3.7%	2,117	6.2%	851
	Feature Type Totals	1,514	4.4%	2,365	6.9%	851
	Reach Totals	1,514	4.4%	2,365	6.9%	851

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		2,342	0	282	0	0	0	0	0
Tree Revetments		0	0	249	0	0	0	0	0
	Totals	2,342	0	531	0	0	0	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)			Bankfull		
	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Braiding Parameter		% Change in Braiding
1950	17,866	9,054	1.51	1950 to 1976:	4.15%
1976	16,871	9,604	1.57	1976 to 1995:	1.96%
1995	17,021	10,213	1.60	1995 to 2001:	-5.93%
2001	17,021	8,598	1.51	1950 to 2001:	-0.11%
Change 1950 - 2001	-845	-456	0.00		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%		
Agriculture (generally relates to field boundaries)	0	0.0%		
Agriculture (isloated by canal or large ditch)	0	0.0%		
Levee/Riprap (protecting agricultural lands)	0	0.0%		
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%		
Railroad	0	0.0%		
Abandoned Railroad	0	0.0%		
Transportation (Interstate and other roads)	0	0.0%		
Total Not Isolated (Ac)	96		214	
Total Floodplain Area (Ac)	96		215	
Total Isolated (Ac)	0	0.0%	1	-31.1%

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	1	0	0	1

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 113	Erosion Buffer (ft) 225	Tot CN Acre 42	al Restricted IZ CMZ age Acreage 8 11	M Restricte Migration Area 3%	ed Total AHZ Acreag 0	Restricted AHZ e Acreage 0	I % Restricted Avulsion Area 0%
2011 Res	stricted Mig	ration A	rea Sun	nmary	Note that the	se data reflect	t the observed co	nditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, CO	E for the rest	of the river).	Gweet Class
RipRap								
	Other Infrast	ructure	10 6	2.3% 1.4%				
		Totals	16	3.7%				
Land Use	es within th	e CMZ (A	Acres)	Flood Irrigation 62.9	Sprinkler Irrigation 1.9	Pivot Irrigation 9.2	Urban/ ExUrban p 6.7	Trans- portation 0.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3		Aci	res		%	of Rea	ch Area		
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	18	34	62	63	1.0%	1.9%	3.4%	3.5%	
	Totals	18	34	62	63	1.0%	1.9%	3.4%	3.5%	
Agricultural Land	d									
	Non-Irrigated	847	798	936	893	46.6%	43.9%	51.5%	49.1%	
	Irrigated	734	746	543	554	40.4%	41.1%	29.9%	30.5%	
	Totals	1,581	1,544	1,479	1,447	87.0%	85.0%	81.4%	79.7%	
Channel										
	Channel	210	219	236	235	11.5%	12.0%	13.0%	13.0%	
	Totals	210	219	236	235	11.5%	12.0%	13.0%	13.0%	
ExUrban										
	ExUrban Other	0	0	5	5	0.0%	0.0%	0.3%	0.3%	
	ExUrban Undeveloped	0	0	3	7	0.0%	0.0%	0.2%	0.4%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	1	13	18	18	0.0%	0.7%	1.0%	1.0%	
	ExUrban Residential	0	0	6	33	0.0%	0.0%	0.3%	1.8%	
	Totals	1	13	32	64	0.0%	0.7%	1.8%	3.5%	
Transportation										
	Public Road	4	4	4	4	0.2%	0.2%	0.2%	0.2%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	3	3	3	3	0.2%	0.2%	0.2%	0.2%	
	Totals	7	7	7	7	0.4%	0.4%	0.4%	0.4%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	neline - Tiers 3 and	14								Char	ige Betv	veen Y	ears
				Acres % of F				ch Area	I	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	8	0.0%	0.0%	0.0%	0.6%	0.0%	0.0%	0.6%	0.6%
	Pivot	0	0	78	154	0.0%	0.0%	5.2%	10.7%	0.0%	5.2%	5.4%	10.7%
	Flood	734	746	465	392	46.4%	48.3%	31.5%	27.1%	1.9%	-16.8%	-4.4%	-19.4%
	Totals	734	746	543	554	46.4%	48.3%	36.7%	38.3%	1.9%	-11.6%	1.6%	-8.1%

Non-Irrigated													
N	/lulti-Use	690	772	885	852	43.6%	50.0%	59.8%	58.9%	6.4%	9.8%	-0.9%	15.3%
н	lay/Pasture	157	26	51	40	9.9%	1.7%	3.4%	2.8%	-8.3%	1.8%	-0.6%	-7.1%
	Totals	847	798	936	893	53.6%	51.7%	63.3%	61.7%	-1.9%	11.6%	-1.6%	8.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

		Shrub (Acres	s)	Close	ed Timber (A	Acres)	Оре	n Timber (A	cres)
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.3	0.1	0.1	1.7	1.4	0.7	3.8	1.3	6.9
Max	1.8	2.3	1.5	8.4	10.6	17.1	11.9	7.1	6.9
Average	1.1	0.8	0.8	4.3	4.4	5.1	7.5	4.8	6.9
Sum	2.2	6.6	3.3	55.9	61.1	51.3	29.8	14.5	6.9
Diparian	Turnova								

Riparian Turnover

Conversion of riparian areas to channel, or from channel to riparian between the 1950's and 2001 data set.

01.1	01.0	20.0	14
Riparian t	o Channel (ac	res)	24.2
Channel t	o Riparian (ac	res)	8.3
Riparian Encro	oachment (ac	res)	-15.9

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	6.3	157.3	9.5	0.0	173.2
Acres/Valley Mile	2.1	52.8	3.2	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.21	0.08%	0.28	0.08	0.01	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Sweet Grass
Classification	PCS: Partially confined straight
General Location	Below Big Timber
General Comments	Channel closely follows left valley wall

Reach A6

Narrative Summary

Reach A6 is approximately 3.1 miles long, and is located below Big Timber. The reach is classified as Partially Confined Straight (PCS), which indicates some valley wall influences on river form and minimal meandering. Within this reach, the river consistently follows the northern bluff line of the river valley which is comprised of Cretaceous-age Hell Creek Formation sandstones and mudstones. The other side of the river consists of low floodplain and terrace deposits. Because of the valley wall confinement, migration rates are low in the reach and the Channel Migration Zone (CMZ) is narrow.

Similar to other reaches in Region A, the overall footprint of the river channel has increased in size since 1950. In 1950, the channel footprint was 161 acres but by 2001 it had expanded to 202 acres.

About 7 percent of the banks in Reach A6 are armored, and most of that bank protection is flow deflectors (2,165 feet). There is another 650 feet of rock riprap, all of which was constructed between 2001 and 2011.

One side channel in Reach A6 was blocked prior to 1950. It is about 2,700 feet long and is blocked by a dike as well as flow deflectors along the bank. The side channel currently hosts riverine and emergent wetland areas.

Land use in Reach A6 is predominantly agricultural, although there almost 200 acres of exurban development on the low terraces between the river and I-90. Most of the agricultural land is non-irrigated, although there are 760 acres of ground under flood irrigation and another 64 acres under pivot. A total of 35 acres of flood irrigated land are in the Channel Migration Zone.

Reach A6 has seen 28 percent (18 acres) of its riparian corridor converted to developed land uses since 1950. Most of that (17 acres) was conversion to irrigation.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 12,600 to 12,100 cfs, a drop of about 4 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,910 cfs to 1,630 cfs with human development, a reduction of 15 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

The reduction in flows is evident by the contraction of the 5-year floodplain area in Reach A6 by 4.8 acres, or 30 percent.

CEA-Related observations in Reach A6 include: •Riparian clearing in support of irrigation. •Side Channel Blockage

•Contraction of 5-year floodplain due to flow alterations.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A6 include: •Side channel restoration at RM 454.5

Reach A6

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500
	1971	Jun 2	23	29,200	10-25 yr				Location	Billings	Livingston
	1902	Jun ´	11	30,100	10-25 yr			Period	l of Record	1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr				1020 2010	1020 2010
	1974	Jun ´	17	36,300	50-10	0 yr		Distance	lo (miles)	88.9	50.2
	1996	Jun 1	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	12,600	24,500	30,800	34,600	42,400	45,500	52,700	1,910	1,760
	Regul	ated	12,100	24,000	30,300	34,100	42,000	45,200	52,500	1,630	1,680
	% Cha	ange	-3.97%	-2.04%	-1.62%	-1.45%	-0.94%	-0.66%	-0.38%	-14.66%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	13-Jul-51	B/W	1:28,400	6192500	9640
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	11-Sep-96	B/W		6192500	2560
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	07/28/2005	color	1-meter pixels	6192500	3380
2007	Woolpert	10/15/2007 - 11/2/2007	Color		6192500	
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Lenath (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					er e
	Rock RipRap	0	0.0%	648	2.1%	648
	Flow Deflectors	580	1.9%	633	2.0%	52
	Between Flow Deflectors	1,544	4.9%	1,533	4.9%	-11
	Feature Type Totals	2,124	6.8%	2,814	9.0%	690
Other In C	Channel					'
	Bedrock Outcrop	157	0.5%	157	0.5%	0
	Feature Type Totals	157	0.5%	157	0.5%	0
Floodplair	n Control					'
	Transportation Encroachment	7,844	25.0%	7,844	25.0%	0
	Feature Type Totals	7,844	25.0%	7,844	25.0%	0
	Reach Totals	10,125	32.3%	10,815	34.5%	690

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FDs	6	1,968	0	0	0	0	0	0	154
1	Fotals	1,968	0	0	0	0	0	0	154

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	15,359	1,749	1.11	1950 to 1976:	-10.23%
1976	15,307		1.00	1976 to 1995:	9.11%
1995	15,523	1,414	1.09	1995 to 2001:	-2.30%
2001	15,675	1,034	1.07	1950 to 2001:	-4.30%
Change 1950 - 2001	316	-715	-0.05		
Length of Side		Pre-1950s (ft)	2,691		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	103		213		
Total Floodplain Area (Ac)	103		218		
Total Isolated (Ac)	0	0.0%	5	30.5%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	1	0	0	1

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal Restricte MZ CMZ eage Acreage	d % Restric Migratio Area	ted Tota n AHZ Acreag	I Restri AH ge Acrea	cted % Restricted Z Avulsion age Area	
	146	292	30)4 14	5%	30	0	0%	
2011 Res	stricted Mig	ration A	rea Sur	nmary	Note that the	ese data reflec	ct the observe	d conditions in the	
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, COE for the rest of the river).				
RipRap									
	Irrigated		6	1.8%					
Flow Deflect	ctors								
	Irrigated		14	4.2%					
		Totals	20	6.0%					
Land Us	es within th	ne CMZ (/	Acres)	Flood Irrigation	Sprinkler Irrigation	Pivot Irrigation	Urban/ ExUrban	Trans- portation	

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	17	22	22	6	0.8%	1.1%	1.1%	0.3%
	Totals	17	22	22	6	0.8%	1.1%	1.1%	0.3%
Agricultural Lan	d								
	Non-Irrigated	885	947	805	714	43.8%	46.8%	39.8%	35.3%
	Irrigated	936	870	834	825	46.3%	43.0%	41.2%	40.8%
	Totals	1,822	1,817	1,639	1,539	90.0%	89.8%	81.0%	76.0%
Channel									
	Channel	166	165	181	202	8.2%	8.1%	8.9%	10.0%
	Totals	166	165	181	202	8.2%	8.1%	8.9%	10.0%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	37	0.0%	0.0%	0.0%	1.8%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	104	162	0.0%	0.0%	5.1%	8.0%
	Totals	0	0	104	199	0.0%	0.0%	5.1%	9.8%
Transportation									
	Public Road	7	7	7	7	0.3%	0.3%	0.3%	0.3%
	Interstate	0	0	58	58	0.0%	0.0%	2.9%	2.9%
	Railroad	13	13	13	13	0.6%	0.6%	0.6%	0.6%
	Totals	19	19	77	77	0.9%	0.9%	3.8%	3.8%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 and	4								Char	nge Betv	veen Y	ears
			Acr	res		%	of Rea	ch Area	l I	(% 0	f Agricu	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	64	0.0%	0.0%	0.0%	4.2%	0.0%	0.0%	4.2%	4.2%
	Flood	936	870	834	761	51.4%	47.9%	50.9%	49.5%	-3.5%	3.0%	-1.4%	-1.9%
	Totals	936	870	834	825	51.4%	47.9%	50.9%	53.6%	-3.5%	3.0%	2.7%	2.2%

Reach A6

Non-Irrigated													
Mul	ti-Use	855	738	791	681	46.9%	40.6%	48.3%	44.3%	-6.3%	7.7%	-4.0%	-2.7%
Hay	/Pasture	30	210	13	32	1.7%	11.5%	0.8%	2.1%	9.9%	-10.7%	1.3%	0.4%
	Totals	885	947	805	714	48.6%	52.1%	49.1%	46.4%	3.5%	-3.0%	-2.7%	-2.2%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Close	ed Timber (A	Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.7	0.1	2.9	0.6	0.3	0.3	20.4	17.1	2.2
Max	17.0	5.4	2.9	18.0	13.3	10.8	53.8	25.3	23.9
Average	5.2	1.2	2.9	5.2	3.7	3.8	37.1	21.2	10.6
Sum	46.7	8.2	2.9	26.0	29.6	15.0	74.2	42.4	42.3
Rinarian	Turnove	r							

Riparian i urnover

Conversion of riparian areas to channel, or from channel to riparian between the 1950's and 2001 data set.

4	/4.2	15.0	29.6				
10.7	cres)	Channel (a	Riparian to				
4.2	Channel to Riparian (acres)						
-6.5	cres)	achment (a	Riparian Encro				

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed -AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	14.3	23.3	1.1	0.0	38.6
Acres/Valley Mile	5.1	8.3	0.4	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a **GIS** environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.11	0.01%	0.01	0.00	0.01	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Sweet Grass
Classification	PCB: Partially confined braided
General Location	Greycliff
General Comments	Greycliff: Narrow valley bottom with alluvial fan margins

Upstream River Mile	453.3
Downstream River Mile	443.6
Length	9.70 mi (15.61 km)

Narrative Summary

Reach A7 is approximately 9.7 miles long, and is at Greycliff. The reach is classified as Partially Confined Braided (PCB), which indicates some valley wall influences on river form and relatively extensive gravel bars and low flow channel complexity. Within this reach, the river intermittently follows the northern bluff line of the river valley which is comprised of Cretaceous-age Hell Creek Formation sandstones and mudstones. The other side of the river valley consists of low floodplain and terrace deposits. In several places, such as at Greycliff Bridge, the terrace toe is sandstone. Several tributaries enter the river in this reach, including Sweet Grass Creek and Deer Creek.

Similar to other reaches in Region A, the overall footprint of the river channel has increased in size since 1950. In 1950, the channel footprint was 613 acres but by 2001 it had expanded to 723 acres.

As of 2011, about 12 percent of the banks in Reach A7 were armored, and most of that bank protection is rock riprap (11,254 feet). There are also 1,500 feet of flow deflectors in the reach. Between 2001 and 2011, about 2,400 feet of riprap and 230 feet of flow deflectors were constructed. There are also minor amounts of gabions and steel retaining wall in the reach.

Reach A7 has experienced the loss of thousands of feet of side channels both pre- and post- 1950. Prior the collection of the 1950s imagery, a channel that was almost a mile long was blocked in multiple places. The land that this blocked side channel is about ½ mile downstream of the Greycliff Bridge on the right bank and is part of the Pelican Fishing Access Site. Currently, only the downstream portion of this channel has good definition; the upper end has largely decayed. Since 1950, side channels have been blocked at RM 445 and RM 452. Both of these side channels were relatively small features that flowed on the south side of the river corridor. In total, 4,600 feet of channel were blocked post-1950. Since 1950 there has been a net loss of about 9,000 feet of side channel in the reach, indicating some passive loss as well as loss due to blockages.

In contrast to the general trend on the river, floodplain turnover rates in Reach A7 have increased since 1976. From 1950-1976 the average floodplain turnover rate in this reach was 3.4 acres per year, and from 1976-2001, that rate had increased to 5.5 acres per year.

Land use in Reach A7 is predominantly agricultural, although there almost 140 acres of exurban development on the low terraces between the river and I-90. Transportation infrastructure also comprises almost 300 acres of the mapping footprint. Most of the agricultural land is non-irrigated, although there are 1,500 acres of ground under flood irrigation, 225 acres under sprinkler and another 914 acres under pivot. A total of 267 acres of developed land are in the Channel Migration Zone. Most of that is in flood irrigation (196 acres), but 51 acres are in pivot. At RM 450, pivots extend to the active streambank on both sides of the river. About 10 percent of the CMZ is restricted by physical features.

Reach A7 has seen 5 percent (33 acres) of its riparian corridor converted to developed land uses since 1950. Most of that (23 acres) was conversion to irrigation. Currently, there are about 26 acres of land under pivot irrigation within the mapped 5-year floodplain.

Reach A7was sampled as part of the avian study. The average species richness in Reach A7 was 9.9, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for sites evaluated is 8. One bird Species of Concern (SOC), the Bobolink, was identified in the reach. Three bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) were also found, including the Chimney Swift, Dickscissel, and Ovenbird.

On area in Reach A7 that has become persistently problematic is the Greycliff Bridge at RM 448.5. Bank migration upstream of the bridge has approached 1,000 feet of lateral movement since 1950. Bank armor has been flanked and now sits In the middle of the river. The county road that lies in the CMZ has been threatened; it was treated with buried revetment that has become exposed in recent years. Efforts are ongoing to develop an optimal strategy to funnel the river meanderbelt through the bridge without disrupting sediment transport patterns and causing accelerated erosion.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 13,200 cfs to 12,700 cfs, a drop of about 4 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,000 cfs to 1,670 cfs with human development, a reduction of 17 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

The reduction in flows is evident by the contraction of the 5-year floodplain area in Reach A7 by 62 acres, or 25 percent.

CEA-Related observations in Reach A7 include:

- •Flanking of armor and accelerated erosion behind.
- •Side Channel Blockage
- •Contraction of 5-year floodplain due to flow alterations.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A7 include: •Side channel restoration RM 452, RM 447.9, RM 445 •Bank armor removal upstream of Greycliff Bridge

•CMZ management due to encroachment of pivots

Reach A7

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Dat	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun	11	30,100	10-25	5 yr		Period		1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Fenot		1323-2013	1323-2013
	1974	Jun	17	36,300	50-10	0 yr		Distance	e lo (miles)	79.2	53.3
	1996	Jun	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun :	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	13,200	25,600	32,100	36,000	44,100	47,400	54,800	2,000	1,760
	Regul	ated	12,700	25,100	31,600	35,500	43,700	47,100	54,600	1,670	1,680
	% Cha	ange	-3.79%	-1.95%	-1.56%	-1.39%	-0.91%	-0.63%	-0.36%	-16.50%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	6/15/1951 - 7/12/51	B/W	1:28,400	6192500	13700
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	9/11/96 - 8/28/97	B/W		6192500	2560
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	07/28/2005	color	1-meter pixels	6192500	3380
2005	NAIP	07/27/2005	color	1-meter pixels	6192500	3540
2007	Woolpert	10/15/2007 - 11/2/2007	Color		6192500	
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2011	NAIP	7/24/2011	Color	1-meter pixels	6192500	13100
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature	Feature	2001	% of	2011	% of	2001-2011
Class	Туре	Length (ft)	Bankline	Length (ft)	Bankline	Change
Stream St	abilization					
	Steel Retaining Wall	33	0.0%	33	0.0%	0
	Rock RipRap	8,917	8.5%	11,255	10.8%	2,338
	Gabions	797	0.8%	797	0.8%	0
	Flow Deflectors	305	0.3%	531	0.5%	226
	Between Flow Deflectors	977	0.9%	977	0.9%	0
	Feature Type Totals	11,028	10.6%	13,592	13.0%	2,564
Other In C	Channel					1
	Bedrock Outcrop	74	0.1%	74	0.1%	0
	Feature Type Totals	74	0.1%	74	0.1%	0
Floodplair	Control			I		1
	Transportation Encroachment	10,046	9.6%	10,046	9.6%	0
	Feature Type Totals	10,046	9.6%	10,046	9.6%	0
	Reach Totals	21,148	20.2%	23,712	22.7%	2,564

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Gabions		0	0	797	0	0	0	0	0
Rock RipRap		4,943	3,241	656	656	0	1,187	0	0
	Totals	4,943	3,241	1,453	656	0	1,187	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding	
1950	51,418	30,696	1.60	1950 to 1976:	14.62%	
1976	51,762	42,983	1.83	1976 to 1995:	-19.10%	
1995	52,381	25,182	1.48	1995 to 2001:	-4.54%	
2001	52,254	21,606	1.41	1950 to 2001:	-11.49%	
Change 1950 - 2001	836	-9,090	-0.18			
Lenath of Side		Pre-1950s (ft)	4,756			
Channels Blocked		Post-1950s (ft)	4,610			

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	13	1.6%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	780		911		
Total Floodplain Area (Ac)	793		973		
Total Isolated (Ac)	13	1.6%	62	24.8%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	5	0	25	31

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal IZ age	Restricted CMZ Acreage	% Restrict Migration Area	ed Tota n AHZ Acrea	l Res ' / ge Ac	stricted AHZ sreage	% Restricted Avulsion Area
	240	481	1,59	97	147	9%	68		0	0%
2011 Res	stricted Mig	ration A	rea Sun	nmar	y	Note that the	se data refle	ct the obser	ved con	ditions in the
Reason for Restriction	Reason for Land Use RMA Percent of Counties, COE for the rest of the Restriction Protected Acres CMZ				t of the rive	ark and a r).	Sweet Grass			
Road/Railro	oad Prism									
	Public Road		7	0.	4%					
RipRap/Flo	w Deflectors									
	Irrigated		20	1.	2%					
RipRap										
	Railroad		16	1.	0%					
	Non-Irrigated		54	3.	2%					
	Irrigated		37	2.	2%					
Other										
	Public Road		3	0.	2%					
	Other Infrastr	ructure	11	0.	6%					
Flow Deflect	ctors									
	Irrigated		16	1.	0%					
		Totals	164	9.	9%					
Land Us	es within the	e CMZ (A	Acres)	F Irri 1	lood gation 95.9	Sprinkler Irrigation 0.0	Pivot Irrigation 50.6	Urban/ ExUrban 5.1	ד pc ו	Trans- ortation 15.4
LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	1	7	0.0%	0.0%	0.0%	0.1%	
	Other Infrastructure	78	107	161	161	1.2%	1.6%	2.4%	2.4%	
	Totals	78	107	162	168	1.2%	1.6%	2.5%	2.6%	
Agricultural Lan	d									
	Non-Irrigated	3,626	3,238	2,560	2,551	55.2%	49.3%	38.9%	38.8%	
	Irrigated	2,027	2,203	2,663	2,604	30.8%	33.5%	40.5%	39.6%	
	Totals	5,653	5,441	5,224	5,155	86.0%	82.8%	79.5%	78.4%	
Channel										
	Channel	716	760	763	817	10.9%	11.6%	11.6%	12.4%	
	Totals	716	760	763	817	10.9%	11.6%	11.6%	12.4%	
ExUrban						•				
	ExUrban Other	0	5	9	13	0.0%	0.1%	0.1%	0.2%	
	ExUrban Undeveloped	0	0	6	0	0.0%	0.0%	0.1%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	8	12	0.0%	0.0%	0.1%	0.2%	
	ExUrban Residential	17	20	107	113	0.3%	0.3%	1.6%	1.7%	
	Totals	17	25	130	138	0.3%	0.4%	2.0%	2.1%	
Transportation										
	Public Road	64	83	87	87	1.0%	1.3%	1.3%	1.3%	
	Interstate	0	112	162	162	0.0%	1.7%	2.5%	2.5%	
	Railroad	46	46	46	46	0.7%	0.7%	0.7%	0.7%	
	Totals	110	241	295	296	1.7%	3.7%	4.5%	4.5%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	meline - Tiers 3 and	4								Char	nge Betv	ween Y	ears
			Acr	res		%	of Rea	ch Area	1	(% oʻ	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	0	0	250	224	0.0%	0.0%	4.8%	4.4%	0.0%	4.8%	-0.4%	4.4%
	Pivot	0	0	941	914	0.0%	0.0%	18.0%	17.7%	0.0%	18.0%	-0.3%	17.7%
	Flood	2,027	2,203	1,473	1,466	35.9%	40.5%	28.2%	28.4%	4.6%	-12.3%	0.2%	-7.4%
	Totals	2,027	2,203	2,663	2,604	35.9%	40.5%	51.0%	50.5%	4.6%	10.5%	-0.5%	14.7%

Reach A7

Non-I	rrigated	
	J	

Multi-Use	2,832	2,620	2,113	2,085	50.1%	48.2%	40.5%	40.5%	-1.9%	-7.7%	0.0%	-9.6%
Hay/Pasture	794	618	447	465	14.0%	11.4%	8.6%	9.0%	-2.7%	-2.8%	0.5%	-5.0%
Totals	3,626	3,238	2,560	2,551	64.1%	59.5%	49.0%	49.5%	-4.6%	-10.5%	0.5%	-14.7%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	8	Shrub (Acres	res) Clo		osed Timber (Acres)			Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.5	0.2	0.3	0.1	0.1	0.1	1.8	2.7	0.1	
Max	36.8	28.6	15.4	87.2	87.7	80.3	38.2	48.3	40.8	
Average	6.8	5.0	4.8	18.2	8.2	14.2	14.2	21.0	11.7	
Sum	136.8	75.3	100.0	417.7	391.6	382.4	99.3	105.0	93.2	
Riparian Turnover Riparian to Channel							l (acres) 112.5			
from ch	rsion of ripar nannel to ripa	arian areas to	channel, or n the 1950's		Channel to Riparian (acres) 108.7					
and 20	01 data set.			Ri	iparian Encro	oachment (a	cres)	-3.8		
Riparian	Recruit	nent	1950s Chai	nnel Mapped	Apped as 2011 Riparian (Ac) 0.0					
Creation of	f riparian are	as	1950s Floodp	lain Mapped	as 2011 Cha	innel (Ac)	5.4			
between 1	950s and 20	01.	Tota	Recruitmer	nt (1950s to 2	2011)(Ac)	5.4			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	14.1	56.6	42.5	0.0	113.2
Acres/Valley Mile	1.6	6.2	4.7	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.51	0.05%	0.77	0.04	0.19	0.02

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region Reach
	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	✓ ✓ Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	🗹 🗹 Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	✓ ✓ Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	□ ✓ Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	✓ ✓ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	Venbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	✓ ✓ Eastern Kingbird	Plumbeous Vireo	Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	✓ ✓ Western Meadowlark
	Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	Field Sparrow	Red Crossbill	☐ ✔ White-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	Ring-necked Pheasant	☐ ✔ White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	✓ ✓ Yellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	✓ ✓ Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Sweet Grass
Classification	PCB: Partially confined braided
General Location	Bridger Creek
General Comments	Floodplain isolation behind interstate and R/R

Upstream River Mile	443.6
Downstream River Mile	438.5
Length	5.10 mi (8.21 km)

Reach

Narrative Summary

Reach A8 is 5.1 miles long, and is at Bridger Creek. The reach is classified as Partially Confined Braided (PCB), which indicates some valley wall influences on river form and relatively extensive gravel bars and low flow channel complexity. Within this reach, the river intermittently follows the northern bluff line of the river valley which is comprised of Cretaceous-age Hell Creek Formation sandstones and mudstones. The other side of the river valley consists of low floodplain and terrace deposits. The Bratten fishing access site is located in the lower end of the reach.

Similar to other reaches in Region A, the overall footprint of the river channel has increased in size since 1950. In 1950, the channel footprint was 436 acres but by 2001 it had expanded to 482 acres.

As of 2011, about 10 percent of the banks in Reach A8 were armored by almost 4,000 feet of rock riprap and 1,400 feet of flow deflectors. There is also a ~760 foot long retaining wall on the right bank at the very upstream most end of the reach that protects several structures. At Rm 441.1, rock riprap on both sides of the river has constricted the channel corridor to essentially the width of the active channel, which is about 550 feet. Physical features also occupy the floodplain; over three miles of transportation encroachment and 1,800 feet of floodplain dikes have been mapped in the reach. Transportation infrastructure and agriculture-related dikes have isolated 25 percent of the historic 100-year floodplain in the reach.

Reach A8 has experienced the loss of almost a mile of side channel since the 1950s due to dike construction. All of the side channel loss is from one project at the mouth of Bridger Creek, where the lower portion of the creek was channelized downstream of the I-90 Bridge. This channelization included re-routing the creek through a channelized section to an active side channel of the Yellowstone River. The channelization included construction of a dike that guides Bridger Creek into the side channel, and blocks the side channel at the intersection, essentially turning the lower portion of the side channel into lowermost Bridger Creek. The channelization of lower Bridger Creek occurred between 1950 and 1976.

Even though Reach A8 has experienced some side channel loss, it still supports extensive side channel length. As of 2001 there were 6.6 miles of active side channel in the 5.1 mile long reach.

Land use in Reach A8 is predominantly agricultural, although there almost 230 acres of transportation-related development in the mapping footprint. Most of the agricultural land is non-irrigated, although there are 900 acres of ground under flood irrigation and 56 acres under pivot. A total of 236 acres of developed land are in the Channel Migration Zone. Most of that is in flood irrigation (211 acres), but 8 acres are in pivot and 4 are in exurban development. About 16 percent of the CMZ is restricted by physical features.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 13,700 cfs to 13,000 cfs, a drop of about 5 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,020 cfs to 1,670 cfs with human development, a reduction of 17 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

The reduction in flows is evident by the contraction of the 5-year floodplain area in Reach A8 by 24 acres, or 11 percent.

CEA-Related observations in Reach A8 include: •Side channel loss as part of tributary channelization •Isolation of 25 percent of historic 100-year floodplain primary due to transportation infrastructure •Contraction of 5-year floodplain due to flow alterations.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A8 include: •Side channel restoration at RM 442

•Floodplain restoration/reconnection on south side of interstate at RM 439.5

•CMZ management due to extent of CMZ restriction (16 percent)

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	6192500
	1971	Jun 2	23	29,200	10-25	10-25 yr					Livingston
	1902	Jun ´	11	30,100	10-25	10-25 yr		Period of Record		1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr				74.4	1020 2010
	1974	Jun ´	17	36,300	50-10	0 yr		Distance	lo (miles)	74.1	63.0
	1996	Jun 1	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	13,700	26,600	33,200	37,300	45,600	49,000	56,700	2,020	1,760
	Regul	ated	13,000	25,800	32,400	36,600	45,000	48,500	56,400	1,670	1,680
	% Cha	ange	-5.11%	-3.01%	-2.41%	-1.88%	-1.32%	-1.02%	-0.53%	-17.33%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	7/12/1951 - 6/15/51	B/W	1:28,400	6192500	13700
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	9/26/97 - 9/11/96	B/W		6192500	2560
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	07/27/2005	color	1-meter pixels	6192500	3540
2007	Woolpert	10/15/2007 - 11/2/2007	Color	NA	6192500	
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	NAIP	7/24/2011	Color	1-meter pixels	6192500	13100
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Lenath (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					0.000.000
	Steel Retaining Wall	758	1.4%	758	1.4%	0
	Rock RipRap	3,697	6.9%	3,970	7.4%	274
	Flow Deflectors	451	0.8%	431	0.8%	-21
	Between Flow Deflectors	1,098	2.1%	985	1.8%	-113
	Feature Type Totals	6,004	11.2%	6,144	11.5%	140
Floodplair	Control			'		,
	Transportation Encroachment	15,631	29.2%	15,631	29.2%	0
	Floodplain Dike/Levee	1,853	3.5%	1,853	3.5%	0
	Feature Type Totals	17,484	32.7%	17,484	32.7%	0
	Reach Totals	23,489	43.9%	23,628	44.1%	140

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FDs	;	2,430	0	417	0	0	0	0	0
Rock RipRap		1,863	0	0	0	0	2,089	0	0
Steel Retaining Wall		0	0	79	0	0	0	0	0
1	otals	4,294	0	495	0	0	2,089	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	27,141	25,371	1.93	1950 to 1976:	25.94%
1976	27,419	39,394	2.44	1976 to 1995:	-13.93%
1995	26,852	29,464	2.10	1995 to 2001:	9.78%
2001	26,774	34,867	2.30	1950 to 2001:	18.99%
Change 1950 - 2001	-367	9,495	0.37		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	4,657		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	23	2.9%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	174	22.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	592		667		
Total Floodplain Area (Ac)	789		691		
Total Isolated (Ac)	197	25.0%	24	11.3%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	77	0	0	77

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal IZ age	Restricted CMZ Acreage	% Restrict Migration Area	ed Tota n AH2 Acrea	al R Z Ige /	estricted AHZ Acreage	% Restricted Avulsion Area
	229	458	1,0	82	88	8%	142	2	108	76%
2011 Res	stricted Mig	ration A	rea Sun	nma	ry	Note that the	ese data refle	ct the obs	served con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc	cent of CMZ	Counties, CO	DE for the res	(NAIP for st of the ri	Park and S ver).	Sweet Grass
Road/Railro	oad Prism									
	Railroad		2	0	.1%					
RipRap/Flo	w Deflectors									
	Other Infrast	ructure	9	0	.7%					
	Irrigated		39	3	.2%					
RipRap										
	Railroad		0	0	.0%					
	Non-Irrigated	1	10	0	.8%					
	Irrigated		48	3	.9%					
Other										
D:1 /	Other Infrast	ructure	8	0	.7%					
Dike/Levee	Non-Irrigated	4	81	6	6%					
	Non ingutet		400							
		lotais	196	10	5.0%					
Land Us	es within th	e CMZ (Acres)	l Irr	Flood igation 211.2	Sprinkler Irrigation 0.0	Pivot Irrigation 8.3	Urbar ExUrb 4.1	n/ T an pc	rans- rtation 12.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	structure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	63	76	110	128	1.6%	1.9%	2.7%	3.2%	
	Totals	63	76	110	128	1.6%	1.9%	2.7%	3.2%	
Agricultural Land	t									
	Non-Irrigated	2,124	2,011	2,112	2,060	53.2%	50.3%	52.9%	51.6%	
	Irrigated	1,161	1,098	947	960	29.1%	27.5%	23.7%	24.0%	
	Totals	3,285	3,108	3,059	3,020	82.2%	77.8%	76.6%	75.6%	
Channel										
	Channel	592	588	588	608	14.8%	14.7%	14.7%	15.2%	
	Totals	592	588	588	608	14.8%	14.7%	14.7%	15.2%	
ExUrban										
	ExUrban Other	0	3	3	3	0.0%	0.1%	0.1%	0.1%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	0	7	7	0.0%	0.0%	0.2%	0.2%	
	Totals	0	3	10	10	0.0%	0.1%	0.3%	0.3%	
Transportation										
	Public Road	28	52	61	61	0.7%	1.3%	1.5%	1.5%	
	Interstate	0	141	141	141	0.0%	3.5%	3.5%	3.5%	
	Railroad	27	27	27	27	0.7%	0.7%	0.7%	0.7%	
	Totals	55	220	229	229	1.4%	5.5%	5.7%	5.7%	
Urban									-	
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	neline - Tiers 3 and	4								Char	ige Beti	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	'01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	46	56	0.0%	0.0%	1.5%	1.9%	0.0%	1.5%	0.3%	1.9%
	Flood	1,161	1,098	901	904	35.3%	35.3%	29.5%	29.9%	0.0%	-5.9%	0.5%	-5.4%
	Totals	1,161	1,098	947	960	35.3%	35.3%	31.0%	31.8%	0.0%	-4.4%	0.8%	-3.6%

Reach A8

0.1% -0.4% -4.6% 4.3% -0.4% 8.2%

4.4% -0.8% 3.6%

Non-Irrigated										
	Multi-Use	1,955	1,716	1,691	1,658	59.5%	55.2%	55.3%	54.9%	-4.3%
	Hay/Pasture	169	294	421	402	5.1%	9.5%	13.7%	13.3%	4.3%
	Totals	2,124	2,011	2,112	2,060	64.7%	64.7%	69.0%	68.2%	0.0%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (Acres) C Statistic 1950 1976 2001 1950 Min 0.9 0.3 0.8 2.0 Max 47.4 35.9 51.2 59.3 Average 8.0 6.4 8.6 14.2 Sum 135.4 121.3 172.5 312.5 Riparian Turnover Conversion of riparian areas to channel, or from channel to riparian between the 1950's and 2001 data set. 1950s Channel Map Creation of riparian areas 1950s Floodplain Map between 1950s and 2001 1950s Floodplain Map	Clos	ed Timber (A	Acres)	Ор	Open Timber (Acres)				
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.9	0.3	0.8	2.0	0.6	2.1	6.5	2.2	18.8
Max	47.4	35.9	51.2	59.3	37.9	55.7	11.5	38.6	18.8
Average	8.0	6.4	8.6	14.2	11.5	16.4	9.0	15.3	18.8
Sum	135.4	121.3	172.5	312.5	206.6	296.0	18.0	106.9	18.8
Riparian	Turnove	er			Riparian t	to Channel (a	cres)	107.7	
from cl	rsion of ripar hannel to rip	an areas to arian betwee	n the 1950's		Channel t	o Riparian (a	cres)	140.9	
and 20	01 data set.			R	iparian Encre	oachment (a	cres)	33.2	
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	0.0		
Creation o	f riparian are	as	1950s Floodp	lain Mapped	as 2011 Cha	innel (Ac)	5.8		
between 1	950s and 20	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	5.8		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	14.8	73.1	24.6	0.0	112.5
Acres/Valley Mile	3.2	15.7	5.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.43	0.02%	0.02	0.08	0.02	0.03

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Sweet Grass	Upstream River Mile	438.5						
Classification	UA: Unconfined anabranching	Downstream River Mile	434.7						
General Location	Reed Point	Length	3.80 mi (6.12 km)						
General Comments	Near Reed Point, Reach A9 provides a good example of a largely unmodified, dynamic river segment.								

Narrative Summary

Reach A9 is located in lowermost Sweet Grass County, just upstream of the Sweet Grass/Stillwater county line near Reed Point. The reach is an Unconfined Anabranching reach type. The reach is 3.8 miles long, extending from RM 434.7 to RM 438.5. The lower reach break is the bridge crossing just north of Reed Point. This bridge was originally constructed in 1911 and rebuilt in 2000.

Reach A9 provides an excellent example of a dynamic, largely unmodified Unconfined Anabranching reach type. The stream corridor is typically one half mile wide through the reach, with significant narrowing of that corridor in the downstream direction as the river approaches the bridge at Reed Point. In the uppermost portion of the Reach (RM 437-438.5), the northern valley margin consists of an alluvial fan deposit that is currently irrigated with center pivots. Downstream, the river abuts Cretaceous-age Hell Creek Formation on the northern valley wall, which contains sandstones that tend to form steep cliffs. The reach is characterized by high displacement ratios, extensive split flow and islands, and riparian turnover. Although riparian turnover is evident, the rates of that turnover have gone down in the reach since 1976. Prior to that time (1950-1976), average turnover rates were 5.9 acres per year; from 1976 to 2001 that average rate dropped to 3.6 acres of riparian turnover per year.

Bank armor in Reach A9 consists primarily of 10,000 linear feet of riprap which drapes about 24 percent of the stream bank. About 2,000 feet of that armor was constructed since 2001. This new armor is on the right bank at RM 437.8 where the river was rapidly migrating southward toward the rail line. By the time the bank was armored, the river was within 60 feet of the tracks.

Much of the riprap in Reach A9 is located along the south bank of the river on lower end of the reach where the Yellowstone River approaches the bridge near Reed Point. This bridge marks a major narrowing of the river corridor from about 2,000 feet wide ½ mile upstream of the bridge to 360 feet at the bridge itself. The narrowing is achieved by a ~mile long section of bank armor on the right bank that on its lower end runs due north/south, which is perpendicular to the overall east/west trend of the river. This has caused the river to consolidate into a main thread and abandon an historic side channel just upstream of the bridge at the Indian Fort Fishing Access Site.

Reach A9 has experienced the loss of almost about 3,700 feet of side channel since the 1950s due to dike construction. All of the side channel loss is from one project at the upstream end of the reach, where a side channel was blocked on the north side of the river at RM 438.5.

Even though Reach A9 has experienced some side channel loss, it still supports extensive side channel length. As of 2001 there were 5.1 miles of active side channel in the 3.8 mile long reach. Large islands have persisted in the reach since 1950.

Land use in Reach A9 is predominantly agricultural, although there several hundred acres of non-agricultural uses due to the proximity of the transportation corridor as well as the town of Reed Point. Since 1950, 160 acres of agricultural land have been converted to pivot. A total of 300 acres of developed land are in the Channel Migration Zone. Most of that is in flood irrigation (250 acres), but 40 acres are in transportation. About 13 percent of the CMZ is restricted by physical features.

There is natural gas one pipeline that crosses under the Yellowstone River in Reach A9. It crosses at the upper most end of the reach at RM 438.5 and is consists of a 6 inch pipeline that is owned by Northwestern Energy.

Since 1950, Reach A9 has lost most of its forest that would be considered at low risk of cowbird infestation due to its separation from agricultural infrastructure. In 1950, about 17 acres of forest per valley mile were identified as low risk and by 2001 that forest area had been reduced to 2.5 acres due to development within the reach.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 14,000 cfs to 13,300 cfs, a drop of about 5 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,030 cfs to 1,680 cfs with human development, a reduction of 17 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

The reduction in flows is evident by the contraction of the 5-year floodplain area in Reach A9 by 15 acres, or 6 percent.

CEA-Related observations in Reach A9 include: •Reduced floodplain turnover rates since 1976 •Approximately 3,700 feet of side channel has been lost due to channel plugging between 1950 and 2011 •Meander belt encroachment at bridge crossing

•Side channel loss as part of armoring at bridge approach

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A9 include: •Side channel restoration at RM 438.5 Reach A

•CMZ management due to extent of CMZ restriction (13 percent) •Pipeline management for 6-inch natural gas pipeline that crosses under the river at RM 438.5

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream	
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	6214500	6192500	
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Rillings	Livingston	
	1902	Jun ´	11	30,100	10-25	5 yr		Period	l of Record	1929-2015	1929-2015	
	1943	Jun 2	20	30,600	10-25	5 yr		Disc		70.0	1020 2010	
	1974	1974 Jun 17 36,300		36,300	50-100 yr			Distance	lo (miles)	70.3	00.1	
	1996	Jun ´	10	37,100	50-10	0 yr						
	1997	Jun	6	38,000	50-10	0 yr						
	2011	Jun 3	30	40,600	>100-yr							
Di	scharg	е								7Q10	95% Sum.	
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration	
	Unregul	ated	14,000	27,100	33,900	38,000	46,500	49,900	57,600	2,030	1,760	
	Regul	ated	13,300	26,300	33,100	37,300	45,900	49,400	57,300	1,680	1,680	
	% Cha	ange	-5.00%	-2.95%	-2.36%	-1.84%	-1.29%	-1.00%	-0.52%	-17.24%	-4.55%	

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	6/15/1951	B/W	1:28,400	6192500	13700
1976	USCOE	9/28/1976	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	9/11/96 - 8/28/97	B/W	NA	6192500	2560
2001	NRCS	8/2/2001 - 8/8/2001	CIR	1:24,000	6192500	2000
2005	NAIP	07/27/2005	color	1-meter pixels	6192500	3540
2007	Woolpert	10/15/2007 - 11/2/2007	Color	NA	6192500	1410-2090
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2011	NAIP	7/24/2011	Color	1-meter pixels	6192500	13100
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	7,886	19.2%	9,898	24.2%	2,012
	Flow Deflectors	0	0.0%	107	0.3%	107
	Feature Type Totals	7,886	19.2%	10,005	24.4%	2,120
Floodplain	n Control					
	Transportation Encroachment	6,033	14.7%	6,033	14.7%	0
	Feature Type Totals	6,033	14.7%	6,033	14.7%	0
	Reach Totals	13,918	34.0%	16,038	39.1%	2,120

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

	Totals	5,592	0	0	928	0	492	0	0
Rock RipRap		5,592	0	0	928	0	492	0	0
Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	23,308	30,404	2.30	1950 to 1976:	20.79%
1976	20,291	36,191	2.78	1976 to 1995:	-13.08%
1995	20,903	29,673	2.42	1995 to 2001:	-4.64%
2001	20,490	26,786	2.31	1950 to 2001:	0.12%
Change 1950 - 2001	-2,818	-3,618	0.00		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	3,717		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year			
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain		
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%				
Agriculture (generally relates to field boundaries)	0	0.0%				
Agriculture (isloated by canal or large ditch)	0	0.0%				
Levee/Riprap (protecting agricultural lands)	0	0.0%				
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%				
Railroad	19	3.5%				
Abandoned Railroad	0	0.0%				
Transportation (Interstate and other roads)	0	0.0%				
Total Not Isolated (Ac)	522		629			
Total Floodplain Area (Ac)	541		644			
Total Isolated (Ac)	19	3.5%	15	6.2%		

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	90	0	0	90

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	Total Restricted CMZ CMZ Acreage Acreage		cted Tota on AHZ Acrea	I Restric AH2 ge Acrea	cted % Restricted Z Avulsion Ige Area
	360	720	1,1	09 151	14%	41	0	0%
2011 Res	stricted Mig	gration A	rea Sun	nmary	Note that th	nese data refle	ct the observed	l conditions in the
Reason for Land Use Restriction Protected			RMA Acres	Percent of CMZ	Counties, C	COE for the res	t of the river).	and Sweet Grass
Road/Railro	oad Prism							
	Railroad		3	0.3%				
RipRap								
	Railroad		148	12.8%				
		Totals	151	13.1%				
Land Us	es within th	ne CMZ (A	Acres)	Flood Irrigation	Sprinkler Irrigation	Pivot Irrigation	Urban/ ExUrban	Trans- portation

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	28	17	24	27	1.0%	0.6%	0.9%	1.0%	
	Totals	28	17	24	27	1.0%	0.6%	0.9%	1.0%	
Agricultural Lan	d									
	Non-Irrigated	1,547	1,441	1,319	1,146	56.7%	52.8%	48.3%	42.0%	
	Irrigated	463	450	491	614	17.0%	16.5%	18.0%	22.5%	
	Totals	2,009	1,891	1,809	1,760	73.6%	69.3%	66.3%	64.5%	
Channel										
	Channel	622	624	622	657	22.8%	22.9%	22.8%	24.1%	
	Totals	622	624	622	657	22.8%	22.9%	22.8%	24.1%	
ExUrban										
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	9	45	67	0.0%	0.3%	1.7%	2.5%	
	Totals	0	9	45	67	0.0%	0.3%	1.7%	2.5%	
Transportation										
	Public Road	33	45	44	44	1.2%	1.6%	1.6%	1.6%	
	Interstate	0	104	104	104	0.0%	3.8%	3.8%	3.8%	
	Railroad	21	21	21	21	0.8%	0.8%	0.8%	0.8%	
	Totals	54	170	169	169	2.0%	6.2%	6.2%	6.2%	
Urban										
	Urban Other	0	0	2	2	0.0%	0.0%	0.1%	0.1%	
	Urban Residential	16	11	16	16	0.6%	0.4%	0.6%	0.6%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	14	2	0.0%	0.0%	0.5%	0.1%	
	Urban Industrial	0	6	28	27	0.0%	0.2%	1.0%	1.0%	
	Totals	16	17	59	48	0.6%	0.6%	2.2%	1.8%	

Land Use Ti	meline - Tiers 3 a	nd 4								Char	ige Beti	ween Y	ears
			Acı	res		%	of Rea	ch Area	a la	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	146	163	0.0%	0.0%	8.1%	9.3%	0.0%	8.1%	1.2%	9.3%
	Flood	463	450	345	451	23.0%	23.8%	19.0%	25.6%	0.8%	-4.8%	6.6%	2.6%
	Totals	463	450	491	614	23.0%	23.8%	27.1%	34.9%	0.8%	3.3%	7.8%	11.9%

Reach A9

Multi-Use	1,359	1,319	1,134	1,027	67.6%	69.7%	62.7%	58.4%	2.1%	-7.1%	-4.3%	-9.3%
Hay/Pasture	187	122	185	119	9.3%	6.5%	10.2%	6.8%	-2.9%	3.8%	-3.5%	-2.6%
Totals	1,547	1,441	1,319	1,146	77.0%	76.2%	72.9%	65.1%	-0.8%	-3.3%	-7.8%	-11.9%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	:	Shrub (Acres)			ed Timber (A	Acres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.7	0.3	0.8	0.4	0.6	2.2	4.6	1.9	5.2	
Max	15.5	18.6	30.1	60.7	53.8	71.0	53.8	15.6	50.1	
Average	4.5	3.8	7.2	14.8	14.7	22.8	21.8	8.7	27.8	
Sum	49.3	67.6	93.5	148.2	191.4	228.3	130.6	52.3	83.5	
Riparian	Turnove	er			Riparian 1	to Channel (a	icres)	81.4		
Conversion of riparian areas to channel, or from channel to riparian between the 1950's Channel to Rip						to Riparian (a	n (acres) 126.5			
and 2001 data set.				Riparian Encroachment (acres) 45.1						
Riparian	Recruit	nent	1950s Cha	nnel Mapped	l as 2011 Ripa	arian (Ac)	0.0			
Creation of riparian areas between 1950s and 2001.		eas	1950s Floodplain Mapped as 2011 Channel (Ac)				5.8			
		01.	Tota	I Recruitme	2011)(Ac)	5.8				

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	9.8	32.5	30.9	0.0	73.2
Acres/Valley Mile	2.9	9.7	9.2	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.07	0.01%	0.02	0.00	0.02	0.02

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.