Reach PCI

County	Par
Classification	CS
General Location	Gai

ark S: Confined straight ardiner to Little Trail Cr. Upstream River Mile564.8Downstream River Mile560.2Length4.60 mi (7.40 km)

General Comments

Narrative Summary

Reach PC1 is the upstream-most reach of the project area, beginning at Gardiner Montana, and extending northward almost five miles to the Trail Creek confluence. Reach PC1 is confined/straight reach type and shows minimal impact in terms of flow alterations, bank armoring, and side channel loss. The bankfull area has remained essentially unchanged since 1950. Land use is dominated by nonirrigated agriculture, with some conversion of flood irrigation to sprinkler from 1950 to 2011. There are over 300 acres of urban/exurban development in the reach, dominated by the town of Gardiner. Although the development in Gardiner is very close to the river, it is located high on bluffs that are outside of the Channel Migration Zone (CMZ) and floodplain. The bluffs are composed of glacial outwash deposits that are very coarse and erosion resistant. The total CMZ area in Reach PC1 is only 115 acres, and there is essentially no riparian zone in this reach. This section of river is relatively steep, with steep boulder runs and associated wave trains that make it a popular stretch of river for recreational white water rafting. There is one boat ramp in the reach at RM 561.5, and the Queen of the Waters Fishing Access Site is located at RM 563.

This area of the upper Yellowstone River basin experienced three severe floods in the last 20 years. The largest floods were in 1996 and 1997, when the 32,200 cfs peak flow measured at the Corwin Springs gage exceeded a 100-year flood for those two years in a row. The 1974 and 2011 floods were major as well, with both events exceeding 30,000 cfs. The Corwin Springs gage is located downstream of Reach PC1 at the Corwin Springs Bridge.

CEA-Related observations in Reach PC1 include: •Urban/Exurban development at Gardiner

No reach-specific Practices have been identified for this reach.

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Corwin Springs

FI	ood His	story	,							Downstream	Upstream
	Year	Dat	te F	low on Date	Return Ir	nterval			Gage No	6191500	6186500
	1927	Jun	27	25,000	10-25	5 yr			Location	Corwin Spring	s Ystone Lake
	1971	Jun	23	25,200	10-25	5 yr		Pariod		1800-2012	1023-2012
	1928	May	26	25,300	10-25	5 yr		Fenou	I OI IXECOIU	1030-2012	1525-2012
	1911	Jun	13	25,800	10-25	5 yr		Distance	To (miles)	3.0	
	2010	Jun	5	26,000	10-25	5 yr					
	2011	Jun	30	30,300	50-10	0 yr					
	1974	Jun	17	30,900	50-10	0 yr					
	1918	Jun	14	32,000	50-10	0 yr					
	1997	Jun	6	32,200	>100	-yr					
	1996	Jun	10	32,200	>100	-yr					
Di	scharg	е								7010	95% Sum
	-		1.01 Yı	r 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	8,370	16,800	21,300	24,100	29,800	32,100	37,500	NA	1,760
	Regul	ated	8,370	16,800	21,300	24,100	29,800	32,100	37,500	NA	1,680
	% Cha	ange	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	NA	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/28/2005	color	1-meter pixels	6192500	2210
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/22/2009	Color	1-meter pixels	6192500	6990
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	08/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	23,391		1.00	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	2,345,264		1.00	1950 to 2001:	0.00%
Change 1950 - 2001	2,321,873		0.00		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	(ear	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of triparian zones that have been converted to agrigulture an irrigation infrastructure.	he riparian zor d may result ir	ne. Thus, irrigated a additional bank p	l areas within th protection to pro	e 5-year floodplain tend to to the second second tend to the agricultural prod	o represent luction and

Flood Sprinkler Pivot Total

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

Mean 50-Yr	Erosion	Total	Restricted	% Restricted	Total	Restricted	% Restricted
Migration	Buffer	CMZ	CMZ	Migration	AHZ	AHZ	Avulsion
Distance (ft)	(ft)	Acreage	Acreage	Area	Acreage	Acreage	Area
0	0	115	0	0%	0	0	0%

Land Uses within the CMZ (Acres)	Flood	Sprinkler	Pivot	Urban/	Trans-
	Irrigation	Irrigation	Irrigation	ExUrban	portation
	0.0	0.0	0.0	1.4	0.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3		% of Reach Area							
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	2	2	2	0	0.1%	0.1%	0.1%	0.0%	
	Totals	2	2	2	0	0.1%	0.1%	0.1%	0.0%	
Agricultural Lan	d									
	Non-Irrigated	1,605	1,433	1,362	1,364	84.5%	75.4%	71.7%	71.8%	
	Irrigated	42	35	36	36	2.2%	1.8%	1.9%	1.9%	
	Totals	1,648	1,468	1,398	1,399	86.7%	77.3%	73.6%	73.7%	
Channel										
	Channel	107	110	110	110	5.6%	5.8%	5.8%	5.8%	
	Totals	107	110	110	110	5.6%	5.8%	5.8%	5.8%	
ExUrban										
	ExUrban Other	0	6	6	6	0.0%	0.3%	0.3%	0.3%	
	ExUrban Undeveloped	0	0	19	19	0.0%	0.0%	1.0%	1.0%	
	ExUrban Industrial	31	107	107	107	1.7%	5.6%	5.6%	5.6%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	25	27	27	0.0%	1.3%	1.4%	1.4%	
	Totals	31	138	158	158	1.7%	7.2%	8.3%	8.3%	
Transportation										
	Public Road	60	58	58	58	3.2%	3.1%	3.1%	3.1%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	60	58	58	58	3.2%	3.1%	3.1%	3.1%	
Urban										
	Urban Other	1	27	27	27	0.1%	1.4%	1.4%	1.4%	
	Urban Residential	16	30	77	77	0.9%	1.6%	4.0%	4.0%	
	Urban Commercial	30	57	71	71	1.6%	3.0%	3.7%	3.7%	
	Urban Undeveloped	4	10	0	0	0.2%	0.5%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	52	125	175	175	2.7%	6.6%	9.2%	9.2%	

Land Use Ti	meline - Tiers 3 a	and 4								Char	nge Bet	ween Y	ears
			Acı	res		%	of Rea	ich Area	a	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	'01-11	'50-11
Irrigated													
	Sprinkler	0	0	36	36	0.0%	0.0%	2.6%	2.6%	0.0%	2.6%	0.0%	2.6%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	42	35	0	0	2.6%	2.4%	0.0%	0.0%	-0.2%	-2.4%	0.0%	-2.6%
	Totals	42	35	36	36	2.6%	2.4%	2.6%	2.6%	-0.2%	0.2%	0.0%	0.0%

Reach PCI

Non-Irrigated	
---------------	--

Multi-Use	1,605	1,433	1,362	1,364	97.4%	97.6%	97.4%	97.4%	0.2%	-0.2%	0.0%	0.0%
Hay/Pasture	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Totals	1,605	1,433	1,362	1,364	97.4%	97.6%	97.4%	97.4%	0.2%	-0.2%	0.0%	0.0%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	0.0	0.0	0.0	0.0	0.0
Acres/Valley Mile	0.0	0.0	0.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.05	0.28%	0.42	0.00	0.00	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC2

County	Park
Classification	CM: Confined meandering
General Location	Devil's Slide area

Upstream River Mile560.2Downstream River Mile557.2Length3.00 mi (4.83 km)

General Comments Narrative Summary

Reach PC2 is located north of Gardiner near Devil's Slide. The reach is three miles long, and is confined by glacial terraces that taper in the northward direction as the river approaches Yankee Jim Canyon. This reach a contains over 3,000 feet of rock riprap, all of which is against the toe of the terrace where the river flows adjacent to Highway 89 on the east side of the river. About one third or 1,200 feet of that riprap was built since 2001, where older riprap was extended against the highway. The riprap covers 9.3 percent of the total bankline. Migration rates are very low, and the total CMZ acreage is 111 acres. Land use is dominated by non-irrigated agriculture, and irrigated agriculture has seen some conversion from flood to sprinkler and pivot. In 1950, there were 152 acres of land in PC2 under flood irrigation, and in 2011 there were none. Whereas there was no sprinkler or pivot irrigation in 1950, now there are 133 acres of sprinkler and 62 acres under flood irrigation. The Brogans Landing Fishing Access Site is located in the lower end of the reach.

This area of the upper Yellowstone River basin experienced three severe floods in the last 20 years. The largest floods were in 1996 and 1997, when the 32,200 cfs peak flow measured at the Corwin Springs gage exceeded a 100-year flood for those two years in a row. The 1974 and 2011 floods were major as well, with both events exceeding 30,000 cfs. The Corwin Springs gage is located downstream of Reach PC2 at the Corwin Springs Bridge.

CEA-Related observations in Reach PC2 include: •Urban/Exurban development at Gardiner

No reach-specific Practices have been identified for this reach.

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Corwin Springs

FI	ood His	story	,							Downstream	Upstream
	Year	Dat	te Fl	ow on Date	Return Ir	nterval			Gage No	6191500	6186500
	1927	Jun	27	25,000	10-25	5 yr			Location	Corwin Spring	s Ystone Lake
	1971	Jun	23	25,200	10-25	5 yr		Poriod		1800-2012	1023-2012
	1928	Мау	26	25,300	10-25	5 yr		Fenot		1030-2012	1323-2012
	1911	Jun	13	25,800	10-25	5 yr		Distance	e To (miles)	0.0	
	2010	Jun	5	26,000	10-25	5 yr					
	2011	Jun	30	30,300	50-10	0 yr					
	1974	Jun	17	30,900	50-10	0 yr					
	1918	Jun	14	32,000	50-10	0 yr					
	1997	Jun	6	32,200	>100	-yr					
	1996	Jun	10	32,200	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yı	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	8,800	17,600	22,300	25,200	31,100	33,500	39,100	NA	1,760
	Regul	ated	8,800	17,600	22,300	25,200	31,100	33,500	39,100	NA	1,680
	% Ch	ande	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	NA	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/22/2009	Color	1-meter pixels	6192500	6990
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	08/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Lenath (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization	Longui (it)	Bankino	Longar (it)	Barnano	onango
	Rock RipRap	1,788	5.5%	3,043	9.3%	1,255
	Feature Type Totals	1,788	5.5%	3,043	9.3%	1,255
	Reach Totals	1,788	5.5%	3,043	9.3%	1,255

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	16,400		1.00	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	16,392		1.00	1950 to 2001:	0.00%
Change 1950 - 2001	-9		0.00		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-Year		5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of the riparian zones that have been converted to agrigulture and irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pro	ne 5-year floodplain ten otect the agricultural pr	d to represent oduction and

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

Mean 50-Yr	Erosion	Total	Restricted	% Restricted	Total	Restricted	% Restricted
Migration	Buffer	CMZ	CMZ	Migration	AHZ	AHZ	Avulsion
Distance (ft)	(ft)	Acreage	Acreage	Area	Acreage	Acreage	Area
0	0	111	0	0%	0	0	0%

Land Uses within the CMZ (Acres)	Flood	Sprinkler	Pivot	Urban/	Trans-
	Irrigation	Irrigation	Irrigation	ExUrban	portation
	0.0	0.0	0.0	1.5	0.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	21	32	36	24	1.6%	2.4%	2.7%	1.8%	
	Totals	21	32	36	24	1.6%	2.4%	2.7%	1.8%	
Agricultural Lan	d									
	Non-Irrigated	908	882	859	833	68.2%	66.2%	64.5%	62.5%	
	Irrigated	251	223	156	194	18.8%	16.7%	11.7%	14.6%	
	Totals	1,159	1,105	1,015	1,027	87.0%	83.0%	76.2%	77.1%	
Channel										
	Channel	107	100	100	100	8.1%	7.5%	7.5%	7.5%	
	Totals	107	100	100	100	8.1%	7.5%	7.5%	7.5%	
ExUrban										
	ExUrban Other	0	16	16	16	0.0%	1.2%	1.2%	1.2%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	9	0	0	0.0%	0.7%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	9	34	129	129	0.7%	2.6%	9.7%	9.7%	
	Totals	9	59	145	145	0.7%	4.5%	10.9%	10.9%	
Transportation										
	Public Road	36	36	36	36	2.7%	2.7%	2.7%	2.7%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	36	36	36	36	2.7%	2.7%	2.7%	2.7%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Ti	meline - Tiers 3 a	nd 4								Char	ige Beti	ween Y	ears
			Acı	res		%	of Rea	ch Area	l I	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	'01-11	'50-11
Irrigated													
	Sprinkler	0	0	125	133	0.0%	0.0%	12.3%	12.9%	0.0%	12.3%	0.6%	12.9%
	Pivot	0	0	0	62	0.0%	0.0%	0.0%	6.0%	0.0%	0.0%	6.0%	6.0%
	Flood	251	223	31	0	21.6%	20.2%	3.1%	0.0%	-1.5%	-17.1%	-3.1%	-21.6%
	Totals	251	223	156	194	21.6%	20.2%	15.4%	18.9%	-1.5%	-4.8%	3.5%	-2.7%

Reach PC2

Non-Irrigated													
N	/lulti-Use	867	793	813	810	74.8%	71.8%	80.1%	78.8%	-3.0%	8.3%	-1.2%	4.0%
F	lay/Pasture	41	89	46	23	3.5%	8.0%	4.5%	2.2%	4.5%	-3.5%	-2.3%	-1.3%
	Totals	908	882	859	833	78.4%	79.8%	84.6%	81.1%	1.5%	4.8%	-3.5%	2.7%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	0.0	2.5	2.4	0.0	4.9
Acres/Valley Mile	0.0	0.9	0.9	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.01	0.20%	0.25	0.00	0.01	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC3

Park

Classification General Location

CS: Confined straight

Corwin Springs to Carbella; Yankee Jim Canyon

Upstream River Mile557.2Downstream River Mile546.8Length10.40 mi (16.74 km)

General Comments

Narrative Summary

Reach PC3 is located north of Gardiner, extending from Corwin Springs to Carbella. This reach is highly confined and by glacial terraces on its upper end, and Archean-age gneiss on its lower end. As an Archean-age rock unit, the gneiss is over 2.5 billion years old. This bedrock confined section of river is known as Yankee Jim Canyon, which hosts a steep series of drops that create the most challenging whitewater section of the Yellowstone River outside of Yellowstone National Park. "Yankee Jim" George was a well-known character of the area; he came from the east in the late 1800s to settle on a newly built wagon road that extended from Bozeman to Mammoth Hot Springs in Yellowstone National Park. For 20 years Yankee Jim ran the National Park Toll Road. One hundred years later, Yankee Jim Canyon is highly popular as a recreational resource for both rafting and fishing. There are two boat ramps in the reach, located above and below the canyon. The Slip & Slide (RM 552) and Crystal Cross (RM 548) Fishing Access Sites provide river access but have no boat ramps.

Reach PC3 contains over three miles of bank armor, most of which is rock riprap that protects the highway at the entrance to Yankee Jim Canyon. Of those three miles, 700 feet was constructed since 2001. Channel migration is extremely localized in the reach, and is concentrated at the toe of an alluvial fan at the mouth of Cedar Creek that impinges on the river from the east.

Similar to other reaches in Park County, the extent of flood irrigation has dropped in the reach since 1950, and the amount of sprinkler irrigation has increased. Even so, there has been a net loss of irrigated land of over 200 acres in the reach as exurban land uses have expanded.

This area of the upper Yellowstone River basin experienced three severe floods in the last 20 years. The largest floods were in 1996 and 1997, when the 32,200 cfs peak flow measured at the Corwin Springs gage exceeded a 100-year flood for those two years in a row. The 1974 and 2011 floods were major as well, with both events exceeding 30,000 cfs.

CEA-Related observations in Reach PC3 include: •Conversion of flood irrigation to sprinkler •Net loss of irrigated land

No reach-specific Practices have been identified for this reach.

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

0.00%

% Change

0.00%

0.00%

0.00%

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Corwin Springs

FI	ood His	story								Downstream	Upstream	
	Year	Dat	te Fl	ow on Date	Return Ir	nterval			Gage No	6192500	6191500	
	1927	Jun	27	25,000	10-25	i yr			Location	Livingston	Corwin Springs	
	1971	Jun	23	25,200	10-25	yr		Period		1929-2015	1890-2012	
	1928	May	26	25,300	10-25	i yr			1020 2010	1000 2012		
	1911	Jun	13	25,800	10-25	i yr		Distance	To (miles)	40.2	0.0	
	2010	Jun	5	26,000	10-25	yr						
	2011	Jun	30	30,300	50-100) yr						
	1974	Jun	17	30,900	50-100) yr						
	1918	Jun	14	32,000	50-100) yr						
	1997	Jun	6	32,200	>100	-yr						
	1996	Jun	10	32,200	>100	-yr						
D	ischarg	е								7Q10	95% Sum.	
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration	
	Unregul	ated	8,800	17,600	22,300	25,200	31,100	33,500	39,100	1,230	1,760	
	Regul	ated	8,800	17,600	22,300	25,200	31,100	33,500	39,100	1,220	1,680	

0.00%

0.00%

0.00%

-0.81%

-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/27/2005	color	1-meter pixels	6192500	2250
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/22/2009	Color	1-meter pixels	6192500	6990
2009	NAIP	6/27/2009	Color	1-meter pixels	6192500	15200
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	15,624	14.3%	16,335	15.0%	711
	Flow Deflectors	227	0.2%	227	0.2%	0
	Between Flow Deflectors	67	0.1%	67	0.1%	0
	Feature Type Totals	15,917	14.6%	16,628	15.2%	711
	Reach Totals	15,917	14.6%	16,628	15.2%	711

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	54,600		1.00	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	54,596	1,677	1.03	1950 to 2001:	3.07%
Change 1950 - 2001	-4		0.03		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100-Year		5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of the riparian zones that have been converted to agrigulture and irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pro	ne 5-year floodplain ten otect the agricultural pr	d to represent oduction and

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

Mean 50-Yr	Erosion	Total	Restricted	% Restricted	Total	Restricted	% Restricted
Migration	Buffer	CMZ	CMZ	Migration	AHZ	AHZ	Avulsion
Distance (ft)	(ft)	Acreage	Acreage	Area	Acreage	Acreage	Area
74	148	335	0	0%	0	0	0%

Land Uses within the CMZ (Acres)	Flood	Sprinkler	Pivot	Urban/	Trans-
	Irrigation	Irrigation	Irrigation	ExUrban	portation
	0.0	0.0	0.0	4.2	1.3
LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	21	32	36	24	0.5%	0.7%	0.8%	0.5%	
	Totals	21	32	36	24	0.5%	0.7%	0.8%	0.5%	
Agricultural Lan	d									
	Non-Irrigated	908	882	859	833	20.1%	19.5%	19.0%	18.4%	
	Irrigated	251	223	156	194	5.5%	4.9%	3.5%	4.3%	
	Totals	1,159	1,105	1,015	1,027	25.6%	24.4%	22.4%	22.7%	
Channel										
	Channel	107	100	100	100	2.4%	2.2%	2.2%	2.2%	
	Totals	107	100	100	100	2.4%	2.2%	2.2%	2.2%	
ExUrban										
	ExUrban Other	0	16	16	16	0.0%	0.4%	0.4%	0.4%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	9	0	0	0.0%	0.2%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	9	34	129	129	0.2%	0.8%	2.9%	2.9%	
	Totals	9	59	145	145	0.2%	1.3%	3.2%	3.2%	
Transportation										
	Public Road	36	36	36	36	0.8%	0.8%	0.8%	0.8%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	36	36	36	36	0.8%	0.8%	0.8%	0.8%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	neline - Tiers 3 an	d 4								Char	ige Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	l I	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	92	188	0.0%	0.0%	2.5%	5.1%	0.0%	2.5%	2.6%	5.1%
	Pivot	0	0	0	32	0.0%	0.0%	0.0%	0.9%	0.0%	0.0%	0.9%	0.9%
	Flood	635	535	272	184	15.6%	13.7%	7.4%	5.0%	-2.0%	-6.3%	-2.4%	-10.6%
	Totals	635	535	364	404	15.6%	13.7%	9.9%	11.0%	-2.0%	-3.7%	1.1%	-4.6%

Reach PC3

Non-Irrigated

Multi-Use	3,400	3,299	3,113	3,116	83.6%	84.3%	84.7%	84.6%	0.7%	0.4% -0.1%	1.0%
Hay/Pasture	33	81	200	164	0.8%	2.1%	5.4%	4.4%	1.2%	3.4% -1.0%	3.6%
Totals	3,433	3,380	3,313	3,280	84.4%	86.3%	90.1%	89.0%	2.0%	3.7% -1.1%	4.6%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	0.3	7.3	6.4	0.0	14.0
Acres/Valley Mile	0.0	0.7	0.6	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (AC)	Floouplain	Area (AC)	RIVIA (AC)	Channel (AC)	Island (AC)
Russian Olive in Reach	0.02	0.15%	0.72	0.00	0.01	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

546.8

543.2

3.60 mi (5.79 km)

Upstream River Mile

Length

Downstream River Mile

CountyParkClassificationCM: Confined meanderingGeneral LocationCarbella to Hwy 89 Br.

General Comments

Narrative Summary

Reach PC4 extends from Carbella to the Highway 89 Bridge at Point of Rocks in the upper Paradise Valley. The reach is classified as confined meandering, indicating that it has some sinuosity, yet migration rates are low due to lateral confinement.

Flow deflectors and rock riprap cover about 800 feet of bankline in Reach PC4, which is about 2 percent of the total streambank length. All of this armor was in place prior to 2001.

Similar to other reaches in Park County, the extent of flood irrigation has dropped in the reach since 1950, and the amount of sprinkler and pivot irrigation has increased. Reach PC4 has seen a net expansion of about 150 acres of irrigated lands since 1950, with about half of the expansion into sprinkler irrigation and the other half into pivot.

Reach PC4 marks the entrance of the Yellowstone River into the Paradise Valley. This is geomorphically indicated by the onset of point bar formation and sediment storage in the channel. One large bar deposit located about ³/₄ mile of the Highway 89 bridge has driven almost 300 feet of bank movement since 1950. As result, the Channel Migration Zone area in this reach has expanded relative to upstream, with an erosion buffer of 258 feet assigned to the alluvial edge of the river. Reach PC4 also has over 2,000 feet of active side channels.

This area of the upper Yellowstone River basin experienced three severe floods in the last 20 years. The largest floods were in 1996 and 1997, when the 32,200 cfs peak flow measured at the Corwin Springs gage exceeded a 100-year flood for those two years in a row. The 1974 and 2011 floods were major as well, with both events exceeding 30,000 cfs. The Corwin Springs gage is located upstream of Reach PC4 at the Corwin Springs Bridge.

CEA-Related observations in Reach PC4 include: •Increased bank migration and Channel Migration Zone area entering Paradise Valley •Net expansion of irrigated lands

No reach-specific Practices have been identified for this reach.

PHYSICAL FEATURES MAP (2011)

-0.42%

-0.52%

-0.37%

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Corwin Springs

FI	ood His	story								Downstream	Upstream
	Year	Dat	e Fl	ow on Date	Return Ir	nterval			Gage No	6192500	6191500
	1927	Jun	27	25,000	10-25	yr			Location	l ivinaston	Corwin Springs
	1971	Jun :	23	25,200	10-25	yr		Period		1929-2015	1890-2012
	1928	May	26	25,300	10-25	yr				1020 2010	1000 2012
	1911	Jun	13	25,800	10-25	yr		Distance	lo (miles)	36.6	10.4
	2010	Jun	5	26,000	10-25	yr					
	2011	Jun	30	30,300	50-10) yr					
	1974	Jun	17	30,900	50-10) yr					
	1918	Jun	14	32,000	50-10) yr					
	1997	Jun	6	32,200	>100	-yr					
	1996	Jun	10	32,200	>100	-yr					
D	ischarg	е								7010	95% Sum
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	9,560	19,100	24,000	27,100	33,400	36,000	41,900	1,240	1,760
	Regul	ated	9,500	19,000	23,900	27,000	33,400	36,000	41,900	1,230	1,680

0.00%

0.00%

0.00%

-0.81%

-4.55%

% Change

-0.63%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/27/2005	color	1-meter pixels	6192500	2250
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	6/27/2009	Color	1-meter pixels	6192500	15200
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	367	1.0%	367	1.0%	0
	Flow Deflectors	150	0.4%	147	0.4%	-3
	Between Flow Deflectors	283	0.7%	287	0.8%	4
	Feature Type Totals	801	2.1%	801	2.1%	0
Floodplain	Control					
	Floodplain Dike/Levee	918	2.4%	918	2.4%	0
	Feature Type Totals	918	2.4%	918	2.4%	0
	Reach Totals	1,718	4.5%	1,718	4.5%	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	19,086	2,189	1.11	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	19,119	2,837	1.15	1950 to 2001:	3.02%
Change 1950 - 2001	34	648	0.03		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pr	ne 5-year floodplain tend otect the agricultural pro	to represent

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal Restricte IZ CMZ age Acreage	ed % Restric Migratio e Area	ted Tota on AHZ Acrea	I Restr AF ge Acre	icted % Restricte IZ Avulsion age Area
	129	258	30	8 3	1%	0	0	0%
2011 Res	stricted Mig	ration A	ea Sun	nmary	Note that the	ese data refle	ct the observe	ed conditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, C	OE for the res	t of the river).	and Sweet Glass
Road/Railro	ad Prism							
	Public Road		3	0.9%				
		Totals	3	0.9%				
Land Us	es within th	e CMZ (A	Acres)	Flood Irrigation	Sprinkler Irrigation	Pivot Irrigation	Urban/ ExUrban	Trans- portation

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	8	2	4	4	0.5%	0.1%	0.2%	0.2%	
	Totals	8	2	4	4	0.5%	0.1%	0.2%	0.2%	
Agricultural Lan	d									
	Non-Irrigated	1,408	1,294	1,392	1,253	83.1%	76.3%	82.1%	73.9%	
	Irrigated	63	167	63	190	3.7%	9.8%	3.7%	11.2%	
	Totals	1,471	1,460	1,455	1,443	86.8%	86.2%	85.9%	85.1%	
Channel										
	Channel	186	179	180	181	11.0%	10.6%	10.6%	10.7%	
	Totals	186	179	180	181	11.0%	10.6%	10.6%	10.7%	
ExUrban										
	ExUrban Other	0	0	0	2	0.0%	0.0%	0.0%	0.1%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	9	13	22	0.0%	0.5%	0.7%	1.3%	
	Totals	0	9	13	23	0.0%	0.5%	0.7%	1.4%	
Transportation										
	Public Road	29	44	44	44	1.7%	2.6%	2.6%	2.6%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	29	44	44	44	1.7%	2.6%	2.6%	2.6%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Til	meline - Tiers 3 and	4								Char	ige Beti	ween Y	ears
			Acr	res		%	of Rea	ch Area	l I	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	0	0	39	85	0.0%	0.0%	2.7%	5.9%	0.0%	2.7%	3.2%	5.9%
	Pivot	0	0	24	97	0.0%	0.0%	1.6%	6.7%	0.0%	1.6%	5.1%	6.7%
	Flood	63	167	0	9	4.3%	11.4%	0.0%	0.6%	7.2%	-11.4%	0.6%	-3.7%
	Totals	63	167	63	190	4.3%	11.4%	4.3%	13.2%	7.2%	-7.1%	8.8%	8.9%

Reach PC4

Non-Irrigated													
	Multi-Use	1,341	1,287	1,354	1,236	91.1%	88.1%	93.1%	85.7%	-3.0%	5.0%	-7.4%	-5.5%
	Hay/Pasture	68	7	37	17	4.6%	0.5%	2.6%	1.2%	-4.1%	2.1%	-1.4%	-3.4%
	Totals	1,408	1,294	1,392	1,253	95.7%	88.6%	95.7%	86.8%	-7.2%	7.1%	-8.8%	-8.9%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	0.0	5.5	25.0	0.0	30.5
Acres/Valley Mile	0.0	1.7	7.6	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (AC)	Floouplain	Area (AC)	RIVIA (AC)	Channel (AC)	Island (AC)
Russian Olive in Reach	0.00	0.04%	0.10	0.00	0.02	0.07

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

County	Park
Classification	PCA: Partially confined anabranching
General Location	Hwy 89 Br. to Big Creek

Upstream River Mile	543.2
Downstream River Mile	539.4
Length	3.80 mi (6.12 km)

General Comments

Narrative Summary

From the Highway 89 Bridge downstream to Big Creek, Reach PC5 is the first notably dynamic reach below Gardiner, with high rates of bank movement and a relatively high density of side channels and islands. In 2001, there were almost four miles of active side channel in the reach, although one 3,500-foot long channel on the west side of the river has been blocked by a dike. This dike does appear to have a culvert in it, keeping the channel somewhat accessible. In addition to side channel blockages, this reach has been impacted by over 5,000 feet of bank armor, most of which is rock riprap. One section of riprap that was about 150 feet long when constructed has been flanked and is now in the middle of the river. Since the rock was flanked, the river has migrated over 100 feet behind the old armor.

Similar to other reaches in Park County, the extent of flood irrigation has dropped in the reach since 1950, and the amount of sprinkler and pivot irrigation has increased. Reach PC5 has seen a net expansion of about 150 acres of irrigated lands since 1950, with most of the expansion into pivot. There has also been 100 acres of exurban development in Reach PC5 since 1950. There is one boat ramp at RM 542.5 at the Point of Rocks Fishing Access.

The influence of irrigation on streamflow is small but evident in Reach PC5. When gage data are extrapolated to reaches based on drainage area, Reach PC5 shows a 100 cfs reduction in the 2-year flood under developed conditions. This is a 0.5 percent reduction in the total flow of 19,000 cfs.

This area of the upper Yellowstone River basin experienced three severe floods in the last 20 years. The largest floods were in 1996 and 1997, when the 32,200 cfs peak flow measured at the Corwin Springs gage exceeded a 100-year flood for those two years in a row. The 1974 and 2011 floods were major as well, with both events exceeding 30,000 cfs. The Corwin Springs gage is located upstream of Reach PC5 at the Corwin Springs Bridge.

CEA-Related observations in Reach PC5 include: •Blockage of a 3,500feet-long side channel by a dike which may have a culvert •Flanking of rock riprap and accelerated erosion behind •Net expansion of irrigated lands

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC5 include: Side Channel Restoration at RM 542 Removal of flanked bank armor at RM 541.4

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Corwin Springs

FI	ood His	story	,							Downstream	Upstream
	Year	Dat	te F	low on Date	Return Ir	nterval			Gage No	6192500	1619500
	1927	Jun	27	25,000	10-25	5 yr			Location	Livingston	1010000
	1971	Jun	23	25,200	10-25	5 yr		Pariod		1020 2015	
	1928	May	26	25,300	10-25	5 yr		Penou	I OI RECOIU	1929-2013	
	1911	Jun	13	25,800	10-25	5 yr		Distance	To (miles)	32.8	
	2010	Jun	5	26,000	10-25	i yr					
	2011	Jun	30	30,300	50-10	0 yr					
	1974	Jun	17	30,900	50-10	0 yr					
	1918	Jun	14	32,000	50-10	0 yr					
	1997	Jun	6	32,200	>100	-yr					
	1996	Jun	10	32,200	>100	-yr					
Di	scharg	е								7010	95% Sum.
	-		1.01 Y	r 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	9,560	19,100	24,000	27,100	33,400	36,000	41,900	1,280	1,760
	Regul	ated	9,500	19,000	23,900	27,000	33,400	36,000	41,900	1,260	1,680
	% Cha	ange	-0.63%	-0.52%	-0.42%	-0.37%	0.00%	0.00%	0.00%	-1.56%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	6/27/2009	Color	1-meter pixels	6192500	15200
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	
2013	NAIP	08/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Stabilization						
	Rock RipRap	4,572	11.3%	4,372	10.8%	-201
	Flow Deflectors	707	1.8%	645	1.6%	-62
	Between Flow Deflectors	368	0.9%	348	0.9%	-20
	Feature Type Totals	5,647	14.0%	5,365	13.3%	-282
Floodplain	Control					
	Floodplain Dike/Levee	1,023	2.5%	1,023	2.5%	0
	Feature Type Totals	1,023	2.5%	1,023	2.5%	0
	Reach Totals	6,670	16.5%	6,388	15.8%	-282

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	20,497	10,881	1.53	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	20,180	20,151	2.00	1950 to 2001:	30.55%
Change 1950 - 2001	-317	9,270	0.47		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	3,503		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	-Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pr	ne 5-year floodplain tend otect the agricultural pro	to represent

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal IZ age	Restricted CMZ Acreage	% Restrict Migration Area	ed Tota n AHZ Acrea	ll Res 2 A ge Ac	tricted AHZ reage	% Restricted Avulsion Area
	157	313	38	4	25	6%	0		0	0%
2011 Res	stricted Migr	ation A	rea Sun	nma	ry	Note that the	ese data refle	ct the obser	ved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc	cent of CMZ	Counties, CC	DE for the res	at of the rive	r).	Sweet Grass
Road/Railro	oad Prism									
	Public Road		4	0	.9%					
RipRap/Flo	w Deflectors									
	Public Road		6	1	.5%					
	Irrigated		9	2	2%					
RipRap										
	Exurban Resi	dential	1	0	.4%					
Dike/Levee										
	Non-Irrigated		3	0	.8%					
		Totals	22	5	5.8%					
Land Us	es within the	e CMZ (A	Acres)	l Irr	Flood igation 0.0	Sprinkler Irrigation 3.2	Pivot Irrigation 2.4	Urban/ ExUrban 20.1	r pc	irans- ortation 2.7

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Timeline - Tiers 2 and 3				% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	0	10	26	14	0.0%	0.8%	2.0%	1.0%
	Totals	0	10	26	14	0.0%	0.8%	2.0%	1.0%
Agricultural Lan	d								
	Non-Irrigated	806	895	781	557	61.3%	68.0%	59.3%	42.4%
	Irrigated	188	100	102	335	14.3%	7.6%	7.8%	25.5%
	Totals	995	995	883	893	75.6%	75.6%	67.1%	67.8%
Channel									
	Channel	287	252	253	258	21.8%	19.1%	19.3%	19.6%
	Totals	287	252	253	258	21.8%	19.1%	19.3%	19.6%
ExUrban									
	ExUrban Other	0	7	20	20	0.0%	0.6%	1.5%	1.5%
	ExUrban Undeveloped	0	0	6	14	0.0%	0.0%	0.5%	1.0%
	ExUrban Industrial	0	0	7	7	0.0%	0.0%	0.5%	0.5%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	3	71	62	0.0%	0.2%	5.4%	4.7%
	Totals	0	11	104	102	0.0%	0.8%	7.9%	7.8%
Transportation									
	Public Road	35	49	49	49	2.6%	3.7%	3.7%	3.7%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	35	49	49	49	2.6%	3.7%	3.7%	3.7%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	meline - Tiers 3 and	4								Char	nge Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	l I	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	88	74	0.0%	0.0%	10.0%	8.3%	0.0%	10.0%	-1.7%	8.3%
	Pivot	0	0	0	222	0.0%	0.0%	0.0%	24.9%	0.0%	0.0%	24.9%	24.9%
	Flood	188	100	14	39	18.9%	10.1%	1.6%	4.3%	-8.9%	-8.5%	2.8%	-14.6%
	Totals	188	100	102	335	18.9%	10.1%	11.6%	37.6%	-8.9%	1.5%	26.0%	18.6%

Reach PC5

Non-Irrigated												
	Multi-Use	767	806	396	366	77.1%	81.0%	44.9%	41.0%	3.9%	-36.1% -3.9	% -36.1%
	Hay/Pasture	39	89	384	191	3.9%	8.9%	43.5%	21.4%	5.0%	34.6% -22.1	% 17.5%
	Totals	806	895	781	557	81.1%	89.9%	88.4%	62.4%	8. 9 %	-1.5% -26.0	% -18.6%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	0.0	26.4	34.0	0.0	60.4
Acres/Valley Mile	0.0	7.4	9.6	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.11	0.06%	0.20	0.00	0.00	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

County	Park
Classification	CM: Confined meandering
General Location	Big Creek to Six Mile Cr
General Comments	

Upstream River Mile539.4Downstream River Mile535Length4.40 mi (7.08 km)

Narrative Summary

Reach PC6 is 4.4 miles long, extending from the mouth of Big Creek to the mouth of Six Mile Creek. The reach has a fairly narrow riparian corridor and Channel Migration Zone (CMZ), indicating low rates of channel movement. Over two miles of the bankline in Reach PC6 are armored, by both rock riprap (7,371 feet) and flow deflectors (3,278 feet). Over 20 percent of the total bankline in this reach is armored, and all of that armor was in place in 2001. The armor protects both exurban and irrigated lands.

The amount of flood irrigated lands in Reach PC6 has dropped by one half since 1950 (200 acre reduction), and there has been commensurate development into pivot (85 acres) and sprinkler (93 acres) during that time. The overall footprint of agricultural lands within Reach PC6 has dropped by about 500 acres, with 450 of those acres converting to exurban development. About 11 acres of irrigated land in Reach PC6 are within the Channel Migration Zone. As the CMZ is quite narrow in this reach, it indicates that these irrigated lands extend essentially to the streambank. There is one boat ramp on the right bank at RM 536.8.

This area of the upper Yellowstone River basin experienced three severe floods in the last 20 years. The largest floods were in 1996 and 1997, when the 32,200 cfs peak flow measured at the Corwin Springs gage exceeded a 100-year flood for those two years in a row. The 1974 and 2011 floods were major as well, with both events exceeding 30,000 cfs. The Corwin Springs gage is located upstream of Reach PC6 at the Corwin Springs Bridge.

A hydrologic evaluation of flow depletions in the reach indicates that flow alterations over the last century have been minimal in this reach. Flow reductions due to human influences are estimated to be less than 2 percent for both high and low flows.

CEA-Related observations in Reach PC6 include:

•Conversion of agricultural land to exurban development

·Agricultural and exurban development close to the active channel within the CMZ

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC6 include: •CMZ Management due to extensive encroachment of irrigated lands to edge of river.

Reach PC6

PHYSICAL FEATURES MAP (2011)

-0.42%

-0.52%

-0.37%

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Corwin Springs

Flood Hi	story	1							Downstream	Upstream	
Year	Dat	te Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6192500	Gage 6191500	
1927	Jun	27	25,000	10-25	5 yr			Location	Livingston	Corwin Springs	
1971	Jun	23	25,200	10-25	5 yr		Period		1929-2015	1890-2012	
1928	May	26	25,300	10-25	5 yr		T enou		1020 2010	1000 2012	
1911	Jun	13	25,800	10-25	i yr		Distance	e To (miles)	28.4	17.8	
2010	Jun	5	26,000	10-25	i yr						
2011	Jun	30	30,300	50-10	0 yr						
1974	Jun	17	30,900	50-10	0 yr						
1918	Jun	14	32,000	50-10	0 yr						
1997	Jun	6	32,200	>100	-yr						
1996	Jun	10	32,200	>100	-yr						
Discharg	Je								7010	95% Sum.	
		1.01 Yı	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration	
Unregu	lated	9,560	19,100	24,000	27,100	33,400	36,000	41,900	1,310	1,760	
Regu	lated	9,500	19,000	23,900	27,000	33,400	36,000	41,900	1,290	1,680	

0.00%

0.00%

0.00%

-1.53%

-4.55%

% Change

-0.63%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/22/2009	Color	1-meter pixels	6192500	6990
2009	NAIP	6/27/2009	Color	1-meter pixels	6192500	15200
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	
2013	NAIP	08/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	7,371	16.2%	7,371	16.2%	0
	Flow Deflectors	1,685	3.7%	1,685	3.7%	0
	Between Flow Deflectors	1,593	3.5%	1,593	3.5%	0
	Feature Type Totals	10,649	23.4%	10,649	23.4%	0
Floodplain	Control					
	Floodplain Dike/Levee	477	1.1%	477	1.1%	0
	Feature Type Totals	477	1.1%	477	1.1%	0
	Reach Totals	11,126	24.5%	11,126	24.5%	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	22,711	4,503	1.20	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	22,709	4,579	1.20	1950 to 2001:	0.28%
Change 1950 - 2001	-2	76	0.00		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of the riparian zones that have been converted to agrigulture and irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pro	ne 5-year floodplain ten otect the agricultural pr	d to represent oduction and

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 55	Erosion Buffer (ft) 110	To CM Acre 27	tal AZ eage 75	Restricted CMZ Acreage 24	% Restricte Migration Area 9%	ed Tota AHZ Acreag 12	l Res ge Ac	tricted AHZ reage 0	% Restricted Avulsion Area 0%
2011 Res	stricted Mig	ration A	rea Sur	nma	rv	Note that the	e data reflec	ct the obser	ved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc	cent of MZ	2011 aerial pl Counties, CO	notography (E for the res	NAIP for Pa t of the rive	ark and S r).	Sweet Grass
RipRap/Flo	w Deflectors									
	Other Infrast	ructure	2	0	.5%					
	Exurban Res	sidential	11	4	.0%					
RipRap										
	Public Road		2	0	.8%					
Flow Deflect	ctors									
	Irrigated		8	2	.7%					
Dike/Levee										
	Non-Irrigated	t	1	0	.4%					
		Totals	24	8	.4%					
Land Us	es within th	e CMZ (A	Acres)	i Irr	Flood igation 10.6	Sprinkler Irrigation 0.0	Pivot Irrigation 0.7	Urban/ ExUrbar 29.0	ד pc ו	rans- ortation 1.8

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	17	68	75	86	1.1%	4.4%	4.9%	5.6%	
	Totals	17	68	75	86	1.1%	4.4%	4.9%	5.6%	
Agricultural Lan	d									
	Non-Irrigated	869	800	903	415	56.7%	52.2%	58.9%	27.1%	
	Irrigated	409	430	205	355	26.7%	28.1%	13.4%	23.2%	
	Totals	1,278	1,230	1,107	770	83.4%	80.3%	72.3%	50.3%	
Channel										
	Channel	192	188	188	188	12.5%	12.3%	12.3%	12.3%	
	Totals	192	188	188	188	12.5%	12.3%	12.3%	12.3%	
ExUrban										
	ExUrban Other	0	0	0	3	0.0%	0.0%	0.0%	0.2%	
	ExUrban Undeveloped	4	4	16	233	0.3%	0.3%	1.0%	15.2%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	0	104	211	0.0%	0.0%	6.8%	13.7%	
	Totals	4	4	120	446	0.3%	0.3%	7.8%	29.1%	
Transportation										
	Public Road	41	42	42	42	2.7%	2.7%	2.7%	2.7%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	41	42	42	42	2.7%	2.7%	2.7%	2.7%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	neline - Tiers 3 and 4	4								Char	ige Beti	ween Y	ears
			Acı	res		%	of Rea	ch Area	l I	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	0	0	93	93	0.0%	0.0%	8.4%	12.0%	0.0%	8.4%	3.7%	12.0%
	Pivot	0	0	49	85	0.0%	0.0%	4.4%	11.0%	0.0%	4.4%	6.6%	11.0%
	Flood	409	430	63	178	32.0%	35.0%	5.7%	23.1%	3.0%	-29.3%	17.4%	-8.9%
	Totals	409	430	205	355	32.0%	35.0%	18.5%	46.1%	3.0%	-16.5%	27.6%	14.1%

Reach PC6

Non-Irrigated												
	Multi-Use	849	761	571	272	66.4%	61.8%	51.6%	35.3%	-4.6%	-10.3% -16.2%	-31.1%
	Hay/Pasture	20	39	332	143	1.6%	3.2%	29.9%	18.6%	1.7%	26.7% -11.4%	17.0%
	Totals	869	800	903	415	68.0%	65.0%	81.5%	53.9%	-3.0%	16.5% -27.6%	-14.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	1.0	62.6	13.6	0.0	77.2
Acres/Valley Mile	0.2	15.3	3.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.01	0.15%	0.66	0.00	0.00	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

PCA: Partially confined anabranching

Six Mile Cr to Grey Owl

Upstream River Mile	535
Downstream River Mile	529
Length	6.00 mi (9.66

km)

General Location General Comments

County

Classification

Park

Narrative Summary

Reach PC7 extends from the mouth of Six Mile Creek to the Grey Owl fishing access site. It is six miles long and is classified as a Partially Confined Anabranching (PCA) channel type. This indicates that the reach supports side channels and wooded islands, and intermittently flows along the edge of the stream corridor. The relatively complex reach type is evidenced by the relative broad Channel Migration Zone (CMZ) footprint, which is typically about 1500 to 2500 feet wide in this reach. In comparison, Reach PC6 just upstream has a CMZ that is typically about 500 feet wide. There are a total of 1,171 acres of stream corridor within the CMZ in Reach PC7. About 6 percent of that area has been restricted by bank armor.

Reach PC7 has over 8,800 feet of rock riprap and 550 feet of flow deflectors, which collectively armors about 15 percent of the total bankline. Of those 9,350 feet of armor, about 350 feet were constructed since 2001. Since 1950, one side channel that is 2,950 feet long was blocked by a dike at RM 532. This isolated channel is located just upstream of the Emigrant Bridge on the east floodplain, and has been identified as a potential side channel restoration area. In the upstream portion of the reach at RM 534, the Park Branch Canal diverts water from a long side channel that has been active since at least the 1950s.

Land use conversions in Reach PC7 have seen a reduction in flood irrigation that has been accompanied by about 67 acres of development of sprinkler and pivot irrigation systems. That said, this reach has experienced major exurban growth, from 0 acres in 1950 to 298 acres in 2011. Most of that growth reflects rural subdivision development on the glacial outwash terraces above the active stream corridor. There is one boat ramp on the right bank just above the Emigrant Bridge at the Emigrant Fishing Access Site, and just below the bridge, there is a ~72 acre fishing access site without boating facilities on the west side of the river (Emigrant West).

Reach PC7 contains over 200 acres of emergent wetlands, many of which appear to be associated with groundwater seepage from the base of the glacial terraces on the east side of the river, and ditch seepage on the west side of the river. These areas tend to be utilized as non-irrigated hay/pasture ground.

About 1.5 acres of Russian olive have been mapped in Reach PC7, which is a dramatic increase relative to upstream reaches.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,340 cfs to 1,320 cfs with human development, a reduction of 1.5 percent.

CEA-Related observations in Reach PC7 include:

- Conversion of agricultural land to exurban development
- •Post-1950s side channel blockage with identified restoration potential
- •Sharp increase in Russian olive extent relative to upstream reaches

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC7 include: •Side Channel Restoration at RM 532R.

- •Diversion Infrastructure Management at Park Branch Canal, RM 535.5
- Russian olive removal

Reach PC7

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Corwin Springs

FI	ood His	story								Downstream	Upstream	
	Year	Da	te F	low on Date	Return Ir	nterval			Gage No	6192500	6191500	
	1927	Jun	27	25,000	10-25	5 yr			Location	Livingston	Corwin Springs	
	1971	Jun	23	25,200	10-25	5 yr		Period		1929-2015	1890-2012	
	1928	May	26	25,300	10-25	5 yr		Disco		020 2010	000 2012	
	1911	Jun	13	25,800	10-25	5 yr		Distance	lo (miles)	22.4	22.2	
	2010	Jun	n 5	26,000	10-25	5 yr						
	2011	Jun	30	30,300	50-10	0 yr						
	1974	Jun	17	30,900	50-10	0 yr						
	1918	Jun	14	32,000	50-10	0 yr						
	1997	Jun	n 6	32,200	>100	-yr						
	1996	Jun	10	32,200	>100	-yr						
Di	scharg	е								7Q10	95% Sum.	
			1.01 Y	r 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration	
	Unregul	ated	9,560	19,100	24,000	27,100	33,400	36,000	41,900	1,340	1,760	
	Regul	ated	9,500	19,000	23,900	27,000	33,400	36,000	41,900	1,320	1,680	
	% Ch	ange	-0.63%	-0.52%	-0.42%	-0.37%	0.00%	0.00%	0.00%	-1.49%	-4.55%	

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/28/2005	color	1-meter pixels	6192500	2210
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/22/2009	Color	1-meter pixels	6192500	6990
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	
2013	NAIP	08/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	8,540	13.1%	8,841	13.6%	301
	Flow Deflectors	502	0.8%	556	0.9%	54
	Feature Type Totals	9,042	13.9%	9,396	14.4%	355
Floodplain	Control					
	Floodplain Dike/Levee	2,005	3.1%	2,005	3.1%	0
	Feature Type Totals	2,005	3.1%	2,005	3.1%	0
	Reach Totals	11,047	17.0%	11,401	17.5%	355

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	34,130	29,472	1.86	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	32,556	41,507	2.27	1950 to 2001:	22.08%
Change 1950 - 2001	-1,574	12,035	0.41		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	2,950		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of the riparian zones that have been converted to agrigulture and irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pro	ne 5-year floodplain ten otect the agricultural pr	d to represent oduction and

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal //Z eage	Restricted CMZ Acreage	% Restric Migratic Area	cted Tot on AH Acre	tal IZ age	Restricted AHZ Acreage	% Restricted Avulsion Area
	194	388	1,1	71	74	6%	39	9	0	0%
2011 Res	stricted Migr	ration A	rea Sun	nma	ry	Note that th	ese data refl	ect the ot	served con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc	cent of CMZ	Counties, C	COE for the re	est of the	r Park and s river).	Sweet Grass
RipRap/Flov	w Deflectors									
	Public Road		0	0	.0%					
RipRap										
	Non-Irrigated		36	2	.9%					
	Irrigated		6	0	.5%					
	Exurban Und	evelope	0	0	.0%					
	Exurban Resi	idential	2	0	.2%					
	Canal		18	1	.5%					
Dike/Levee										
	Public Road		12	1	.0%					
		Totals	74	6	.1%					
Land Use	es within the	e CMZ (/	Acres)	l Irr	Flood igation 10.0	Sprinkler Irrigation 11.6	Pivot Irrigation 0.0	Urba ExUr 16	an/ 1 ban po .0	rans- ortation 3.5

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3		% of Reach Area						
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	33	33	33	33	1.2%	1.2%	1.2%	1.2%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	28	54	49	62	1.0%	2.0%	1.8%	2.3%
	Totals	61	87	82	95	2.2%	3.2%	3.0%	3.5%
Agricultural Lan	d								
	Non-Irrigated	1,487	1,430	1,282	1,271	54.5%	52.4%	47.0%	46.6%
	Irrigated	415	315	265	237	15.2%	11.6%	9.7%	8.7%
	Totals	1,902	1,746	1,547	1,509	69.7%	64.0%	56.7%	55.3%
Channel									
	Channel	701	721	766	767	25.7%	26.5%	28.1%	28.1%
	Totals	701	721	766	767	25.7%	26.5%	28.1%	28.1%
ExUrban									1
	ExUrban Other	0	1	3	3	0.0%	0.1%	0.1%	0.1%
	ExUrban Undeveloped	3	0	5	13	0.1%	0.0%	0.2%	0.5%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	21	30	30	0.0%	0.8%	1.1%	1.1%
	ExUrban Residential	22	94	236	251	0.8%	3.4%	8.7%	9.2%
	Totals	25	116	274	298	0.9%	4.3%	10.0%	10.9%
Transportation									
	Public Road	39	57	59	59	1.4%	2.1%	2.1%	2.1%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	39	57	59	59	1.4%	2.1%	2.1%	2.1%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	meline - Tiers 3 and	4								Char	nge Betv	ween Y	ears
			Acr	res		%	of Rea	ch Area	I	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	50	50	0.0%	0.0%	3.3%	3.3%	0.0%	3.3%	0.1%	3.3%
	Pivot	0	0	0	17	0.0%	0.0%	0.0%	1.1%	0.0%	0.0%	1.1%	1.1%
	Flood	415	315	214	170	21.8%	18.1%	13.9%	11.3%	-3.7%	-4.2%	-2.6%	-10.5%
	Totals	415	315	265	237	21.8%	18.1%	17.1%	15.7%	-3.7%	-0.9%	-1.4%	-6.1%

Reach PC7

Non-Irrigated													
	Multi-Use	928	1,373	1,116	1,088	48.8%	78.6%	72.1%	72.1%	29.8%	-6.5%	0.0%	23.3%
	Hay/Pasture	559	57	167	184	29.4%	3.3%	10.8%	12.2%	-26.1%	7.5%	1.4%	-17.2%
	Totals	1,487	1,430	1,282	1,271	78.2%	81.9%	82.9%	84.3%	3.7%	0.9%	1.4%	6.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	12.1	203.9	112.5	0.0	328.5
Acres/Valley Mile	2.1	36.0	19.9	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	1.47	0.16%	0.81	0.15	0.14	0.02

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC8

 County
 Park

 Classification
 CM: Confined meandering

 General Location
 Grey Owl to just below Mallard's Rest

Upstream River Mile529Downstream River Mile516.3Length12.70 mi (20.44 km)

General Comments Narrative Summary

Reach PC8 extends from the Grey Owl fishing access site to just below Mallard's Rest. It is almost 13 miles long and is classified as confined meandering, indicating that it has somewhat of a sinuous planform but is largely confined by older terraces or bedrock. This is a remarkably stable reach that shows little evidence of channel migration. Even though migration rates are low, approximately 8 percent of the bankline has been armored by 7,500 feet of rock riprap and 2,760 feet of flow deflectors. About 3,200 feet of that armor was constructed since 2001.

Similar to other reaches in Park County, the extent of flood irrigation has dropped in the reach since 1950, and the amount of sprinkler and pivot irrigation has increased proportionately. There has also been a major expansion of exurban land uses in the reach from 14 acres in 1950 to 1,433 acres in 2011. By comparison, 220 acres are in flood, 170 acres in sprinkler, and 1,014 acres in pivot irrigation. The relative expansion of pivot irrigation in this reach is large compared to the rest of the Paradise Valley. About 30 acres of irrigated land are located within the Channel Migration Zone, and 14 of those are under pivot. In one case (RM 519.5) a pivot occupies the entire core of a meander bend.

The popularity of recreational fishing in this reach is exemplified by the seven boat ramps identified in this 13 mile stretch of river. Fishing Access Sites in this reach include Grey Owl, Paradise, Lock Leven, and Mallard's Rest.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events now considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,470 cfs to 1,430 cfs with human development, a reduction of 2.7 percent.

CEA-Related observations in Reach PC8 include: •Major expansion from flood irrigation to pivot •Conversion of agricultural land to exurban development •Extensive armoring in naturally stable reach

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC8 include: •Channel Migration Zone (CMZ) management

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	Flo	w on Date	Return Ir	nterval			Gage No	Gage 6192500	Gage 1619500
	1971	Jun 23		29,200	10-25	i yr			Location	Livingston	1013300
	1902	Jun 11		30,100	10-25	i yr		Period		1929-2015	
	1943	Jun 20		30,600	10-25	i yr		Distance		0.7	
	1974	Jun 17		36,300	50-10) yr		Distance	To (miles)	9.7	
	1996	Jun 10		37,100	50-10) yr					
	1997	Jun 6		38,000	50-10) yr					
	2011	Jun 30		40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
		1	.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	9,820	19,500	24,600	27,800	34,200	36,800	42,800	1,470	1,760
	Regul	ated	9,760	19,400	24,500	27,700	34,100	36,800	42,800	1,430	1,680
	% Cha	ange -	0.61%	-0.51%	-0.41%	-0.36%	-0.29%	0.00%	0.00%	-2.72%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/28/2005	color	1-meter pixels	6192500	2210
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/23/2009	Color	1-meter pixels	6192500	6770
2009	NAIP	7/22/2009	Color	1-meter pixels	6192500	6990
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	4,458	3.3%	7,494	5.6%	3,036
	Flow Deflectors	1,560	1.2%	1,603	1.2%	42
	Between Flow Deflectors	1,034	0.8%	1,155	0.9%	121
	Feature Type Totals	7,052	5.3%	10,251	7.7%	3,199
	Reach Totals	7,052	5.3%	10,251	7.7%	3,199

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	66,249	3,175	1.05	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	66,558	3,657	1.05	1950 to 2001:	0.67%
Change 1950 - 2001	309	482	0.01		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pr	ne 5-year floodplain tend otect the agricultural pro	to represent

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 75	Erosion Buffer (ft) 150	To CM Acre 76	tal //Z eage 5	Restricted CMZ Acreage 14	% Restrict Migratio Area 2%	ted Tota n AHZ Acrea 39	al Re Z Ige A	estricted AHZ Acreage	% Restricted Avulsion Area 0%
2044 De	triated Mian			-		Note that the	e data refle	oct the obse	- arved con	ditions in the
2011 Res	stricted wigr	ation A	rea Sur	nma	ſ y	2011 aerial r	photography ((NAIP for F	Park and S	Sweet Grass
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	Counties, CO	DE for the res	st of the riv	er).	
RipRap/Flo	w Deflectors									
	Non-Irrigated		2	0	.2%					
RipRap										
	Public Road		6	0	.7%					
Flow Deflect	ctors									
	Non-Irrigated		4	0	.5%					
	Irrigated		2	0	.3%					
	Exurban Resi	dential	1	0	.1%					
		Totals	14	1	.8%					
Land Us	es within the	e CMZ (/	Acres)	l Irr	Flood igation 11.3	Sprinkler Irrigation 5.1	Pivot Irrigation 14.0	Urban ExUrba 101.0	/ T in pc	Trans- ortation 2.7

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	41	41	41	41	0.8%	0.8%	0.8%	0.8%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	32	60	61	59	0.6%	1.2%	1.2%	1.2%
	Totals	73	101	102	100	1.5%	2.0%	2.1%	2.0%
Agricultural Lan	d								- Contraction -
	Non-Irrigated	2,966	3,114	1,985	1,432	59.9%	62.9%	40.1%	28.9%
	Irrigated	1,369	978	1,436	1,407	27.7%	19.8%	29.0%	28.4%
	Totals	4,335	4,092	3,421	2,838	87.6%	82.7%	69.1%	57.3%
Channel									
	Channel	511	493	510	511	10.3%	10.0%	10.3%	10.3%
	Totals	511	493	510	511	10.3%	10.0%	10.3%	10.3%
ExUrban									
	ExUrban Other	0	36	39	39	0.0%	0.7%	0.8%	0.8%
	ExUrban Undeveloped	0	0	68	416	0.0%	0.0%	1.4%	8.4%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	14	164	743	978	0.3%	3.3%	15.0%	19.8%
	Totals	14	200	850	1,433	0.3%	4.0%	17.2%	29.0%
Transportation									
	Public Road	17	63	64	64	0.3%	1.3%	1.3%	1.3%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	17	63	64	64	0.3%	1.3%	1.3%	1.3%
Urban									
	Urban Other	0	2	2	3	0.0%	0.0%	0.0%	0.1%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	2	2	3	0.0%	0.0%	0.0%	0.1%

Land Use Tir	neline - Tiers 3 and	4								Char	ige Betv	veen Y	ears
		Acres			% of Reach Area				(% of Agricultural Land)				
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	110	171	0.0%	0.0%	3.2%	6.0%	0.0%	3.2%	2.8%	6.0%
	Pivot	0	0	760	1,014	0.0%	0.0%	22.2%	35.7%	0.0%	22.2%	13.5%	35.7%
	Flood	1,369	978	566	221	31.6%	23.9%	16.5%	7.8%	-7.7%	-7.4%	-8.8%	-23.8%
	Totals	1,369	978	1,436	1,407	31.6%	23.9%	42.0%	49.6%	-7.7%	18.1%	7.6%	18.0%

Reach PC8

Non-Irrigated

Multi-Use	2,863	2,626	1,663	1,361	66.0%	64.2%	48.6%	48.0%	-1.9%	-15.6%	-0.6%	-18.1%
Hay/Pasture	103	488	322	70	2.4%	11.9%	9.4%	2.5%	9.6%	-2.5%	-6.9%	0.1%
Totals	2,966	3,114	1,985	1,432	68.4%	76.1%	58.0%	50.4%	7.7%	-18.1%	-7.6%	-18.0%
RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	3.3	43.2	1.6	0.0	48.1
Acres/Valley Mile	0.3	4.5	0.2	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.67	0.28%	2.26	0.01	0.12	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

County	Park
Classification	PCA: Partially confined anabranching
General Location	To Pine Creek
General Comments	

Upstream River Mile	516.3
Downstream River Mile	514.6
Length	1.70 mi (2.74 km)

Narrative Summary

Reach PC9 extends from just below Mallard's Rest to Pine Creek. It is a partially confined anabranching reach type, indicating that it has side channels and wooded islands with some valley wall influence. Reach PC9 is one of the shortest reaches in the CEA study at 1.7 miles. It is a short, fairly anomalous section of river that extends upstream from the mouth of Pine Creek and Pine Creek Bridge. This reach is anomalous because of its rates of change over the past 20 years. This includes sediment deposition, severe bank erosion and avulsions. The reach is located just upstream of a "pinch point" in the valley that is created by a glacial outwash terrace on the west bank and the Pine Creek outwash fan on the right bank. The Pine Creek Bridge was built on this pinch point, which is a stable bridge location. Because of the constriction at the bridge, however, sediment transport patterns appear interrupted which has caused sediment deposition and unstable channel dynamics upstream. Much of this erosion appears to have happened between 1991 and 2005, suggesting that the 1996 and 1997 floods drove substantial channel change.

Reach PC9 showed an increase in bankfull channel area of over 30 acres between 1950 and 2001, which may reflect the impact of the 1996/1997 floods on channel form. Air photos from as recently as 1991 show a broad expanse of forested islands, whereas the 2005 and 2011 imagery show extensive open bars and active bank erosion. In places, erosion into islands since 1991 has exceeded 500 feet. This has been accompanied by an increase in side channel length of almost 7,000 feet in the reach as islands have been eroded and dissected.

In 2011, almost 3,000 feet of rock riprap lined the banks in Reach PC9, as well as 677 feet of flow deflectors. This represents almost 20 percent of the total bankline in the reach.

Similar to other reaches in Park County, the extent of flood irrigation has dropped in the reach since 1950, and the amount of sprinkler and pivot irrigation has increased somewhat proportionately. Exurban land uses in the reach have expanded from 0 acres in 1950 to 82 acres in 2011, and all of that development is on the east side of the river just upstream of Pine Creek Bridge. The dominant land use remains agriculture, however, with 27 acres in flood irrigation, 142 acres in sprinkler, and 93 acres in pivot. Another 300 acres are in non-irrigated agriculture. There are almost 100 acres of emergent wetlands in Reach PC9, reflecting a large wet meadow complex on the southeast side of the river.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events now considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,520 cfs to 1,470 cfs with human development, a reduction of 3.9 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC9 include:

•Major post-1995 changes in channel geomorphology upstream of natural constriction point.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC9 include: •Channel Migration Zone (CMZ) management PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream	
	Year	Dat	e Flo	ow on Date	Return Ir	nterval			Gage No	Gage 6192500	Gage 6191500	
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Livinaston	Corwin Springs	
	1902	Jun '	11	30,100	10-25	5 yr		Period	l of Record	1929-2015	1890-2012	
	1943	Jun 2	20	30,600	10-25	5 yr		Distance	To (miles)	8.0	40.9	
	1974	Jun '	17	36,300	50-10	50-100 yr				0.0	40.0	
	1996	Jun '	10	37,100	50-10	0 yr						
	1997	Jun	6	38,000	50-10	0 yr						
	2011	Jun (30	40,600	>100	-yr						
Di	scharg	е								7Q10	95% Sum.	
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration	
	Unregul	ated	9,820	19,500	24,600	27,800	34,200	36,800	42,800	1,520	1,760	
	Regul	ated	9,760	19,400	24,500	27,700	34,100	36,800	42,800	1,470	1,680	
	% Cha	ange	-0.61%	-0.51%	-0.41%	-0.36%	-0.29%	0.00%	0.00%	-3.29%	-4.55%	

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/23/2009	Color	1-meter pixels	6192500	6770
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	2,740	13.6%	2,894	14.4%	154
	Flow Deflectors	599	3.0%	599	3.0%	0
	Between Flow Deflectors	157	0.8%	79	0.4%	-79
	Feature Type Totals	3,495	17.4%	3,571	17.7%	75
	Reach Totals	3,495	17.4%	3,571	17.7%	75

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	11,280	10,502	1.93	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	10,061	17,176	2.71	1950 to 2001:	40.20%
Change 1950 - 2001	-1,219	6,674	0.78		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	D-Year 5-Year		100-Year 5-Year		Year % of Floodplain he 5-year floodplain tenc otect the agricultural pro	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain			
Non-Structural (hydrology, geomorphic, etc.)							
Agriculture (generally relates to field boundaries)							
Agriculture (isloated by canal or large ditch)							
Levee/Riprap (protecting agricultural lands)							
Levee/Riprap (protecting urban, industrial, etc.)							
Railroad							
Abandoned Railroad							
Transportation (Interstate and other roads)							
Total Not Isolated (Ac)							
Total Floodplain Area (Ac)							
Total Isolated (Ac)							
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pr	ne 5-year floodplain tend otect the agricultural pro	to represent		

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 183	Erosion Buffer (ft) 365	To CM Acre 34	tal F NZ age 1	Restricted CMZ Acreage 36	% Restric Migratic Area 10%	ted To on Al Acre	tal HZ eage 6	Restricted AHZ Acreage 0	% Restricted Avulsion Area 0%
2011 Res	stricted Mia	ration A	rea Sun	nmarv		Note that the	ese data ref	lect the o	bserved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percer CM	nt of Z	2011 aerial photography (NAIP for Park and Sweet G Counties, COE for the rest of the river).				Sweet Grass
RipRap/Flo	w Deflectors									
	Non-Irrigated		33	8.99	%					
RipRap										
	Public Road		1	0.49	%					
	Exurban Res	idential	3	0.89	%					
Flow Deflect	ctors									
	Other Infrastr	ructure	3	0.89	%					
		Totals	40	11.0	%					
Land Us	es within the	e CMZ (/	Acres)	Fic Irriga 0	od ation 9	Sprinkler Irrigation 2.7	Pivot Irrigation 0.0	Urb I ExUi 11	an/ 1 rban po .3	Frans- ortation 0.6

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3		Aci	res		%	of Rea	ich Area	Area 01 2011 00% 0.0% 0.0% 0.0% 4.4% 4.1% 4.4% 4.1% 7.7% 36.4% 9.9% 27.1% 6.6% 63.5%		
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011		
Agricultural Infra	astructure										
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Other Infrastructure	4	20	43	39	0.4%	2.0%	4.4%	4.1%		
	Totals	4	20	43	39	0.4%	2.0%	4.4%	4.1%		
Agricultural Lan	d										
	Non-Irrigated	558	422	268	353	57.6%	43.6%	27.7%	36.4%		
	Irrigated	198	296	358	263	20.4%	30.6%	36.9%	27.1%		
	Totals	757	718	627	615	78.1%	74.1%	64.6%	63.5%		
Channel						•					
	Channel	204	227	229	229	21.0%	23.4%	23.6%	23.6%		
	Totals	204	227	229	229	21.0%	23.4%	23.6%	23.6%		
ExUrban											
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	ExUrban Residential	0	0	67	82	0.0%	0.0%	6.9%	8.4%		
	Totals	0	0	67	82	0.0%	0.0%	6.9%	8.4%		
Transportation											
	Public Road	5	5	4	4	0.5%	0.5%	0.4%	0.4%		
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Totals	5	5	4	4	0.5%	0.5%	0.4%	0.4%		
Urban											
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%		

Land Use Tir	meline - Tiers 3 and	4								Char	ige Between Y	'ears
			Acı	res		%	of Rea	ch Area	I	(% 0	f Agricultural L	.and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '01-11	'50-11
Irrigated												
	Sprinkler	0	0	211	142	0.0%	0.0%	33.6%	23.1%	0.0%	33.6% -10.5%	23.1%
	Pivot	0	0	30	93	0.0%	0.0%	4.8%	15.2%	0.0%	4.8% 10.3%	15.2%
	Flood	198	296	117	27	26.2%	41.2%	18.7%	4.4%	15.0%	-22.5% -14.4%	-21.8%
	Totals	198	296	358	263	26.2%	41.2%	57.2%	42.7%	15.0%	15.9% -14.5%	16.5%

Reach PC9

Non-Irrigated												
Multi-Use	557	403	206	145	73.7%	56.2%	32.8%	23.6%	-17.5%	-23.3%	-9.3%	-50.1%
Hay/Pasture	1	19	63	208	0.2%	2.6%	10.0%	33.8%	2.4%	7.4%	23.8%	33.6%
Totals	558	422	268	353	73.8%	58.8%	42.8%	57.3%	-15.0%	-15.9%	14.5%	-16.5%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	1.1	94.8	17.7	0.0	113.6
Acres/Valley Mile	0.6	55.2	10.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (AC)	Floodplain	Area (AC)	RIVIA (AC)	Channel (AC)	Island (AC)
Russian Olive in Reach	0.12	0.18%	0.65	0.00	0.01	0.01

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC10

County	Park	Upstream River Mile
Classification	PCM: Partially confined meandering	Downstream River Mile
General Location	To downstream of Deep Creek; Weeping wall, Jumpin	Length
General Comments		

rer Mile 511 3.60 mi (5.79 km)

514.6

Narrative Summary

Reach PC10 is extends from the Pine Creek Bridge to below the mouth of Deep Creek. The reach is approximately 3.5 miles long, extending from RM 511.0 to RM 514.5. This is an especially unique section of the Yellowstone River where spring creeks that parallel the channel support a nationally recognized cold water fishery. The reach is also semi-confined by very coarse grained glacial alluvial terraces. Sediment recruitment from the terraces drives bar formation, resulting in locally rapid bank migration, and in some cases, threats to the spring creeks. This was exemplified during the 1996/1997 floods, when the river migrated tens of feet into high glacial terraces, delivering vast amounts of gravel to the channel. At one location near the Deep Creek confluence, a home on a ~30 foot high glacial terrace was undermined and deliberately burnt down to prevent its collapse into the river. Just downstream of this site, rapid point bar growth drove westward channel migration towards a prized spring creek, which created a real risk of Yellowstone River avulsion into that channel. Efforts to prevent an avulsion included sediment removal from the rapidly enlarging point bar, bank protection, and construction of a long floodplain dike between the spring creek and the river. This single bendway experienced approximately 750 feet of migration between 1948 and 1999, which translates to an average migration rate of 14.7 feet per year.

Approximately 14 percent of the bankline is armored, primarily by rock riprap (3,753 feet) and flow deflectors (1,197 feet). Between 2001 and 2011, the net length of bank armor increased by 1,037 feet, although 50 feet of flow deflectors were eroded out during that time. There are also over two miles of floodplain dikes in the reach, most of which run parallel to the river to isolate the spring creeks. Several thousand feet of side channels have been blocked in Reach PC10; one large channel that was blocked prior to 1950 extends downstream for several thousand feet into Reach PC11. There is a high concentration of emergent wetlands in these abandoned side channels.

The total bankfull channel area in Reach PC10 increased from 151 acres in 1950 to 191 acres in 2001, suggesting channel enlargement, either due to floods or flow concentrations in the main channel due to side channel loss and diking.

Land uses in Reach PC10 include irrigated ground, multi-use (non-irrigated and undeveloped), and exurban residential development. Whereas in 1950 there were 512 acres under flood irrigation, by 2011 that had been reduced to 17 acres. The expansion of irrigation during that time included 136 acres of sprinkler, and another 56 acres of pivot irrigation. Most of the land, over 900 acres, is used as non-irrigated agricultural land. There has also been about 180 acres of exurban development in Reach PC10, much of which is part of the Jumping Rainbow Ranch downstream of Deep Creek. Some of this development, such as the location of the house that was undermined in 1997, is in the Channel Migration Zone. In the upstream portion the reach, a gravel pit on a large point bar (RM 513.8) encroaches into the Channel Migration Zone. Because of the extensive levee construction in the reach to protect spring creeks, 38 percent of the CMZ has been restricted from the natural CMZ footprint. The reach is very popular for recreational boating and fishing; the Pine Creek Fishing Access Site is located just below the Pine Creek Bridge on the left bank.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,530 cfs to 1,480 cfs with human development, a reduction of 3.3 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC10 include:

•Extensive dike construction Floodplain dikes constructed to protect spring creek fisheries have narrowed the active meander corridor •Exurban encroachment into the Channel Migration Zone (CMZ) has occurred on terrace surfaces

•Gravel pit and recreational pond development in a meander core may contribute to avulsion risk in the reach.

•Rapid dike construction and armoring following major flooding (1996/1997).

•Increase in primary channel length (sinuosity) with loss of side channels.

•Isolation of 38 percent of the CMZ, mostly avulsion hazard areas that support spring creeks.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC10 include:

•Selective side channel restoration at RM 511.5 (may be difficult to reactivate side channels without affecting developed spring creek fishery

•CMZ Management due to current restriction of 38 percent of the Channel Migration Zone

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flo	ood His	story								Downstream	Upstream
	Year	Dat	e Fle	ow on Date	Return Ir	nterval			Gage No	Gage 6192500	Gage 6191500
	1971	Jun	23	29,200	10-25	10-25 yr		Location		Livingston	Corwin Springs
	1902	Jun	11	30,100	10-25 yr			Period of Record		1929-2015	1890-2012
	1943	Jun	20	30,600	10-25	5 yr		Distance	To (mileo)	4.4	42.6
	1974	Jun	17	36,300	50-10	0 yr		Distance	TO (IIIIes)	4.4	42.0
	1996	Jun	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun	30	40,600	>100	-yr					
Dis	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	9,820	19,500	24,600	27,800	34,200	36,800	42,800	1,530	1,760
	Regul	ated	9,760	19,400	24,500	27,700	34,100	36,800	42,800	1,480	1,680
	% Cha	ange	-0.61%	-0.51%	-0.41%	-0.36%	-0.29%	0.00%	0.00%	-3.27%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/23/2009	Color	1-meter pixels	6192500	6770
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	2,667	7.3%	3,754	10.3%	1,086
	Flow Deflectors	768	2.1%	674	1.8%	-94
	Between Flow Deflectors	478	1.3%	522	1.4%	44
	Feature Type Totals	3,914	10.7%	4,950	13.5%	1,037
Floodplain	Control					
	Floodplain Dike/Levee	12,431	34.0%	12,431	34.0%	0
	Feature Type Totals	12,431	34.0%	12,431	34.0%	0
	Reach Totals	16,344	44.7%	17,381	47.5%	1,037

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	16,592	7,240	1.44	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	18,301	1,489	1.08	1950 to 2001:	-24.71%
Change 1950 - 2001	1,710	-5,751	-0.35		
Length of Side		Pre-1950s (ft)	7,000		
Channels Blocked		Post-1950s (ft)	1,454		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pr	ne 5-year floodplain tend otect the agricultural pro	to represent

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal //Z eage	Restricted CMZ Acreage	% Restrict Migratio Area	ted Tota n AH2 Acrea	al Re Z Ige Ad	stricted AHZ creage	% Restricted Avulsion Area
	235	469	46	5	94	20%	201		159	79%
2011 Res	stricted Mig	ration A	ea Sun	nmai	у	Note that the	ese data refle	ect the obse	rved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	Counties, COE for the rest of the river).				Sweel Glass
Flow Deflect	ctors									
	Non-Irrigated		6	0	.9%					
Dike/Levee										
	Non-Irrigated		247	37	.0%					
		Totals	253	37	.9%					
Land Us	es within the	e CMZ (A	Acres)	F Irri	lood igation	Sprinkler Irrigation	Pivot Irrigation	Urban/ ExUrba	n po	Frans- ortation
					0.0	27.5	0.0	19.9		0.3

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	31	49	62	55	2.0%	3.2%	4.1%	3.6%
	Totals	31	49	62	55	2.0%	3.2%	4.1%	3.6%
Agricultural Lan	d								
	Non-Irrigated	817	864	895	852	53.6%	56.7%	58.7%	55.9%
	Irrigated	512	425	190	209	33.6%	27.9%	12.5%	13.7%
	Totals	1,330	1,289	1,085	1,061	87.2%	84.5%	71.2%	69.6%
Channel									
	Channel	163	186	214	229	10.7%	12.2%	14.0%	15.0%
	Totals	163	186	214	229	10.7%	12.2%	14.0%	15.0%
ExUrban									
	ExUrban Other	0	0	2	2	0.0%	0.0%	0.1%	0.1%
	ExUrban Undeveloped	0	0	72	0	0.0%	0.0%	4.7%	0.0%
	ExUrban Industrial	0	0	11	11	0.0%	0.0%	0.7%	0.7%
	ExUrban Commercial	0	0	16	16	0.0%	0.0%	1.0%	1.0%
	ExUrban Residential	0	0	62	150	0.0%	0.0%	4.1%	9.9%
	Totals	0	0	163	179	0.0%	0.0%	10.7%	11.7%
Transportation									
	Public Road	1	1	1	1	0.1%	0.1%	0.1%	0.1%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	1	1	1	1	0.1%	0.1%	0.1%	0.1%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	meline - Tiers 3 and					Char	ige Betv	veen Y	ears				
			Acr	res		%	of Rea	ch Area	I	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	56	136	0.0%	0.0%	5.1%	12.8%	0.0%	5.1%	7.7%	12.8%
	Pivot	0	100	37	56	0.0%	7.8%	3.4%	5.3%	7.8%	-4.4%	1.9%	5.3%
	Flood	512	325	97	17	38.5%	25.2%	9.0%	1.6%	-13.3%	-16.2%	-7.4%	-36.9%
	Totals	512	425	190	209	38.5%	33.0%	17.5%	19.7%	-5.6%	-15.5%	2.2%	-18.8%

Reach PC10

Non-Irrigated													
	Multi-Use	706	767	613	521	53.1%	59.5%	56.5%	49.1%	6.4%	-3.0%	-7.4%	-4.0%
	Hay/Pasture	112	97	282	331	8.4%	7.5%	26.0%	31.2%	-0.9%	18.5%	5.2%	22.8%
	Totals	817	864	895	852	61.5%	67.0%	82.5%	80.3%	5.6%	15.5%	-2.2%	18.8%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	22.5	165.1	49.1	0.0	236.7
Acres/Valley Mile	9.7	71.2	21.1	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.14	0.25%	1.46	0.02	0.01	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

PCA: Partially confined anabranching

To near Suce Cr, Wineglass Mtn to west

Reach PCII

Upstream River Mile	511
Downstream River Mile	508.7
Length	2.30 mi (3.70 km)

General Location General Comments

County

Classification

Park

Narrative Summary

Reach PC11 is located in the Paradise Valley downstream of Deep Creek, and consists of a Partially Confined Anabranching (PCA) reach type, reflected by multiple channels separated by wooded islands, and local abutment of the channel against low glacial terraces. Long floodplain dikes and bank armor installations have isolated natural migration and avulsion areas from the active channel corridor. These dikes and levees narrow the corridor significantly in the downstream direction; whereas in the upper portions of Reach PC11 the active corridor is approximately 2,000 feet wide, it is narrowed approximately 400 feet by floodplain dikes and bank armor at the downstream boundary of Reach PC11.

Some of the most significant impacts to Reach PC11 occurred prior to 1950. This includes the isolation of a major anabranching channel on the east side of the river that has been improved as a spring creek. The dike blocking this channel is located at its upper end in Reach PC10; within Reach PC11this channel is over a mile long.

Although many of the impacts to Reach PC11 occurred prior to 1950, one dike isolated a channel more recently. This 1/4 mile long channel to the west of the main river was blocked off between 1988 and 1991. Within Reach PC11, several channels that have historically been relatively connected to the active river are now largely isolated, forming spring creeks on each side of the river that run parallel to the river for miles. Continual improvements on these spring creeks are evident on the air photos, including original development efforts that included deepening and widening the relic Yellowstone River channels, and re-routing these channels to lengthen them as they parallel the main thread. On the west side of the river, a lengthened spring creek is separated from the river by over a mile of floodplain dike in Reach PC11 alone.

Approximately 35 percent of the bankline in Reach PC11 is armored by Rock Riprap (8,645 feet), and another 8 percent of the bank is protected by flow deflectors (2,047 feet). Approximately 6,900 feet of floodplain dikes protect the spring creek on the west side of the corridor from Yellowstone River overflows. Armor, dikes, and levees have isolated 26 percent of the natural Channel Migration Zone.

Since 1950 the main channel has increased length by approximately 10 percent or 1,200 feet. This trend is common in reaches where side channels have been lost and the main thread has more consolidated flow. The bankfull footprint has grown by 40 acres since 1950, which may reflect main channel expansion due to side channel loss.

Similar to other reaches in Park County, the extent of flood irrigation has dropped in the reach since 1950, and the amount of sprinkler and pivot irrigation has increased. The dominant land use remains agriculture, however, with 139 acres in flood irrigation, 102 acres in sprinkler, and 80 acres in pivot. Another 600 acres are in non-irrigated agriculture. There are almost 80 acres of emergent wetlands in Reach PC10, reflecting a large wet meadow complex across the river from the mouth of Deep Creek.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events now considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,550 cfs to 1,500 cfs with human development, a reduction of 3.2 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC11 include:

- •Channel Migration Zone restrictions by floodplain dikes and bank armor causing simplification.
- •Loss of side channel connectivity due to floodplain dikes and bank armor causing simplification.
- •Increase in primary channel length with reduction in side channel length.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC11 include: •Selective side channel restoration at RM 510L (may be difficult to reactivate side channels without affecting developed spring creek fishery

•CMZ Management due to current restriction of 26 percent of the Channel Migration Zone

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Dat	e Fl	ow on Date	Return Interval			Gago No		Gage 6192500	Gage 1619500
	1971	Jun	23	29,200	10-25	i yr			Location	Livingston	1010000
	1902	Jun	11	30,100	10-25	10-25 yr Period of Record		l of Record	1929-2015		
	1943	Jun	20	30,600	10-25	yr		Distance		0.1	
	1974	Jun	17	36,300	50-100) yr		Distance	e ro (miles)	2.1	
	1996	Jun	10	37,100	50-100) yr					
	1997	Jun	6	38,000	50-100) yr					
	2011	Jun	30	40,600	>100	-yr					
Di	ischarg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	9,820	19,500	24,600	27,800	34,200	36,800	42,800	1,550	1,760
	Regul	ated	9,760	19,400	24,500	27,700	34,100	36,800	42,800	1,500	1,680
	% Cha	ande	-0.61%	-0.51%	-0.41%	-0.36%	-0.29%	0.00%	0.00%	-3.23%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/23/2009	Color	1-meter pixels	6192500	6770
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	
PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	8,601	34.6%	8,645	34.8%	45
	Flow Deflectors	1,167	4.7%	1,149	4.6%	-17
	Between Flow Deflectors	1,118	4.5%	897	3.6%	-220
	Feature Type Totals	10,885	43.8%	10,692	43.0%	-193
Floodplain	Control					
	Floodplain Dike/Levee	6,891	27.7%	6,879	27.7%	-12
	Feature Type Totals	6,891	27.7%	6,879	27.7%	-12
	Reach Totals	17,775	71.5%	17,571	70.7%	-205

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	11,289	12,686	2.12	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	12,432	7,832	1.63	1950 to 2001:	-23.25%
Change 1950 - 2001	1,144	-4,854	-0.49		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	1,990		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	d areas within th protection to pr	ne 5-year floodplain tend to otect the agricultural produ	represent

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 211	Erosion Buffer (ft) 422	Tot CN Acre 47	tal IZ age 5	Restricted CMZ Acreage 104	% Restrict Migration Area 22%	ted To n Al Acre	otal HZ eage 30	Restricted AHZ Acreage 47	% Restricted Avulsion Area 36%
2011 Res	stricted Migr	ation Ar	ea Sun	nmai	v	Note that the	ese data ref	lect the	observed cor	nditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	2011 aerial p Counties, CC	bhotograph DE for the r	y (NAIP est of th	for Park and e river).	Sweet Grass
RipRap/Flov	w Deflectors									
	Non-Irrigated		106	17	.6%					
RipRap										
	Irrigated		21	3	.4%					
Flow Deflect	tors									
	Irrigated		23	3	.9%					
Dike/Levee										
	Non-Irrigated		4	0	.7%					
		Totals	155	25	5.6%					
Land Us	es within the	e CMZ (A	Acres)	F Irri	Flood igation 34.8	Sprinkler Irrigation 8.8	Pivot Irrigatior 1.5	Ur n Exl	ban/ Jrban p 0.4	Trans- ortation 0.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres				% of Reach Area				
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	19	76	75	64	1.5%	6.1%	6.0%	5.2%	
	Totals	19	76	75	64	1.5%	6.1%	6.0%	5.2%	
Agricultural Lan	d								1	
	Non-Irrigated	556	472	472	613	44.6%	37.9%	37.8%	49.2%	
	Irrigated	501	447	392	320	40.2%	35.9%	31.4%	25.7%	
	Totals	1,057	919	863	934	84.8%	73.8%	69.3%	74.9%	
Channel										
	Channel	164	237	292	232	13.2%	19.0%	23.4%	18.6%	
	Totals	164	237	292	232	13.2%	19.0%	23.4%	18.6%	
ExUrban										
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	0	2	2	0.0%	0.0%	0.2%	0.2%	
	Totals	0	0	2	2	0.0%	0.0%	0.2%	0.2%	
Transportation									1	
	Public Road	6	14	14	14	0.5%	1.1%	1.1%	1.1%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	6	14	14	14	0.5%	1.1%	1.1%	1.1%	
Urban									1	
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Ti	meline - Tiers 3 and	d 4							Change Between Years			ears	
			Acr	res		%	of Rea	ch Area	I	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	'01-11	'50-11
Irrigated													
	Sprinkler	0	0	89	102	0.0%	0.0%	10.3%	10.9%	0.0%	10.3%	0.6%	10.9%
	Pivot	0	0	25	80	0.0%	0.0%	2.9%	8.5%	0.0%	2.9%	5.6%	8.5%
	Flood	501	447	278	138	47.4%	48.6%	32.2%	14.8%	1.2%	-16.4%	-17.4%	-32.6%
	Totals	501	447	392	320	47.4%	48.6%	45.4%	34.3%	1.2%	-3.2%	-11.1%	-13.1%

Reach PCII

Non-Irrigated												
Multi-Use	397	396	420	569	37.6%	43.1%	48.7%	60.9%	5.5%	5.6%	12.2%	23.3%
Hay/Pasture	159	76	51	45	15.0%	8.3%	5.9%	4.8%	-6.7%	-2.4%	-1.1%	-10.2%
Totals	556	472	472	613	52.6%	51.4%	54.6%	65.7%	-1.2%	3.2%	11.1%	13.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	27.5	75.5	55.0	0.0	158.0
Acres/Valley Mile	13.5	37.1	27.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.26	0.06%	0.13	0.06	0.05	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC12

508.7 506.7

2.00 mi (3.22 km)

Upstream River Mile

Length

Downstream River Mile

County	Park
Classification	PCM: Partially confined meandering
General Location	To Carters Bridge

General Comments

Narrative Summary

Reach PC12 is located in the northernmost portion of the Paradise Valley, consisting of the two miles of river channel upstream of Carters Bridge. The reach is somewhat confined between terraces, Highway 89, and bedrock hillslopes. Carter's Bridge hosts a fishing access site and boat ramp.

Over its two mile length, the banks of Reach PC12 are armored by 7,267 feet of rock riprap and 4,106 feet of flow deflectors. Over 50 percent of the banks are armored. There are also about 8,700 feet of floodplain levees in Reach PC12. About 2,600 feet of this levee extent is the Highway 89 embankment which also forms the bankline as the river approaches the Livingston Ditch Diversion structure. A total of 39 percent of the Channel Migration Zone in this reach has been restricted by physical features such as bank armor and levees.

In 1950, there were 343 acres of land under flood irrigation in the reach. By 2000, that had dropped to about 90 acres, and sprinklers and pivots had expanded to 201 and 16 acres, respectfully. There was also about 51 acres of exurban development in the reach, all of which is just above Carter's Bridge on the west side of the river.

Over 100 acres of wetlands have been mapped in Reach PC12. These wetlands are located in isolated relic channels in the southwest floodplain, and in perched historic meander features in the northeast.

Reach PC12 is located right next to the Livingston gage which is at Carters Bridge. This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,550 cfs to 1,500 cfs with human development, a reduction of 3.2 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC12 include:

•Narrowing of the CMZ to less than half of its natural width, mainly due to long levees that run parallel to the river to protect spring creeks.

•Loss of side channel connectivity due to floodplain dikes and bank armor causing simplification

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC12 include: •Side channel restoration at RM 508L

•CMZ Management due to current restriction of 39 percent of the Channel Migration Zone

Bank Stabilization Recommended Practices due to 55 percent of banks being armored in reach

Irrigation diversion management at Livingston Ditch Diversion

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	6214500	6192500
	1971	Jun 2	23	29,200	10-25	10-25 yr			Location	Billings	Livingston
	1902	Jun 1	1	30,100	10-25	10-25 yr		Period of Record		1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	10-25 yr				1020 2010	1020 2010
	1974	Jun 1	7	36,300	50-10	0 yr		Distance	e lo (miles)	142.3	-2.1
	1996	Jun 1	0	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	80	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	10,200	20,300	25,600	28,800	35,400	38,200	44,300	1,550	1,760
	Regul	ated	10,100	20,200	25,500	28,700	35,300	38,100	44,200	1,500	1,680
	% Cha	ange	-0.98%	-0.49%	-0.39%	-0.35%	-0.28%	-0.26%	-0.23%	-3.23%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/23/2009	Color	1-meter pixels	6192500	6770
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	
2013	NAIP	09/11/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	7,158	34.6%	7,267	35.1%	109
	Flow Deflectors	1,721	8.3%	1,772	8.6%	51
	Between Flow Deflectors	2,458	11.9%	2,334	11.3%	-124
	Feature Type Totals	11,337	54.8%	11,373	55.0%	36
Floodplain	Control					
	Floodplain Dike/Levee	8,706	42.1%	8,706	42.1%	0
	Feature Type Totals	8,706	42.1%	8,706	42.1%	0
	Reach Totals	20,043	96.9%	20,079	97.1%	36

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	10,805	8,196	1.76	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	10,337	8,164	1.79	1950 to 2001:	1.78%
Change 1950 - 2001	-468	-31	0.03		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pr	ne 5-year floodplain tend otect the agricultural pro	to represent

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal //Z eage	Restricted CMZ Acreage	% Restric Migratio Area	ted Tot on AH Acrea	al F Z age	testricted AHZ Acreage	% Restricted Avulsion Area
	125	249	27	4	84	31%	120	6	72	57%
2011 Res	stricted Mig	ration A	rea Sur	nma	ry	Note that the	ese data refle	ect the ob	served con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Per (cent of CMZ	2011 aerial Counties, C	photography OE for the re	(NAIP for est of the r	Park and S iver).	Sweet Grass
Road/Railro	oad Prism									
	Exurban Oth	er	6	1	.6%					
RipRap/Flo	w Deflectors									
	Public Road		10	2	2.5%					
	Non-Irrigated	ł	100	2	5.1%					
	Irrigated		11	2	2.7%					
Flow Deflect	ctors									
	Public Road		1	0).4%					
	Irrigated		24	6	6.0%					
Dike/Levee										
	Public Road		3	0	.8%					
		Totals	155	3	9.0%					
Land Us	es within th	e CMZ (A	Acres)	lrr	Flood rigation 72.8	Sprinkler Irrigation 10.8	Pivot Irrigation 0.0	Urba ExUrb 17.9	n/ T pan pc 9	irans- ortation 3.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	2	2	0.0%	0.0%	0.2%	0.2%
	Other Infrastructure	39	41	51	55	3.7%	3.9%	4.9%	5.2%
	Totals	39	41	54	57	3.7%	3.9%	5.1%	5.4%
Agricultural Lan	d								
	Non-Irrigated	482	461	471	442	46.0%	44.0%	44.9%	42.2%
	Irrigated	343	334	285	307	32.7%	31.8%	27.1%	29.3%
	Totals	825	795	755	749	78.7%	75.8%	72.0%	71.5%
Channel									
	Channel	165	163	170	172	15.7%	15.5%	16.2%	16.4%
	Totals	165	163	170	172	15.7%	15.5%	16.2%	16.4%
ExUrban									
	ExUrban Other	0	0	3	3	0.0%	0.0%	0.3%	0.3%
	ExUrban Undeveloped	0	3	3	3	0.0%	0.3%	0.3%	0.3%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	28	44	45	0.0%	2.6%	4.2%	4.3%
	Totals	0	31	51	51	0.0%	2.9%	4.8%	4.8%
Transportation									Ē
	Public Road	19	19	19	19	1.8%	1.8%	1.8%	1.8%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	19	19	19	19	1.8%	1.8%	1.8%	1.8%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	meline - Tiers 3 and	4								Char	ige Betv	ween Y	ears
			Acr	es		%	of Rea	ch Area	1	(% of	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Flood	343	334	172	89	41.6%	42.0%	22.8%	11.9%	0.4%	-19.2%	-10.9%	-29.7%
	Sprinkler	0	0	112	201	0.0%	0.0%	14.9%	26.9%	0.0%	14.9%	12.0%	26.9%
	Pivot	0	0	0	16	0.0%	0.0%	0.0%	2.1%	0.0%	0.0%	2.1%	2.1%
	Totals	343	334	285	307	41.6%	42.0%	37.7%	40.9%	0.4%	-4.3%	3.3%	-0.6%

Reach PC12

	Totals	482	461	471	442	58.4%	58.0%	62.3%	59.1%	-0.4%	4.3%	-3.3%	0.6%
	Hay/Pasture	65	45	28	4	7.9%	5.7%	3.7%	0.5%	-2.2%	-2.0%	-3.1%	-7.3%
	Multi-Use	417	416	443	438	50.6%	52.3%	58.7%	58.5%	1.8%	6.3%	-0.1%	8.0%
Non-Irrigated													

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	19.8	67.5	28.5	0.0	115.8
Acres/Valley Mile	10.8	36.8	15.6	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.19	0.08%	0.16	0.09	0.02	0.01

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PCI3

County	Park
Classification	PCB: Partially confined braided
General Location	Through canyon upstream of Livingston

Upstream River Mile 506.7 505 **Downstream River Mile** 1.70 mi (2.74 km) Length

General Comments Narrative Summary

Reach PC13 flows through Allenspur Canyon, which is a notch carved through a limestone and sandstone ridge that runs perpendicular to the river. Within this notch, the river bottom is 1,000 to 1,800 feet wide, so that the river is not entirely confined. The reach is largely single thread with large point bars, and has several bank migration sites that have exceeded 200 feet of movement since 1950.

There are about 2,000 feet of bank armor in the reach, which covers about 13 percent of the total bankline. There is also about 1/2 mile of diking that is concentrated just downstream of Carters Bridge on the west floodplain.

Approaching Livingston, the primary modern land use is exurban, although historically the land was primarily used for agriculture. There are over 80 acres of exurban development in Reach PC13, most of which is on the west floodplain. Only 4 acres of land in the reach are irrigated. There is a ~13 acre fishing access site named Free River on an historic island that offers no boating facilities.

Reach PC13 experienced an ice jam-related flood in January of 2007 which flooded one house in the area.

Reach PC13 has seen a dramatic change in channel form since 1950, as it has shifted from a multi-thread anabranching reach type to a single channel with distinct meanders and open bars. In 1950, this reach had 6,600 feet of anabranching channels that flowed around wooded islands. Since then, the river has consolidated into a single thread and lost virtually all of its side channels. Those side channels were not blocked, but they were abandoned with flow consolidation into a single thread. The size of the channel (bankfull area) has increased by about 20 percent. One large meander in the reach is in the process of cutting off, as a prominent chute channel has formed against the east valley wall.

Numerous structures and a portion of the Highway 89 embankment are located within the CMZ in Reach PC13. A total of 8 percent of the CMZ has been restricted by physical features.

In the early 1960's, a dam was proposed for Allenspur Canyon but was ultimately defeated largely due to local resistance. Allen Spur Dam was proposed as a 380-foot tall dam with a 250,000 watt power plant that would have inundated the Paradise Valley up to 30 miles upstream.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,550 cfs to 1,500 cfs with human development, a reduction of 3.2 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1.680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC13 include:

•Transformation from a multi-thread, anabranching reach type to a single thread channel with open bars. •Abandonment of over a mile of side channels since 1950 in a 1.7 mile long reach.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC13 include: •CMZ Management due to development pressure in confined reach

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	6214500	6192500
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun 1	1	30,100	10-25	5 yr		Period		1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Distance		140.0	1020 2010
	1974	Jun 1	7	36,300	50-10	0 yr		Distance	lo (miles)	140.6	-0.1
	1996	Jun 1	0	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	80	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	10,200	20,300	25,600	28,800	35,400	38,200	44,300	1,550	1,760
	Regul	ated	10,100	20,200	25,500	28,700	35,300	38,100	44,200	1,500	1,680
	% Cha	ange	-0.98%	-0.49%	-0.39%	-0.35%	-0.28%	-0.26%	-0.23%	-3.23%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	9/4/2011	Color	1-meter pixels	6192500	3960
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/26/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	1,087	6.6%	1,240	7.6%	153
	Flow Deflectors	456	2.8%	394	2.4%	-62
	Between Flow Deflectors	620	3.8%	481	2.9%	-139
	Feature Type Totals	2,164	13.2%	2,115	12.9%	-49
Floodplain	Control					
	Floodplain Dike/Levee	2,541	15.5%	2,541	15.5%	0
	Feature Type Totals	2,541	15.5%	2,541	15.5%	0
	Reach Totals	4,705	28.7%	4,656	28.4%	-49

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

1/17/2007

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	7,508	6,652	1.89	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	8,189		1.00	1950 to 2001:	-46.98%
Change 1950 - 2001	682		-0.89		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	he riparian zor d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pr	ne 5-year floodplain tend otect the agricultural pro	to represent duction and

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal Res MZ C age Ac	tricted CMZ reage	% Restric Migratio Area	ted To n Al Acre	tal IZ eage	Restricted AHZ Acreage	% Restricted Avulsion Area
	123	246	22	1	13		1	5	6	41%
2011 Res	stricted Mig	ration A	ea Sun	nmary		Note that the	ese data ref	lect the of	oserved con	ditions in the
Reason for Land Use Restriction Protected			RMA Acres	Percent of CMZ		Counties, C	river).	Sweet Glass		
Road/Railro	ad Prism									
	Exurban Oth	er	10	4.4%						
RipRap/Flo	w Deflectors									
	Exurban Res	sidential	6	2.6%						
Flow Deflect	tors									
	Non-Irrigated	ł	3	1.3%						
		Totals	19	8.2%						
Land Us	es within th	e CMZ (A	Acres)	Flood Irrigatio	on	Sprinkler Irrigation	Pivot Irrigation	Urba ı ExUr	an/ 1 ban po	rans- ortation

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3		Aci	res		%	of Rea	ch Area	a I	
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	structure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	2	3	4	4	0.3%	0.6%	0.8%	0.8%	
	Totals	2	3	4	4	0.3%	0.6%	0.8%	0.8%	
Agricultural Land	d									
	Non-Irrigated	256	225	205	208	54.8%	48.3%	44.0%	44.6%	
	Irrigated	36	0	11	4	7.7%	0.0%	2.4%	0.9%	
	Totals	292	225	217	212	62.5%	48.3%	46.4%	45.5%	
Channel										
	Channel	156	153	153	157	33.5%	32.9%	32.7%	33.6%	
	Totals	156	153	153	157	33.5%	32.9%	32.7%	33.6%	
ExUrban						1				
	ExUrban Other	2	2	2	2	0.3%	0.3%	0.5%	0.5%	
	ExUrban Undeveloped	0	2	2	0	0.0%	0.5%	0.5%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	3	70	78	80	0.7%	15.0%	16.6%	17.1%	
	Totals	5	74	82	82	1.1%	15.8%	17.6%	17.6%	
Transportation										
	Public Road	12	12	12	12	2.6%	2.5%	2.5%	2.5%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	12	12	12	12	2.6%	2.5%	2.5%	2.5%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Til	meline - Tiers 3 a	ind 4								Char	nge Betv	ween Y	ears
			Acı	res		%	of Rea	ich Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	36	0	11	4	12.3%	0.0%	5.2%	2.0%	-12.3%	5.2%	-3.2%	-10.3%
	Totals	36	0	11	4	12.3%	0.0%	5.2%	2.0%	-12.3%	5.2%	-3.2%	-10.3%

Reach PCI3

Non-Irrigated													
	Multi-Use	214	200	192	189	73.2%	88.8%	88.7%	88.9%	15.6%	-0.1%	0.2%	15.7%
	Hay/Pasture	42	25	13	19	14.4%	11.2%	6.0%	9.1%	-3.2%	-5.1%	3.0%	-5.3%
	Totals	256	225	205	208	87.7% ‡	*#####	94.8%	98.0%	12.3%	-5.2%	3.2%	10.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	0.5	8.4	3.3	0.0	12.2
Acres/Valley Mile	0.3	6.1	2.4	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.19	0.06%	0.02	0.00	0.03	0.03

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.
AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC14

County	Park	l
Classification	PCA: Partially confined anabranching	I
General Location	Through Interstate bridge crossing to Livingston	L

Upstream River Mile505Downstream River Mile501.7Length3.30 mi (5.31 km)

General Comments

Narrative Summary

Reach PC14 is a 3.3 mile long river segment that extends from the mouth of Allenspur Canyon to Sacajawea Park in Livingston. The reach is heavily developed, with almost 600 acres of urban/exurban development in the land use mapping corridor, and another 45 acres developed on 9th Street Island and Siebeck Island. There are over three miles of bank armor in the reach, with about 17,000 feet of rock riprap and 1,600 feet of flow deflectors. This armor covers about 54 percent of the streambanks. Between 2001 and 2011, almost 400 feet of rock riprap located at the head of Siebeck Island was destroyed. There are also over three miles of floodplain dikes mapped in this reach. The physical features protect development on the west floodplain and on Siebeck Island, which is a ~100 acre island just upstream of the Interstate Bridge Physical features have isolated 39 percent of the natural channel migration zone in Reach PC14.

There have been extensive blockages of side channels in Reach PC14. Prior to 1950, about 8,600 feet of side channels were blocked by dikes, and since 1950 dikes have been built to block another mile of side channel.

About 100 acres of wetlands have been mapped in Reach PC14. About 20 of those wetland acres are on Siebeck Island.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,570 cfs to 1,510 cfs with human development, a reduction of 3.8 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC14 include:

•Physical features blocking over 13,000 feet of side channels.

•Riprap failure at head of Siebeck Island

•Extensive CMZ Restriction with floodplain development.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC14 include: •Side channel restoration at RM 504.6L

•Bank armor removal at head of Siebeck Island at RM 503.8

•CMZ management due to 38 percent restriction of Channel Migration Zone

Russian olive removal

•Bank Stabilization Recommended Practices due to extensive armoring in reach (51 percent of bankline)

PHYSICAL FEATURES MAP (2011)

Reach PC14

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	6192500
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun 1	1	30,100	10-25	5 yr		Period		1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Disc		1020 2010	1020 2010
	1974	Jun 1	17	36,300	50-10	0 yr		Distance	lo (miles)	137.3	1.6
	1996	Jun 1	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	10,200	20,300	25,600	28,800	35,400	38,200	44,300	1,570	1,760
	Regul	ated	10,100	20,200	25,500	28,700	35,300	38,100	44,200	1,510	1,680
	% Cha	ange	-0.98%	-0.49%	-0.39%	-0.35%	-0.28%	-0.26%	-0.23%	-3.82%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature	Feature	2001	% of Bankling	2011	% of Bapkling	2001-2011
Class	туре	Length (It)	Darikinie	Length (It)	Dalikiile	Change
Stream Sta	abilization					
	Rock RipRap	17,321	47.4%	16,932	46.4%	-390
	Gabions	0	0.0%	149	0.4%	149
	Flow Deflectors	961	2.6%	961	2.6%	0
	Between Flow Deflectors	629	1.7%	621	1.7%	-8
	Feature Type Totals	18,911	51.8%	18,662	51.1%	-249
Floodplain	Control					'
	Floodplain Dike/Levee	18,388	50.4%	17,937	49.1%	-451
	Feature Type Totals	18,388	50.4%	17,937	49.1%	-451
	Reach Totals	37,299	102.2%	36,599	100.3%	-700

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	18,451	26,163	2.42	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	18,253	18,762	2.03	1950 to 2001:	-16.13%
Change 1950 - 2001	-198	-7,401	-0.39		
Length of Side		Pre-1950s (ft)	8,601		
Channels Blocked		Post-1950s (ft)	5,546		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pr	ne 5-year floodplain tend otect the agricultural pro	to represent

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 171	Erosion Buffer (ft) 342	To CM Acre 63	tal //Z eage 4	Restricted CMZ Acreage 225	% Restric Migratic Area 35%	ted Tot on AH Acrea	al Z age 3	Restricted AHZ Acreage 44	% Restricted Avulsion Area 69%
2011 Res	stricted Mig	ration A	rea Sun	nma	rv	Note that the	ese data refle	ect the of	oserved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Pero	cent of CMZ	2011 aerial Counties, C	photography OE for the re	(NAIP fo st of the	river).	Sweet Grass
Road/Railro	oad Prism									
	Urban Indus	trial	17	2	.4%					
	Interstate		5	0	.6%					
RipRap/Flo	w Deflectors				a 0 (
	Urban Resid	ential	6	0	.8%					
	Urban Indus	trial	15	2	2%					
	Exurban Res	sidential	19	2	8%					
RipRap										
	Exurban Res	sidential	15	2	1%					
Flow Deflect	ctors									
	Non-Irrigated	b	1	0	.1%					
Dike/Levee										
	Urban Other		66	9	.5%					
	Non-Irrigated	b	10	1	.4%					
	Exurban Res	sidential	115	16	6.4%					
		Totals	268	3	8.5%					
Land Us	es within th	e CMZ (/	Acres)	l Irr	Flood igation 0.0	Sprinkler Irrigation 4.0	Pivot Irrigation 0.0	Urba ExUr 13{	an/ 1 ban po 5.2	Frans- ortation 9.2

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	2	1	1	1	0.1%	0.1%	0.1%	0.1%
	Totals	2	1	1	1	0.1%	0.1%	0.1%	0.1%
Agricultural Lan	d								
	Non-Irrigated	662	494	415	410	42.3%	31.6%	26.6%	26.3%
	Irrigated	150	26	34	34	9.6%	1.7%	2.2%	2.2%
	Totals	811	520	449	444	51.9%	33.3%	28.7%	28.4%
Channel						•			
	Channel	416	432	443	448	26.6%	27.6%	28.4%	28.7%
	Totals	416	432	443	448	26.6%	27.6%	28.4%	28.7%
ExUrban									
	ExUrban Other	9	0	0	0	0.5%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	15	4	4	0.0%	1.0%	0.2%	0.2%
	ExUrban Industrial	1	94	94	94	0.0%	6.0%	6.0%	6.0%
	ExUrban Commercial	0	19	28	28	0.0%	1.2%	1.8%	1.8%
	ExUrban Residential	28	85	140	140	1.8%	5.5%	9.0%	9.0%
	Totals	37	214	266	266	2.4%	13.7%	17.1%	17.1%
Transportation									
	Public Road	18	33	41	41	1.2%	2.1%	2.6%	2.6%
	Interstate	0	34	34	34	0.0%	2.2%	2.2%	2.2%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	18	67	75	75	1.2%	4.3%	4.8%	4.8%
Urban									
	Urban Other	49	61	61	61	3.2%	3.9%	3.9%	3.9%
	Urban Residential	183	226	226	226	11.7%	14.5%	14.5%	14.5%
	Urban Commercial	20	42	42	42	1.3%	2.7%	2.7%	2.7%
	Urban Undeveloped	25	0	0	0	1.6%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	277	328	328	328	17.7%	21.0%	21.0%	21.0%

Land Use Til	meline - Tiers 3 a	and 4								Char	nge Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	0	0	33	33	0.0%	0.0%	7.3%	7.4%	0.0%	7.3%	0.1%	7.4%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	150	26	1	1	18.4%	5.1%	0.2%	0.2%	-13.4%	-4.9%	0.0%	-18.3%
	Totals	150	26	34	34	18.4%	5.1%	7.5%	7.6%	-13.4%	2.4%	0.1%	-10.9%

Reach PC14

Non-Irrigated													
	Multi-Use	507	406	415	410	62.5%	78.1%	92.5%	92.4%	15.6%	14.4%	-0.1%	29.9%
	Hay/Pasture	154	87	0	0	19.0%	16.8%	0.0%	0.0%	-2.2%	-16.8%	0.0%	-19.0%
	Totals	662	494	415	410	81.6%	94.9%	92.5%	92.4%	13.4%	-2.4%	-0.1%	10.9%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	15.3	26.4	51.2	0.0	93.0
Acres/Valley Mile	5.1	8.8	17.1	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	4.74	0.89%	3.68	1.92	0.45	1.36

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

PCS: Partially confined straight

To Mayors Landing

Reach PCI5

Upstream River Mile501.7Downstream River Mile499.9Length1.80 mi (2.90 km)

General Location General Comments

County

Classification

Narrative Summary

Reach PC15 is a 1.83 mile long river segment that extends from Sacajawea Park to the KPRK Bridge (Hwy 89) in Livingston. Within the reach, the river largely flows along the east valley wall, with extensive development on the west side of the river. There are almost 463 acres of urban development in the land use mapping corridor within this reach. There is also over a mile of bank armor, almost all of which is on the left (west) bank of the river. This includes about 5,000 feet of rock riprap and 600 feet of flow deflectors, which drape about 29 percent of the bankline. There are also 9,000 feet of floodplain dikes mapped in this reach, and again, they are on the west side of the river. The physical features have restricted about one half of the river's natural Channel Migration Zone in Reach PC15.

The Vallis Ditch Diversion diverts water from a side channel on the east side of the river at RM 500.4. Across the river from the diversion, Mayor's Landing is a popular ~3 acre fishing access site with a boat ramp.

About 50 acres of wetlands have been mapped in Reach PC15, and most of these remain connected to the main channel. About 20 of those wetland acres are on Siebeck Island.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,570 cfs to 1,510 cfs with human development, a reduction of 3.8 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC15 include:

Park

•Physical features blocking over 13,000 feet of side channels.

•Extensive CMZ Restriction with floodplain development.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC15 include: •CMZ Management due to current restriction of 53 percent of the Channel Migration Zone •Channel Bank Stabilization Recommended Practices due to 29 percent of banks being armored in reach •Irrigation diversion management at Vallis Ditch Diversion

Reach PC15

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	6214500	6192500
	1971	Jun 2	23	29,200	10-25	10-25 yr		Location		Billings	Livingston
	1902	Jun 1	1	30,100	10-25 yr			Period of Record		1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Disc		1020 2010	1020 2010
	1974	Jun 1	17	36,300	50-10	0 yr		Distance	lo (miles)	135.5	4.9
	1996	Jun 1	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	10,200	20,300	25,600	28,800	35,400	38,200	44,300	1,570	1,760
	Regul	ated	10,100	20,200	25,500	28,700	35,300	38,100	44,200	1,510	1,680
	% Cha	ange	-0.98%	-0.49%	-0.39%	-0.35%	-0.28%	-0.26%	-0.23%	-3.82%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	4,637	24.5%	4,880	25.8%	243
	Flow Deflectors	613	3.2%	613	3.2%	0
	Between Flow Deflectors	139	0.7%	0	0.0%	-139
	Feature Type Totals	5,389	28.5%	5,493	29.1%	104
Floodplain	Control					
	Floodplain Dike/Levee	9,032	47.8%	9,032	47.8%	0
	Feature Type Totals	9,032	47.8%	9,032	47.8%	0
	Reach Totals	14,421	76.3%	14,525	76.8%	104

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)			Bankfull		
	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Braiding Parameter		% Change in Braiding
1950	9,864	1,031	1.10	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	9,453		1.00	1950 to 2001:	-9.47%
Change 1950 - 2001	-411		-0.10		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pr	ne 5-year floodplain tend otect the agricultural pro	to represent

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal /IZ eage	Restricted CMZ Acreage	% Restrict Migration Area	ed Tota n AHZ Acrea	l Res 2 A ge Ac	tricted AHZ reage	% Restricted Avulsion Area
	79	158	15	0	36	24% 2			196	69%
2011 Res	stricted Migr	ation A	rea Sun	nmar	у	Note that the	ese data refle	ct the obser	ved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	Counties, COE for the rest of the river).				Sweet Grass
Road/Railro	oad Prism									
	Non-Irrigated		2	0.	5%					
Dike/Levee										
	Urban Other		230	53	.0%					
		Totals	232	53	.5%					
Land Us	es within the	e CMZ (A	Acres)	F Irri	lood gation	Sprinkler Irrigation	Pivot Irrigation	Urban/ ExUrban	T po	rans- rtation
					0.0	18.1	0.0	200.8		5.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3		Ac	res		% of Reach Area			1
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	7	13	26	26	0.6%	1.2%	2.4%	2.4%
	Totals	7	13	26	26	0.6%	1.2%	2.4%	2.4%
Agricultural Lan	d					•			
	Non-Irrigated	504	413	310	350	48.1%	39.4%	29.5%	33.4%
	Irrigated	14	18	18	18	1.3%	1.7%	1.7%	1.7%
	Totals	518	431	328	369	49.4%	41.1%	31.3%	35.2%
Channel						•			
	Channel	91	97	109	106	8.7%	9.3%	10.4%	10.1%
	Totals	91	97	109	106	8.7%	9.3%	10.4%	10.1%
ExUrban									
	ExUrban Other	5	0	0	0	0.5%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	3	17	51	14	0.3%	1.6%	4.9%	1.3%
	ExUrban Commercial	0	0	0	20	0.0%	0.0%	0.0%	1.9%
	ExUrban Residential	0	4	17	17	0.0%	0.4%	1.6%	1.6%
	Totals	8	21	69	51	0.7%	2.0%	6.5%	4.8%
Transportation						•			
	Public Road	18	18	18	18	1.7%	1.7%	1.7%	1.7%
	Interstate	0	3	3	3	0.0%	0.3%	0.3%	0.3%
	Railroad	14	14	13	13	1.3%	1.3%	1.2%	1.2%
	Totals	31	34	34	34	3.0%	3.3%	3.2%	3.2%
Urban						•			
	Urban Other	21	86	123	123	2.0%	8.2%	11.7%	11.7%
	Urban Residential	205	236	246	246	19.6%	22.5%	23.5%	23.5%
	Urban Commercial	49	68	68	49	4.7%	6.5%	6.5%	4.7%
	Urban Undeveloped	78	17	0	0	7.4%	1.7%	0.0%	0.0%
	Urban Industrial	41	45	46	46	3.9%	4.3%	4.4%	4.4%
	Totals	394	453	483	463	37.6%	43.2%	46.1%	44.2%

Land Use Ti	meline - Tiers 3 a	ind 4								Char	nge Betv	ween Y	ears
			Aci	res		%	of Rea	ch Area	a	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	0	0	18	18	0.0%	0.0%	5.5%	4.9%	0.0%	5.5%	-0.6%	4.9%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	14	18	0	0	2.6%	4.2%	0.0%	0.0%	1.6%	-4.2%	0.0%	-2.6%
	Totals	14	18	18	18	2.6%	4.2%	5.5%	4.9%	1.6%	1.3%	-0.6%	2.3%

Reach PC15

Non-Irrigated													
	Multi-Use	327	316	246	282	63.2%	73.3%	75.2%	76.4%	10.2%	1.8%	1.2%	13.2%
	Hay/Pasture	177	97	63	69	34.2%	22.4%	19.3%	18.7%	-11.8%	-3.2%	-0.6%	-15.6%
	Totals	504	413	310	350	97.4%	95.8%	94.5%	95.1%	-1.6%	-1.3%	0.6%	-2.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	2.8	36.7	10.9	0.0	50.5
Acres/Valley Mile	1.6	20.9	6.2	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.72	0.23%	0.49	0.34	0.07	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC16

County	Park	Upstream River Mile	499.9
Classification	PCA: Partially confined anabranching	Downstream River Mile	495.6
General Location	To just upstream of Hwy 89 bridge	Length	4.30 mi (6.92 km)
General Comments			

Narrative Summary

Reach PC16 is 4.3 miles long, extending from the KPRK Bridge (Hwy 89) in Livingston almost to the Highway 89 Bridge downstream. Within the reach, the river makes a large swing from a northerly trend to an easterly trend. The reach is dynamic, as multiple wooded islands, and intermittently flows along the north valley wall. In 2001, there were about 4.2 miles of side channels in the reach, indicating that there is as almost much side channel as main channel in this segment of the Yellowstone River. In some areas the river corridor is over 2,000 feet wide.

There are over 8,000 feet of bank armor in Reach PC16, about 6,500 feet of which is rock riprap. In 2011, there were 1,700 feet of flow deflectors in the reach, after about 200 feet had been destroyed between 2001 and 2011. These flow deflectors were on a large meander bend; they were flanked, and the river has migrated to the southeast about 200 feet beyond their original location. This erosion also damaged a large diversion structure. Bank armor covers about 18 percent of the total bankline. There are also 8,200 feet of mapped floodplain dikes in the reach. Prior to 1950, a 1,900-foot long channel was blocked at its upper end by the highway and Railroad Bridge approaches at the KPRK Bridge.

Land uses in Reach PC16 are mixed, including urban/exurban, irrigated agriculture, and non-irrigated agriculture. In 1950, over 660 acres were in flood irrigation and by 2011 that number had been reduced to 70 acres, with 173 acres being converted to sprinkler irrigation and 246 to pivot. Exurban development is most dense on the left (north) bank of the river, where the valley wall consists of erosion-resistant sandstone that is out of the Channel Migration Zone.

Over 200 acres of wetlands have been mapped in Reach PC16, most of which are emergent marshes and wet meadows. Most of these wetlands are in non-irrigated hay pastures.

There is one pipeline crossing in this reach. The crossing is near Rustad Lane, and is a natural gas line owned by NW Energy, LLC.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,580 cfs to 1,510 cfs with human development, a reduction of 4.4 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC16 include: •Flanking of flow deflectors and sever erosion behind.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC16 include: •Side channel restoration below transportation embankment at RM 499.4L

•Flanked bank armor removal at RM 496.8

•CMZ Management due to current restriction of 14 percent of the Channel Migration Zone

•Pipeline Practices at natural gas crossing at RM 497.9 (natural gas may have special consideration in Practice)

•Irrigation diversion management at Vallis Ditch Diversion at RM 496.5

Reach PC16

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun 1	1	30,100	10-25	5 yr		Period	l of Record	1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Distance		404.0	6 7
	1974	Jun 1	17	36,300	50-10	0 yr		Distance	e to (miles)	131.2	0.7
	1996	Jun 1	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	10,400	20,600	25,900	29,200	35,900	38,700	44,900	1,580	1,760
	Regul	ated	10,300	20,500	25,800	29,100	35,800	38,600	44,800	1,510	1,680
	% Cha	ange	-0.96%	-0.49%	-0.39%	-0.34%	-0.28%	-0.26%	-0.22%	-4.43%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Stabilization						
	Rock RipRap	4,199	9.2%	6,475	14.2%	2,276
	Flow Deflectors	784	1.7%	759	1.7%	-25
	Between Flow Deflectors	1,126	2.5%	944	2.1%	-182
	Feature Type Totals	6,109	13.4%	8,178	18.0%	2,069
Floodplain	Control					
	Floodplain Dike/Levee	8,196	18.0%	7,453	16.4%	-744
	Feature Type Totals	8,196	18.0%	7,453	16.4%	-744
	Reach Totals	14,305	31.4%	15,631	34.3%	1,326

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	23,645	25,912	2.10	1950 to 1976:	_
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	22,759	22,182	1.97	1950 to 2001:	-5.78%
Change 1950 - 2001	-887	-3,729	-0.12		
Length of Side		Pre-1950s (ft)	1,901		
Channels Blocked		Post-1950s (ft)	0		
HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of the riparian zones that have been converted to agrigulture and irrigation infrastructure.	he riparian zor d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pro	ne 5-year floodplain tend otect the agricultural pro	to represent

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tot CN Acre	tal IZ age	Restricted CMZ Acreage	% Restric Migratio Area	ted [·] n Ad	Total AHZ creage	Restricte AHZ Acreage	d % Restricted Avulsion Area
	212	423	75	9	52	7%		221	84	38%
2011 Res	stricted Migr	ation A	rea Sun	nmai	у	Note that the	ese data i	eflect th	e observed c	onditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	Counties, Co	OE for the	e rest of	the river).	d Sweet Grass
Road/Railro	ad Prism									
	Public Road		1	0	1%					
	Non-Irrigated		89	9	.0%					
RipRap/Flo	w Deflectors									
	Non-Irrigated		18	1.	.9%					
	Irrigated		15	1.	.5%					
RipRap										
	Non-Irrigated		6	0	6%					
	Irrigated		10	1	.0%					
		Totals	140	14	.3%					
Land Us	es within the	e CMZ (A	Acres)	F Irri	lood gation 0.1	Sprinkler Irrigation 18.1	Pivo Irrigati 8.2	t l on E	Urban/ xUrban 12.6	Trans- portation 5.4

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	47	130	182	156	1.9%	5.2%	7.3%	6.3%
	Totals	47	130	182	156	1.9%	5.2%	7.3%	6.3%
Agricultural Lan	d								
	Non-Irrigated	1,299	956	824	1,042	52.3%	38.5%	33.2%	42.0%
	Irrigated	662	802	708	488	26.7%	32.3%	28.5%	19.7%
	Totals	1,961	1,758	1,532	1,530	79.0%	70.8%	61.7%	61.6%
Channel									
	Channel	433	388	463	485	17.4%	15.6%	18.6%	19.6%
	Totals	433	388	463	485	17.4%	15.6%	18.6%	19.6%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	17	0	0	0.0%	0.7%	0.0%	0.0%
	ExUrban Industrial	0	31	0	0	0.0%	1.3%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	1	100	203	208	0.0%	4.0%	8.2%	8.4%
	Totals	1	149	203	208	0.0%	6.0%	8.2%	8.4%
Transportation									
	Public Road	27	28	28	28	1.1%	1.1%	1.1%	1.1%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	5	5	5	5	0.2%	0.2%	0.2%	0.2%
	Totals	32	33	33	33	1.3%	1.3%	1.3%	1.3%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	8	24	37	37	0.3%	1.0%	1.5%	1.5%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	33	33	0.0%	0.0%	1.3%	1.3%
	Totals	8	24	69	69	0.3%	1.0%	2.8%	2.8%

Land Use Timeline - Tiers 3 and 4										Char	ige Beti	ween Y	ears
			Acr	es		%	of Rea	ch Area	۱ I	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	151	173	0.0%	0.0%	9.8%	11.3%	0.0%	9.8%	1.5%	11.3%
	Pivot	0	0	244	246	0.0%	0.0%	15.9%	16.1%	0.0%	15.9%	0.1%	16.1%
	Flood	662	802	314	70	33.8%	45.6%	20.5%	4.6%	11.8%	-25.1%	-15.9%	-29.2%
	Totals	662	802	708	488	33.8%	45.6%	46.2%	31.9%	11.8%	0.6%	-14.3%	-1.8%

Reach PCI6

Non-Irrigated													
	Multi-Use	1,119	880	550	593	57.1%	50.0%	35.9%	38.7%	-7.0%	-14.1%	2.8%	-18.3%
	Hay/Pasture	180	77	274	449	9.2%	4.4%	17.9%	29.3%	-4.8%	13.5%	11.5%	20.2%
	Totals	1,299	956	824	1,042	66.2%	54.4%	53.8%	68.1%	-11.8%	-0.6%	14.3%	1.8%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	10.6	154.4	51.5	0.0	216.5
Acres/Valley Mile	2.7	39.4	13.1	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.84	0.12%	0.83	0.29	0.12	0.05

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC17

County	Park
Classification	PCB: Partially confined braided
General Location	Through Hwy 89 bridge crossing to Shields River
Concerct Commonto	

Upstream River Mile	495.6
Downstream River Mile	493.6
Length	2.00 mi (3.22 km)

General Comments

Narrative Summary

Reach PC17 is 2.0 miles long, extending from just above the Highway 89 Bridge to just below the mouth of the Shields River. The reach is highly impacted by the two bridges that cross the river in the middle of the reach. One is the Highway 89 Bridge and the other is an abandoned railroad bridge that runs parallel to it just upstream.

There is over a mile of bank armor in Reach PC17, about 5,700 feet of which is rock riprap and another 130 feet is flow deflectors. About 28 percent of the total bankline, including those of side channels, is armored. Most of the armor is associated with the bridges.

About 25 percent of the Channel Migration Zone in Reach PC17 has been restricted by physical features. Much of this restriction takes place near the upper end of the reach, where the Highway 89 Bridge has restricted the natural CMZ from a width of 1800 feet down to 300 feet, isolating about 90 acres of ground downstream of the bridge approach. This constriction at the bridge has also caused extensive deposition upstream, and as a result the river currently flows parallel to the highway before "doglegging" through the bridge opening.

There are also 7,300 feet of mapped floodplain dikes in the reach. These dikes are all associated with the transportation prisms at the bridges. Construction of the bridges also resulted in the blockage of about 3,950 feet of side channel prior to 1950 on the north floodplain just downstream.

Land uses in Reach PC17 are almost entirely agricultural, with historic flood irrigation converting to sprinkler and pivot, and some exurban development. The major land use in the reach, however, is non-irrigated agriculture.

About 85 acres of wetlands have been mapped in Reach PC17, most of which are emergent marshes and wet meadows. Most of these wetlands are in non-irrigated hay pastures or multi-use riparian bottoms.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,720 cfs to 1,560 cfs with human development, a reduction of 9.3 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC17 include:

•Constriction of CMZ at bridge and poor river alignment to structure. Side channel blockage by transportation embankment.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC17 include:

•Floodplain restoration/connectivity below transportation embankment at RM 494.5

•Side channel restoration below transportation embankment at RM 494.5

•CMZ Management due to current restriction of 25 percent of the Channel Migration Zone

•Bank Stabilization Recommended Practices due to the extent of armoring in the reach (28 percent armored banks)

Reach PC17

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun ´	11	30,100	10-25	10-25 yr		Period of Record		1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Distance		400.0	1020 2010
	1974	Jun ´	17	36,300	50-10	0 yr		Distance	lo (miles)	129.2	11.0
	1996	Jun ´	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	10,400	20,600	25,900	29,200	35,900	38,700	44,900	1,720	1,760
	Regul	ated	10,300	20,500	25,800	29,100	35,800	38,600	44,800	1,560	1,680
	% Cha	ange	-0.96%	-0.49%	-0.39%	-0.34%	-0.28%	-0.26%	-0.22%	-9.30%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	5,760	27.6%	5,704	27.3%	-56
	Flow Deflectors	78	0.4%	134	0.6%	56
	Feature Type Totals	5,838	28.0%	5,838	28.0%	0
Floodplain	Control					
	Floodplain Dike/Levee	7,290	34.9%	7,290	34.9%	0
	Feature Type Totals	7,290	34.9%	7,290	34.9%	0
	Reach Totals	13,128	62.9%	13,128	62.9%	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	10,030	2,384	1.24	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	10,430	2,345	1.22	1950 to 2001:	-1.04%
Change 1950 - 2001	400	-39	-0.01		
Length of Side		Pre-1950s (ft)	3,948		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pr	ne 5-year floodplain tend otect the agricultural pro	to represent

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 112	Erosion Buffer (ft) 223	Tot CN Acre 20	tal IZ age 9	Restricted CMZ Acreage 25	% Restrict Migratio Area 12%	ted T n A Ac	otal AHZ reage 213	Restricted AHZ Acreage 81	% Restricted Avulsion Area 38%
2011 Res	stricted Migr	ation A	rea Sun	nmar	v	Note that the	ese data re	eflect the	e observed co	nditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perce Cl	ent of MZ	2011 aerial p Counties, CO	ohotograp DE for the	hy (NAIF rest of t	^o for Park and he river).	Sweet Grass
Road/Railro	ad Prism									
	Non-Irrigated		90	21	.2%					
RipRap/Flo	w Deflectors									
	Public Road		2	0.4	4%					
RipRap										
	Railroad		4	1.0	0%					
	Non-Irrigated		10	2.4	4%					
		Totals	106	25	.1%					
Land Us	es within the	e CMZ (A	Acres)	F Irrig	lood gation 18.3	Sprinkler Irrigation 0.0	Pivot Irrigatic 0.0	U on Ex	Irban/ KUrban p 4.8	Trans- ortation 2.3

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	11	31	38	44	1.1%	3.2%	3.9%	4.5%	
	Totals	11	31	38	44	1.1%	3.2%	3.9%	4.5%	
Agricultural Lan	d									
	Non-Irrigated	462	521	493	611	47.6%	53.6%	50.8%	62.9%	
	Irrigated	384	255	255	125	39.5%	26.3%	26.2%	12.9%	
	Totals	846	776	748	736	87.1%	79.8%	77.0%	75.8%	
Channel										
	Channel	96	126	131	132	9.9%	13.0%	13.5%	13.6%	
	Totals	96	126	131	132	9.9%	13.0%	13.5%	13.6%	
ExUrban	ExUrban									
	ExUrban Other	0	9	10	10	0.0%	1.0%	1.0%	1.0%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	8	8	8	0.0%	0.8%	0.8%	0.8%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	1	17	22	0.0%	0.1%	1.8%	2.2%	
	Totals	0	19	35	40	0.0%	1.9%	3.6%	4.1%	
Transportation										
	Public Road	11	20	20	20	1.2%	2.1%	2.1%	2.1%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	7	0	0	0	0.7%	0.0%	0.0%	0.0%	
	Totals	18	20	20	20	1.9%	2.1%	2.1%	2.1%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	and Use Timeline - Tiers 3 and 4									Char	nge Betv	ween Y	ears
			Acr	es		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	40	60	0.0%	0.0%	5.4%	8.2%	0.0%	5.4%	2.9%	8.2%
	Pivot	0	0	0	47	0.0%	0.0%	0.0%	6.3%	0.0%	0.0%	6.3%	6.3%
	Flood	384	255	215	18	45.4%	32.9%	28.7%	2.5%	-12.5%	-4.2%	-26.2%	-42.9%
	Totals	384	255	255	125	45.4%	32.9%	34.1%	17.0%	-12.5%	1.2%	-17.0%	-28.3%

Reach PC17

Non-Irrigated													
	Multi-Use	441	446	463	478	52.1%	57.4%	61.9%	64.9%	5.3%	4.5%	3.0%	12.8%
	Hay/Pasture	21	75	30	133	2.5%	9.7%	4.0%	18.1%	7.1%	-5.7%	14.0%	15.5%
	Totals	462	521	493	611	54.6%	67.1%	65.9%	83.0%	12.5%	-1.2%	17.0%	28.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	2.0	65.1	19.0	0.0	86.1
Acres/Valley Mile	1.2	37.9	11.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.27	0.07%	0.09	0.01	0.00	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC18

County	Park	Upstream River Mile	493.6
Classification	UA: Unconfined anabranching	Downstream River Mile	488.3
General Location	To below Mission Creek	Length	5.30 mi (8.53 km)
General Comments	Reach PC18, located near Mission Creek in Park County, pro	vides an example of both a	ctive (structure-related)

and passive side channel loss, and also demonstrates CES data gaps in Park County.

Narrative Summary

Reach PC18 is located in Park County, downstream of Livingston at Mission Creek. It is 5.3 miles long, extending from RM 488.2 to RM 493.5. Reach PC 18 is an Unconfined Anabranching (UA) reach type. In the uppermost portion of the Reach (RM 492.5-493.5), the river flows along bluffs of the Fort Union Formation, which is made up of massive cliff-forming sedimentary rocks. The south side of the river consists primarily of young river deposits that form the modern valley bottom and low terraces. Sheep Mountain Fishing Access Site is located at RM 491.5. Just upstream of the fishing access site, the Middle Windsor Ditch diverts water off of a side channel.

In 2001, there was 9,650 feet of rock riprap in the reach and by 2011 that had expanded to 11,486 feet. Similarly, the extent of flow deflectors expanded from 1,710 feet to 3,370 feet from 2001 to 2011. Approximately 27 percent of the total bankline was armored in 2011. There is also one floodplain dike on the south floodplain near RM 492 that is about 3,400 feet long.

Over two miles of side channel have been blocked by dikes in Reach PC18. All of these lost side channels are located in the lower end of the reach below the mouth of Mission Creek. On the order of 3,370 feet were blocked prior to 1950, and about 8,000 feet since then.

Land uses in Reach PC18 are almost entirely agricultural, with historic flood irrigation converting to sprinkler and pivot, and some exurban development since 1950. There are still 302 acres of ground under flood irrigation in the reach. The major land use in the reach, however, is non-irrigated agriculture. There is one series of corrals associated with an animal holding facility that is within 200 feet of an abandoned channel at RM 490.3. Exurban Residential land use has expanded from zero acres in the1950s to 155 acres in 2011.

About 580 acres of wetlands have been mapped in Reach PC18, most of which are emergent marshes and wet meadows. Most of these wetlands are on the south side of the river in non-irrigated hay pastures or multi-use riparian bottoms.

Reach PC18 has 17 acres of Russian olive, which is the most of in any reach in Park County. This Russian olive is concentrated in one area on the south floodplain at RM 492.8; this area also has extensive mapped emergent wetlands.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,720 cfs to 1,560 cfs with human development, a reduction of 9.3 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC18 include:

•Blocked side channels that are thousands of feet long.

•Concentrated Russian olive infestation within mapped emergent wetland.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC18 include: •Side channel restoration at RM 490R

•CMZ Management due to current restriction of 14 percent of the Channel Migration Zone

•Russian olive removal

•Nutrient management at corrals that are part of an animal handling facility at RM 490.3L

•Bank Stabilization Recommended due to the extent of armoring in the reach (27 percent armored banks)

•Irrigation diversion structure management at Middle Windsor Ditch diversion

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	6214500	6192500
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun ´	11	30,100	10-25	5 yr		Period	l of Record	1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Disc		1020 2010	1020 2010
	1974	Jun 1	17	36,300	50-10	0 yr		Distance	e lo (miles)	123.9	13.0
	1996	Jun 1	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	11,400	22,400	28,100	31,700	38,900	41,800	48,500	1,720	1,760
	Regul	ated	11,100	22,000	27,800	31,400	38,600	41,600	48,400	1,560	1,680
	% Cha	ange	-2.63%	-1.79%	-1.07%	-0.95%	-0.77%	-0.48%	-0.21%	-9.30%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
1948	NA		DNR B/W			
1954	NA		DNR B/W			
1965	NA		DNR B/W			
1973	NA		DNR B/W			
1976	NA		DNR B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2005	USDA FSA		NAIP Color			
2007	Wolpert??		Color			
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	9,650	17.3%	11,486	20.6%	1,836
	Flow Deflectors	1,170	2.1%	1,352	2.4%	182
	Between Flow Deflectors	544	1.0%	2,110	3.8%	1,566
	Feature Type Totals	11,364	20.4%	14,949	26.8%	3,584
Floodplain	Control					
	Floodplain Dike/Levee	3,339	6.0%	3,319	6.0%	-19
	Feature Type Totals	3,339	6.0%	3,319	6.0%	-19
	Reach Totals	14,703	26.4%	18,268	32.8%	3,565

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	27,144	39,797	2.47	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	27,886	27,224	1.98	1950 to 2001:	-19.86%
Change 1950 - 2001	742	-12,573	-0.49		
Length of Side		Pre-1950s (ft)	3,369		
Channels Blocked		Post-1950s (ft)	7,999		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pr	ne 5-year floodplain tend otect the agricultural pro	to represent

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 266	Erosion Buffer (ft) 532	To CM Acre 1,0	tal MZ eage 87	Restricted CMZ Acreage 117	% Restrict Migratio Area 11%	ted Tot n AH Acrea	al I IZ age 7	Restricted AHZ Acreage 53	% Restricted Avulsion Area 19%
2011 Res	stricted Mig	ration A	rea Sur	nmai	v	Note that the	ese data refl	ect the ot	oserved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc	ent of MZ	2011 aerial p Counties, C	ohotography OE for the re	(NAIP for st of the	r Park and S river).	Sweet Grass
RipRap/Flo	w Deflectors									
	Non-Irrigated		5	0	.4%					
	Irrigated		113	8	.3%					
RipRap										
	Irrigated		35	2	.6%					
	Exurban Res	idential	7	0	.5%					
	Canal		21	1	.6%					
Flow Deflect	ctors									
	Other Infrastr	ructure	3	0	.2%					
		Totals	185	13	8.5%					
Land Us	es within the	e CMZ (/	Acres)	F Irri	Flood igation 43.8	Sprinkler Irrigation 0.0	Pivot Irrigation 13.5	Urba ExUri 31	an/ 1 ban po .1	rans- ortation 1.8

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	23	23	23	23	0.6%	0.6%	0.6%	0.6%
	Agricultural Roads	0	0	6	6	0.0%	0.0%	0.2%	0.2%
	Other Infrastructure	64	92	131	142	1.7%	2.4%	3.5%	3.7%
	Totals	86	115	160	171	2.3%	3.0%	4.2%	4.5%
Agricultural Lan	d								
	Non-Irrigated	1,728	1,663	1,671	1,885	45.6%	43.8%	44.1%	49.7%
	Irrigated	1,365	1,351	1,124	843	36.0%	35.6%	29.6%	22.2%
	Totals	3,093	3,014	2,795	2,728	81.6%	79.5%	73.7%	71.9%
Channel									
	Channel	530	528	565	583	14.0%	13.9%	14.9%	15.4%
	Totals	530	528	565	583	14.0%	13.9%	14.9%	15.4%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	12	12	0.0%	0.0%	0.3%	0.3%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	23	104	143	0.0%	0.6%	2.7%	3.8%
	Totals	0	23	116	155	0.0%	0.6%	3.1%	4.1%
Transportation									
	Public Road	62	24	47	47	1.6%	0.6%	1.2%	1.2%
	Interstate	0	67	88	88	0.0%	1.8%	2.3%	2.3%
	Railroad	21	21	21	21	0.6%	0.6%	0.6%	0.6%
	Totals	84	112	155	155	2.2%	3.0%	4.1%	4.1%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 and -	4								Char	ige Betv	ween Y	ears
			Acr	es		%	of Rea	ch Area	1	(% 0	i Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	91	128	0.0%	0.0%	3.2%	4.7%	0.0%	3.2%	1.5%	4.7%
	Pivot	0	0	275	412	0.0%	0.0%	9.8%	15.1%	0.0%	9.8%	5.3%	15.1%
	Flood	1,365	1,351	759	303	44.1%	44.8%	27.1%	11.1%	0.7%	-17.7%	-16.0%	-33.0%
	Totals	1,365	1,351	1,124	843	44.1%	44.8%	40.2%	30.9%	0.7%	-4.6%	-9.3%	-13.2%

Reach PC18

Non-Irrigated													
	Multi-Use	1,487	1,399	1,459	1,410	48.1%	46.4%	52.2%	51.7%	-1.7%	5.8%	-0.5%	3.6%
	Hay/Pasture	241	264	212	475	7.8%	8.8%	7.6%	17.4%	1.0%	-1.2%	9.8%	9.6%
	Totals	1,728	1,663	1,671	1,885	55.9%	55.2%	59.8%	69.1%	-0.7%	4.6%	9.3%	13.2%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	6.5	504.8	68.1	0.0	579.4
Acres/Valley Mile	1.4	105.6	14.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s
Russian Olive in Reach	16.66	0.79%	1.63	0.33	0.14	0.32

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.
Reach PCI9

CountyParkClassificationCS: Confined straightGeneral LocationTo near Locke CrGeneral Comments

Upstream River Mile488.3Downstream River Mile485.4Length2.90 mi (4.67 km)

Narrative Summary

Reach PC19 is located in Park County, downstream of Livingston near Locke Creek. It is 2.9 miles long, and is a Confined Straight (CS) reach type indicating that it is highly confined between the valley wall to the north, and by the railroad/Interstate corridor to the south. The transportation corridor has isolated on the order of 40acres of historic floodplain from the river. These broad fields south of the river that are historic floodplain areas are now irrigated. The primary land use in the reach is agriculture, with about 200 acres each of flood, pivot, and sprinkler irrigation. More than half of the agricultural land is non-irrigated (~750 acres). In 1950, the transportation corridor footprint consumed about 50 acres in the reach, and that area was doubled with the construction of the Interstate in the late 1960s.

The stability of the reach is indicated by the fact that less than 3 percent of the bankline is armored. That 805 feet of armor was all constructed on the right bank sometime since 2001 where the river flows within a few hundred feet of the rail line. There are no side channels in the reach and the CMZ is relatively narrow.

Although the corridor confined and relatively narrow, there are about 50 acres of wetlands mapped in Reach PC19. These wetlands are consistently along low areas of the active riverbanks that support emergent and scrub/shrub wetland types. Only 0.03 acres of Russian olive was mapped in the reach.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events now considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,730 cfs to 1,560 cfs with human development, a reduction of 9.8 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC19 include:

•Corridor confinement by transportation infrastructure.

•Agricultural development and irrigation of historic floodplain area that has become isolated from the river by transportation infrastructure.

No reach-specific Practices were identified for Reach PC19.

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Dat	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Rillings	Livingston
	1902	Jun '	11	30,100	10-25	5 yr		Perior	l of Record	1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Distance		1020 2010	1020 2010
	1974	Jun '	17	36,300	50-10	0 yr		Distance	lo (miles)	121.0	18.3
	1996	Jun '	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	11,400	22,400	28,100	31,700	38,900	41,800	48,500	1,730	1,760
	Regul	ated	11,100	22,000	27,800	31,400	38,600	41,600	48,400	1,560	1,680
	% Cha	ange	-2.63%	-1.79%	-1.07%	-0.95%	-0.77%	-0.48%	-0.21%	-9.83%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	0	0.0%	805	2.8%	805
	Feature Type Totals		0.0%	805	2.8%	
	Reach Totals	;	0.0%	805	2.8%	

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	14,505		1.00	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	14,533		1.00	1950 to 2001:	0.00%
Change 1950 - 2001	28		0.00		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	he riparian zor d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pr	ne 5-year floodplain tend otect the agricultural pro	to represent duction and

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal Restricte MZ CMZ eage Acreage	d % Restric Migratic Area	ted Tota on AHZ Acrea	I Rest Al ge Acro	ricted % Res HZ Avu eage A	stricted Ilsion rea		
	19	38	15	3 0	0%	0	() (0%		
2011 Res	stricted Mig	ration A	rea Sun	nmary	Note that the	ese data refle	ct the observ	ed conditions i	in the		
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, C	Counties, COE for the rest of the river).					
RipRap											
	Non-Irrigated	ł	2	1.4%							
		Totals	2	1.4%							
Land Us	es within th	e CMZ (/	Acres)	Flood Irrigation 4.1	Sprinkler Irrigation 0.0	Pivot Irrigation 2.0	Urban/ ExUrban 0.0	Trans- portation 0.8			

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	9	16	19	22	0.5%	1.0%	1.1%	1.3%	
	Totals	9	16	19	22	0.5%	1.0%	1.1%	1.3%	
Agricultural Lan	d									
	Non-Irrigated	837	885	842	797	49.4%	52.2%	49.7%	47.0%	
	Irrigated	686	613	611	654	40.5%	36.2%	36.1%	38.6%	
	Totals	1,522	1,498	1,453	1,450	89.8%	88.4%	85.7%	85.6%	
Channel										
	Channel	116	119	119	119	6.9%	7.0%	7.0%	7.0%	
	Totals	116	119	119	119	6.9%	7.0%	7.0%	7.0%	
ExUrban										
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	1	0	0	0.0%	0.1%	0.0%	0.0%	
	Totals	0	1	0	0	0.0%	0.1%	0.0%	0.0%	
Transportation										
	Public Road	31	45	15	15	1.8%	2.7%	0.9%	0.9%	
	Interstate	0	0	72	72	0.0%	0.0%	4.3%	4.3%	
	Railroad	16	16	16	16	0.9%	0.9%	0.9%	0.9%	
	Totals	47	61	103	103	2.8%	3.6%	6.1%	6.1%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	meline - Tiers 3 and	4								Char	nge Betv	ween Y	ears
			Acr	res		%	of Rea	ch Area	1	(% oʻ	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	201	201	0.0%	0.0%	13.9%	13.9%	0.0%	13.9%	0.0%	13.9%
	Pivot	0	0	26	241	0.0%	0.0%	1.8%	16.6%	0.0%	1.8%	14.8%	16.6%
	Flood	686	613	383	211	45.0%	40.9%	26.4%	14.6%	-4.1%	-14.5%	-11.8%	-30.5%
	Totals	686	613	611	654	45.0%	40.9%	42.1%	45.1%	-4.1%	1.1%	3.0%	0.0%

Reach PC19

Non-Irrigated													
	Multi-Use	663	742	733	727	43.6%	49.5%	50.4%	50.1%	6.0%	0.9%	-0.3%	6.5%
	Hay/Pasture	173	143	109	70	11.4%	9.6%	7.5%	4.8%	-1.8%	-2.0%	-2.7%	-6.6%
	Totals	837	885	842	797	55.0%	59.1%	57.9%	54.9%	4.1%	-1.1%	-3.0%	0.0%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	2.2	40.7	8.9	0.0	51.9
Acres/Valley Mile	0.8	15.2	3.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.03	0.08%	0.42	0.00	0.00	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

PCS: Partially confined straight

Reach PC20

Upstream River Mile485.4Downstream River Mile481Length4.40 mi (7.08 km)

General Location General Comments

County

Classification

Park

Fast End

Narrative Summary

Reach PC20 is 4.4 miles long and flows through a narrow canyon known as East End just above Springdale. The reach is Partially Confined Straight (PCS); the river flows through a canyon that provides some curvature however that sinuosity is created by the canyon itself and does not reflect river meandering. Within Reach PC20, the river is closely bound by both the railroad line and Interstate. In places, the transportation infrastructure has been cut into the valley wall; in other areas it encroaches into the historic river floodplain. As a result, numerous slivers of historic floodplain area have become isolated from the river through the canyon, and most of these isolated floodplain areas are currently irrigated. Within the floor of the canyon, the river does show come migration, side channel formation, and habitat complexity, although those dynamics are relatively suppressed due to the natural and human-induced confinement.

Because of the moderately dynamic nature of the river and the encroachment by transportation infrastructure, there are over two miles of bank armor in Reach PC20, and about 1,100 feet of that armor was constructed since 2001. All of the armor is on the right bank of the river where the channel is against the railroad line. Over a quarter of the banks are armored.

The primary land use in Reach PC20 is non-irrigated agriculture, although there are 79 acres of ground under sprinkler irrigation, and 115 acres under pivot. All of the irrigation is well out of the Channel Migration Zone (CMZ).

Over 100 acres of wetlands have been mapped in Reach PC20 and there is some minor Russian olive present. All of the wetlands are in the active river corridor, on low surfaces that host emergent and scrub/shrub wetland types.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,730 cfs to 1,570 cfs with human development, a reduction of 9.3 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC20 include:

•Corridor confinement by transportation infrastructure.

•Agricultural development and irrigation of historic floodplain area that has become isolated from the river by transportation infrastructure.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC20 include: •CMZ Management due to current restriction of 11 percent of the Channel Migration Zone •Bank Stabilization Recommended due to 27 percent of banks being armored in reach PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	6192500
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun ´	11	30,100	10-25	5 yr		Period		1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Disc		1020 2010	1020 2010
	1974	Jun ´	17	36,300	50-100	0 yr		Distance	lo (miles)	116.6	21.2
	1996	Jun ´	10	37,100	50-100	0 yr					
	1997	Jun	6	38,000	50-100	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	11,400	22,400	28,100	31,700	38,900	41,800	48,500	1,730	1,760
	Regul	ated	11,100	22,000	27,800	31,400	38,600	41,600	48,400	1,570	1,680
	% Cha	ange	-2.63%	-1.79%	-1.07%	-0.95%	-0.77%	-0.48%	-0.21%	-9.25%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1948	DNR		B/W			
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	11,665	24.6%	12,764	27.0%	1,099
	Flow Deflectors	0	0.0%	56	0.1%	56
	Feature Type Totals	11,665	24.6%	12,820	27.1%	1,155
Floodplain	Control					
	Floodplain Dike/Levee	3,181	6.7%	3,181	6.7%	0
	Feature Type Totals	3,181	6.7%	3,181	6.7%	0
	Reach Totals	14,846	31.4%	16,001	33.8%	1,155

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	23,758	10,972	1.46	1950 to 1976:	
1976				1976 to 1995:	
1995				1995 to 2001:	
2001	23,666	15,234	1.64	1950 to 2001:	12.44%
Change 1950 - 2001	-92	4,262	0.18		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year	
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of t riparian zones that have been converted to agrigulture an irrigation infrastructure.	he riparian zoı d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pr	ne 5-year floodplain tend otect the agricultural pro	to represent

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tot CN Acre	tal Restricted IZ CMZ age Acreage	d % Restric Migratio Area	ted Tota n AHZ Acreag	I Rest 2 A ge Acr	ricted HZ eage	% Restricted Avulsion Area
	142	284	53	9 57	11%	43		0	0%
2011 Res	stricted Mig	ration A	ea Sun	nmary	Note that the	ese data reflec	ct the observ	ed con	ditions in the
Reason for Restriction	Land Use Protected		RMA Percent of Acres CMZ		Counties, Co	OE for the res).	Sweet Glass	
RipRap									
	Railroad		59	10.1%					
	Non-Irrigated	1	8	1.4%					
		Totals	67	11.5%					
Land Use	es within th	e CMZ (A	Acres)	Flood Irrigation	Sprinkler Irrigation	Pivot Irrigation	Urban/ ExUrban	ד pc	Trans- ortation

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Acı	res		% of Reach Area			1
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	27	33	60	72	1.1%	1.3%	2.4%	2.8%
	Totals	27	33	60	72	1.1%	1.3%	2.4%	2.8%
Agricultural Lan	d								
	Non-Irrigated	2,032	1,987	1,819	1,784	79.5%	77.7%	71.2%	69.8%
	Irrigated	133	117	193	203	5.2%	4.6%	7.6%	8.0%
	Totals	2,166	2,104	2,012	1,987	84.7%	82.3%	78.7%	77.8%
Channel									
	Channel	281	312	333	346	11.0%	12.2%	13.0%	13.5%
	Totals	281	312	333	346	11.0%	12.2%	13.0%	13.5%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%
Transportation									
	Public Road	54	0	13	13	2.1%	0.0%	0.5%	0.5%
	Interstate	0	81	112	112	0.0%	3.2%	4.4%	4.4%
	Railroad	28	26	26	26	1.1%	1.0%	1.0%	1.0%
	Totals	82	107	151	151	3.2%	4.2%	5.9%	5.9%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	meline - Tiers 3	and 4								Char	nge Betv	ween Y	'ears	
				Acres			% of Reach Area				(% of Agricultural Land)			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11	
Irrigated														
	Sprinkler	0	0	79	79	0.0%	0.0%	3.9%	4.0%	0.0%	3.9%	0.0%	4.0%	
	Pivot	0	0	105	115	0.0%	0.0%	5.2%	5.8%	0.0%	5.2%	0.6%	5.8%	
	Flood	133	117	9	9	6.2%	5.6%	0.5%	0.5%	-0.6%	-5.1%	0.0%	-5.7%	
	Totals	133	117	193	203	6.2%	5.6%	9.6%	10.2%	-0.6%	4.0%	0.6%	4.1%	

Reach PC20

NIOD	Irrightod

Multi-Use	1,998	1,934	1,788	1,766	92.2%	91.9%	88.8%	88.9%	-0.3%	-3.1%	0.0%	-3.4%
Hay/Pasture	34	53	31	18	1.6%	2.5%	1.5%	0.9%	0.9%	-1.0%	-0.6%	-0.7%
Totals	2,032	1,987	1,819	1,784	93.8%	94.4%	90.4%	89.8%	0.6%	-4.0%	-0.6%	-4.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	1.0	64.3	45.8	0.0	111.1
Acres/Valley Mile	0.3	15.8	11.2	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.22	0.05%	0.12	0.01	0.02	0.04

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Reach PC21

CountyParkClassificationPCA: Partially confined anabranchingGeneral LocationTo SpringdaleGeneral Comments

Upstream River Mile481Downstream River Mile478.8Length2.20 mi (3.54 km)

Narrative Summary

Reach PC21 is the downstream-most reach in Park County, emerging from a narrow canyon just above Springdale. The reach is 2.2 miles long, and is classified as Partially Confined Anabranching, reflecting some influence of the valley wall on channel form coupled by islands and side channels. At the upstream end of the reach, the Hunters Hot Springs Canal Diversion diverts water along the left bank of the river where it flows along the valley wall. This canal carries water about 11 miles down the river valley.

Reach PC21 is fairly heavily armored, with over a mile of bank armor in the reach, and most of that is rock riprap. Most of the armor is on the right bank against the railroad line, but there is also armor protecting the Hunters Hot Springs Canal Diversion as well as hayfields along the left bank. In the lower end of the reach the left bank is a high terrace that has bedrock exposed at its toe.

The primary land use in Reach PC21 is non-irrigated agriculture, although there are 266 acres of ground under pivot irrigation. All of the pivot irrigation is well out of the Channel Migration Zone (CMZ). The Springdale Bridge Fishing Access Site is located in at the downstream end of the reach at Springdale Bridge. The bridge narrows the CMZ width from about 2,500 feet upstream to 1,000 feet downstream of the structure. Just upstream of the bridge, there are remnants of an older bridge, including a large pier in the river. Bedrock is exposed in the riverbed just upstream of the bridge.

About 90 acres of wetlands have been mapped in Reach PC21 and about 18 of those acres consist of emergent wetlands in low historic floodplain area that has been isolated from the river by the railroad and interstate. Although the Russian olive mapping shows 0.2 acres of RO in the reach, some of that had been eroded out by the river by fall 2011.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been relatively small in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,730 cfs to 1,570 cfs with human development, a reduction of 9.3 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach PC21 include: •Corridor confinement by transportation infrastructure. •Emergent wetlands located in isolated floodplain area. •Narrowing of CMZ by Springdale Bridge.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach PC21 include: •CMZ Management due to current restriction of 19 percent of the Channel Migration Zone •Bank Stabilization Recommended Practices due to 27 percent of banks being armored in reach •Irrigation diversion structure management at Hunters Hot Springs Canal diversion.

Reach PC21

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream	
	Year	Date	e Fl	ow on Date	Return Ir	nterval		Gago No		Gage 6214500	Gage 6192500	
	1971	Jun 2	23	29,200	10-25	10-25 yr				Billings	Livingston	
	1902	Jun 1	1	30,100	10-25 yr			Pariod of Pacard		1929-2015	1020-2015	
	1943	Jun 2	20	30,600	10-25	10-25 yr				1020 2010	1020 2010	
	1974	Jun 1	17	36,300	50-10	0 yr		Distance	lo (miles)	114.4	25.6	
	1996	Jun 1	10	37,100	50-10	0 yr						
	1997	Jun	6	38,000	50-10	0 yr						
	2011	Jun 3	30	40,600	>100	-yr						
Di	scharg	е								7Q10	95% Sum.	
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration	
	Unregul	ated	11,400	22,400	28,100	31,700	38,900	41,800	48,500	1,730	1,760	
	Regul	ated	11,100	22,000	27,800	31,400	38,600	41,600	48,400	1,570	1,680	
	% Cha	ange	-2.63%	-1.79%	-1.07%	-0.95%	-0.77%	-0.48%	-0.21%	-9.25%	-4.55%	

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
2005	NAIP	08/26/2005	color	1-meter pixels	6192500	2320
2005	NAIP	08/25/2005	color	1-meter pixels	6192500	2390
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	6,101	25.5%	6,270	26.2%	169
	Flow Deflectors	60	0.3%	123	0.5%	62
	Feature Type Totals	6,161	25.7%	6,393	26.7%	232
Floodplain	Control					
	Floodplain Dike/Levee	15,601	65.1%	15,612	65.1%	12
	Feature Type Totals	15,601	65.1%	15,612	65.1%	12
	Reach Totals	21,762	90.8%	22,005	91.8%	244

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	11,658	14,314	2.23	1950 to 1976:	
1976	1,552			1976 to 1995:	
1995				1995 to 2001:	
2001	11,983	14,978	2.25	1950 to 2001:	1.00%
Change 1950 - 2001	325	664	0.02		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)					
Agriculture (generally relates to field boundaries)					
Agriculture (isloated by canal or large ditch)					
Levee/Riprap (protecting agricultural lands)					
Levee/Riprap (protecting urban, industrial, etc.)					
Railroad					
Abandoned Railroad					
Transportation (Interstate and other roads)					
Total Not Isolated (Ac)					
Total Floodplain Area (Ac)					
Total Isolated (Ac)					
The 5-year floodplain is a good allegory for the extent of the riparian zones that have been converted to agrigulture and irrigation infrastructure.	he riparian zor d may result ir	ne. Thus, irrigated n additional bank p	l areas within th protection to pro	ne 5-year floodplain tend otect the agricultural pro	to represent

Flood	Sprinkler	Pivot	Total
-------	-----------	-------	-------

Irrigated Acres within the 5 Year Flooplain:

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tot CN Acre	tal //Z eage	Restricted CMZ Acreage	% Restrict Migratio Area	ted Tota n AHZ Acrea	l Res 2 A ge Act	tricted AHZ reage	% Restricted Avulsion Area
	131	261	32	8	56	17%	11		9	82%
2011 Res	stricted Mig	ration A	rea Sun	nmary	/	Note that the	ese data refle	ct the obser	ved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perce CN	ent of /IZ	Counties, COE for the rest of the river).			r).	Sweet Glass
Road/Railro	oad Prism									
	Public Road		25	7.3	8%					
RipRap										
	Railroad		30	8.7	%					
	Irrigated		11	3.1%						
		Totals	65	19.:	2%					
Land Us	es within the	e CMZ (/	Acres)	Fl Irrig	ood jation 9.5	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 6.7	ד pc	Frans- ortation 22.9
LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3		% of Reach Area						
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	18	20	20	20	1.5%	1.6%	1.6%	1.6%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	0	17	28	54	0.0%	1.4%	2.3%	4.4%
	Totals	18	37	48	74	1.5%	3.0%	3.9%	6.0%
Agricultural Lan	d								
	Non-Irrigated	770	623	555	496	63.0%	51.0%	45.4%	40.6%
	Irrigated	148	264	291	336	12.1%	21.6%	23.8%	27.5%
	Totals	918	887	846	832	75.1%	72.6%	69.2%	68.1%
Channel						•			
	Channel	235	231	249	237	19.3%	18.9%	20.4%	19.4%
	Totals			249	237	19.3%	18.9%	20.4%	19.4%
ExUrban									
	ExUrban Other	0	0	7	7	0.0%	0.0%	0.5%	0.5%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	13	13	15	15	1.0%	1.0%	1.2%	1.2%
	Totals	13	13	21	21	1.0%	1.0%	1.7%	1.7%
Transportation									
	Public Road	28	3	6	6	2.3%	0.2%	0.5%	0.5%
	Interstate	0	43	43	43	0.0%	3.6%	3.6%	3.6%
	Railroad	10	9	9	9	0.8%	0.7%	0.7%	0.7%
	Totals	38	55	58	58	3.1%	4.5%	4.8%	4.8%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	meline - Tiers 3 and	4								Char	ige Betv	veen Y	ears
			Acr	res		%	of Rea	ch Area	a	(% o	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	9	9	0.0%	0.0%	1.1%	1.1%	0.0%	1.1%	0.0%	1.1%
	Pivot	0	155	224	257	0.0%	17.5%	26.5%	30.8%	17.5%	9.0%	4.4%	30.8%
	Flood	148	109	58	70	16.1%	12.3%	6.8%	8.4%	-3.8%	-5.5%	1.6%	-7.7%
	Totals	148	264	291	336	16.1%	29.8%	34.4%	40.3%	13.6%	4.6%	5.9%	24.2%

Reach PC21

Non-Irrigated	

	Totals	770	623	555	496	83.9%	70.2%	65.6%	59.7%	-13.6%	-4.6%	-5.9%	-24.2%
	Hay/Pasture	230	105	49	20	25.1%	11.9%	5.8%	2.4%	-13.2%	-6.0%	-3.5%	-22.7%
	Multi-Use	540	518	506	477	58.8%	58.4%	59.8%	57.3%	-0.4%	1.4%	-2.5%	-1.5%
licu													

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	1.9	61.8	25.6	0.0	89.3
Acres/Valley Mile	1.0	31.4	13.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.17	0.23%	1.07	0.03	0.02	0.06

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

County	Sweet Grass	Upstream River Mile	478.8					
Classification	PCB: Partially confined braided	Downstream River Mile	475.4					
General Location	Springdale	Length	3.40 mi (5.47 km)					
General Comments	Springdale: Low primary sinuosity; large open bar area; extensive armoring							

Narrative Summary

Reach A1 is located just downstream of the Springdale Bridge in western-most Sweet Grass County. It is a Partially Confined Braided (PCB) reach type, indicating some influence of the valley wall on river geomorphology, as well as abundant un-vegetated mid-channel bars. The reach is 3.4 miles long. This reach is most prominently characterized by a large meander located at RM 478 that has been very dynamic over recent years. The meander bend has repeatedly migrated to the north and then cut off, leaving broad open gravel bars and a wide active channel corridor. The bendway has been heavily armored on its apex, and partially armored on its downstream limb. With all of the changes at this meander, there has been a net gain of total channel area in the reach of about 50 acres since 1950.

There are about 6,800 feet of rock riprap in the reach, over 1,500 feet of which was constructed since 2001. Several flow deflectors have been eroded out in Reach A1 since 2001. About 25 percent of the bankline was armored as of 2011. There are also over 6,800 feet of mapped transportation encroachment in the river corridor, most of which is the rail line that follows the south bank.

Although the rail line runs along the edge of the river, it is situated on higher terraces and as such has not isolated any 100-year historic floodplain area. However, about 9 percent of the total Channel Migration Zone (CMZ) footprint has become restricted, and these restrictions are due to armoring against both the rail line and irrigated fields. This demonstrates how terraces that may be out of the 100-year floodplain can still be prone to erosion and thus within the CMZ.

The primary land use in the reach is non-irrigated agriculture (~1,100 acres), although there are about 650 acres under some form of irrigation. Pivot irrigation has expanded from 0 acres in 1950 to 302 acres in 2011. Similarly, sprinkler irrigation has expanded from 0 to 250 acres during the same time frame, and the extent of flood irrigated lands dropped from 803 to 123 acres over those 61 years. About 46 acres of land under sprinkler and 10 acres of land under pivot are located within the CMZ.

About 120 acres of wetland have been mapped in the reach, with most of that (84 acres) emergent wetland marsh that is located primarily in the active stream corridor. About 20 acres of wetland have been isolated from the corridor by the rail line near RM 477.8. About 0.7 acres of Russian olive have been mapped in the reach, and these trees are dispersed throughout the corridor.

Hydraulic modeling of the reach shows an extensive network of floodplain channels on the floodplain in Reach A1 that creates some avulsion risk north of the river. Much of the armoring on the large meander at RM 478 has reduced the risk of an avulsion and potential bypass of the Prather Mayborn Westfall Ditch Diversion. In addition, one of the overflow channels has been allowed to activate, which has reduced the potential for additional avulsions. The strategic allowance of channel migration and secondary channel activation has prevented the creation of a severe pinch point at RM 477.4 that may have created long-term instability in the reach.

A large dike at RM 476.7 blocks a ~3,000-foot long side channel and focuses the river towards the south bank and the Prather Mayborn Westfall Ditch Diversion. Although the dike blocks the head of the channel, it is still seasonally accessed by other overflow points from the main river.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,750 cfs to 1,570 cfs with human development, a reduction of 10.3 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A1 include:

•Strategic allowance of side channel activation to reduce overall avulsion risk •Isolation of emergent wetlands by transportation infrastructure •Blockage of a 3,000-foot long side channel to focus flows to a diversion structure.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A1 include:

•CMZ management due to level of restriction and avulsion risks on north floodplain

- •Bank Stabilization Recommended Practices due to current extent of bank armoring (25 percent of total bankline)
- •Irrigation diversion structure management at Prather Mayborn Westfall

•Wetland management/restoration due to high wetland concentrations

Reach AI

Reach AI

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun ´	11	30,100	10-25	5 yr		Period	of Record	1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Dist		1020 2010	1020 2010
	1974	Jun ´	17	36,300	50-10	0 yr		Distance	To (miles)	111.0	27.8
	1996	Jun ´	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	11,900	23,300	29,200	32,900	40,300	43,400	50,300	1,750	1,760
	Regul	ated	11,500	22,900	28,800	32,500	40,000	43,200	50,100	1,570	1,680
	% Cha	ange	-3.36%	-1.72%	-1.37%	-1.22%	-0.74%	-0.46%	-0.40%	-10.29%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	5-Jul-48	B/W	1:23,600	6192500	9810
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS-DOQ	23-Aug-97	B/W	1:24,000	6192500	4840
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	08/25/2005	color	1-meter pixels	6192500	2390
2007	Woolpert	29-Jun-05	Color	1:	6192500	
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	5,160	14.5%	6,839	19.2%	1,678
	Flow Deflectors	1,406	3.9%	573	1.6%	-832
	Between Flow Deflectors	995	2.8%	1,518	4.3%	523
	Feature Type Totals	7,561	21.2%	8,930	25.1%	1,370
Floodplain	Control					
	Transportation Encroachment	6,845	19.2%	6,845	19.2%	0
	Floodplain Dike/Levee	331	0.9%	331	0.9%	0
	Feature Type Totals	7,176	20.1%	7,176	20.1%	0
	Reach Totals	14,737	41.3%	16,107	45.2%	1,370

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FDs		0	522	0	0	0	895	0	0
т	otals	0	522	0	0	0	895	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan.	Anab. Ch.	Bankfull Braiding Parameter		% Change in Braiding
1950	18,968	6,571	1.35	1950 to 1976:	9.83%
1976	18,838	9,020	1.48	1976 to 1995:	25.57%
1995	17,553	15,040	1.86	1995 to 2001:	-9.38%
2001	17,825	12,169	1.68	1950 to 2001:	24.97%
Change 1950 - 2001	-1,143	5,598	0.34		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	2,970		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	344		422		
Total Floodplain Area (Ac)	344		435		
Total Isolated (Ac)	0	0.0%	13	7.4%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	5	0	5

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft) 270	To CN Acre	tal Res NZ dage Ad	stricted CMZ creage	% Restric Migratio Area	ted To on Al- Acre	tal IZ eage	Restricted AHZ Acreage	% Restricted Avulsion Area
	190	579	50	2	02	14 70	i.	<i>)</i> /	0	0%
2011 Re	stricted Mig	ration A	rea Sun	nmary		Note that the	ese data ref	lect the o	bserved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent o CMZ	of	2011 aerial Counties, C	DE for the r	est of the	or Park and s river).	Sweet Grass
Road/Railro	oad Prism									
	Railroad		2	0.3%						
RipRap/Flo	w Deflectors									
	Railroad		28	3.8%						
	Irrigated		30	4.0%						
RipRap										
	Railroad		6	0.8%						
		Totals	66	8.9%						
Land Us	es within th	ne CMZ (/	Acres)	Flood Irrigatio 15.7	i on	Sprinkler Irrigation 46.1	Pivot Irrigation 10.0	Urb ExUi O	an/ T rban po .0	Frans- ortation 9.8

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Aci	res		% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								1.1
	Canal	16	16	16	16	0.7%	0.7%	0.7%	0.7%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	36	33	65	93	1.5%	1.4%	2.8%	4.0%
	Totals	52	50	81	109	2.2%	2.1%	3.5%	4.7%
Agricultural Lan	d								
	Non-Irrigated	1,189	1,207	1,152	1,112	51.3%	52.1%	49.7%	47.9%
	Irrigated	803	766	700	678	34.7%	33.1%	30.2%	29.3%
	Totals	1,993	1,973	1,852	1,790	86.0%	85.1%	79.9%	77.2%
Channel									1.1
	Channel	220	243	298	332	9.5%	10.5%	12.9%	14.3%
	Totals	220	243	298	332	9.5%	10.5%	12.9%	14.3%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	5	5	5	5	0.2%	0.2%	0.2%	0.2%
	Totals	5	5	5	5	0.2%	0.2%	0.2%	0.2%
Transportation									
	Public Road	28	28	14	14	1.2%	1.2%	0.6%	0.6%
	Interstate	0	0	48	48	0.0%	0.0%	2.1%	2.1%
	Railroad	20	20	20	20	0.8%	0.8%	0.8%	0.8%
	Totals	48	48	82	82	2.1%	2.1%	3.5%	3.5%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	nd Use Timeline - Tiers 3 and 4							Change Between Years					
			Acı	res		%	of Rea	ch Area	l .	(% o	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	260	254	0.0%	0.0%	14.0%	14.2%	0.0%	14.0%	0.2%	14.2%
	Pivot	0	0	287	302	0.0%	0.0%	15.5%	16.9%	0.0%	15.5%	1.4%	16.9%
	Flood	803	766	153	123	40.3%	38.8%	8.3%	6.8%	-1.5%	-30.6%	-1.4%	-33.5%
	Totals	803	766	700	678	40.3%	38.8%	37.8%	37.9%	-1.5%	-1.1%	0.1%	-2.4%

Reach AI

Non-Irrigated													
	Multi-Use	1,119	1,059	1,100	1,046	56.2%	53.7%	59.4%	58.5%	-2.5%	5.7%	-0.9%	2.3%
	Hay/Pasture	70	147	52	65	3.5%	7.5%	2.8%	3.6%	3.9%	-4.6%	0.8%	0.1%
	Totals	1,189	1,207	1,152	1,112	59.7%	61.2%	62.2%	62.1%	1.5%	1.1%	-0.1%	2.4%

26.4

-45.5

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

and 2001 data set.

from channel to riparian between the 1950's

	;	Shrub (Acres	5)	Clos	ed Timber (A	Open Timber (Acres)				
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.9	0.3	0.0	0.8	0.3	0.4	14.7	16.0	6.2	
Max	20.0	11.9	5.3	219.1	149.9	171.1	14.7	29.8	26.6	
Average	8.3	3.6	2.6	39.0	28.0	23.4	14.7	24.2	18.9	
Sum	49.7	21.7	20.7	312.2	223.7	233.7	14.7	72.6	56.8	
Riparian	Turnove)r			Riparian f	to Channel (a	cres)	71.8		
Conver	sion of ripar	ian areas to	channel, or							

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

Channel to Riparian (acres)

Riparian Encroachment (acres)

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	7.4	84.3	38.0	0.0	129.8
Acres/Valley Mile	2.3	26.0	11.7	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.67	0.18%	1.19	0.03	0.03	0.01

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Sweet Grass	Upstream River Mile	475.4
Classification	UB: Unconfined braided	Downstream River Mile	468.5
General Location	Grey Bear fishing access	Length	6.90 mi (11.10 km)
General Comments	Grey Bear fishing access		

Narrative Summary

Reach A2 is 6.9 miles long and extends from about one mile below the Prather Mayborn Westfall Ditch Diversion to about a mile below the Grey Bear fishing access. Reach A2 is classified as Unconfined Braided (UB), indicating a relatively small influence of the valley wall on reach geomorphology as well as a preponderance of open gravel bars in the channel. Reach A2 has changed markedly since the 1950s due to loss of riparian forest and side channel length.

As a consequence of its unconfined and dynamic nature, there are over two miles of rock riprap in the reach that cover almost 18 percent of the total bankline. Of those 10,633 feet of rock riprap, 1,673 feet was constructed since 2001. The physical features mapping also indicated 945 feet of tree revetments in the reach in 2001, however these were not identified in the 2011 mapping. This is the most upstream-reach with mapped concrete rubble riprap; there are over 1,000 feet of concrete riprap on the left bank at RM 474.6.

Sometime prior to 1950, one 3,125 foot long channel was blocked at RM 473. In 1950, there were still over 6 miles of active anabranching channels, but by 2011 that side channel length had dropped to 4 miles, resulting in a 15 percent reduction of braiding parameter in the reach.

There is also intermittent transportation encroachment by the railroad on the south side of the river. The transportation encroachment, which is due to the rail line, extends over two miles along the south bank and isolates 23 acres of historic floodplain. Similarly, 140 acres of the natural Channel Migration Zone (CMZ) area has been restricted by bank armor and the railroad prism.

Floodplain turnover values show that turnover rates have dropped from 4.5 acres per year to 3.7 acres per year since 1976. The channel has also enlarged by over 30 acres as anabranching channels have consolidated into a larger single thread. About 23 acres of 100-year floodplain area has been isolated by dikes.

Land uses in Reach A2 are primarily agriculture, with about ½ of the total agricultural land in some form of irrigation. About 26 acres of the existing 5-year floodplain are currently under irrigation, most of which is in flood.

Over 300 acres of wetland have mapped in the reach, most of which is emergent marsh-type areas. About 40 acres of emergent wetland are in an area of historic floodplain isolated by the railroad at RM 471.2. Approximately ½ of an acre of Russian olive was mapped in Reach A2.

Reach A2 has had extensive riparian clearing over the last century. In 1950, there were 431 acres of closed timber in the reach, and that footprint had contracted to 275 acres by 2001. Almost 12 acres of riparian forest in the reach per valley mile have been identified as being at low risk of cowbird parasitism due to the distance of those areas from agricultural infrastructure.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,760 cfs to 1,580 cfs with human development, a reduction of 10.2 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A2 include:

•Blockage of over 3,000 feet of side channel prior to 1950

•Passive abandonment of over two additional miles of side channel since 1950.

•Loss of over 150 acres of closed timber since 1950, most of which is in the 5-year floodplain.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A2 include: •Side Channel Restoration (RM 473)

•CMZ management due to extent of encroachment (140acres restricted)

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	6214500	6192500
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun 1	1	30,100	10-25 yr		10-25 yr Period of Pecord		l of Record	1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Distance		1020 2010	1020 2010
	1974	Jun 1	17	36,300	50-10	0 yr		Distance	lo (miles)	104.1	31.2
	1996	Jun 1	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	11,900	23,300	29,200	32,900	40,300	43,400	50,300	1,760	1,760
	Regul	ated	11,500	22,900	28,800	32,500	40,000	43,200	50,100	1,580	1,680
	% Cha	ange	-3.36%	-1.72%	-1.37%	-1.22%	-0.74%	-0.46%	-0.40%	-10.23%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	5-Jul-48	B/W	1:23,600	6192500	9810
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	23-Aug-97	B/W	1:24,000	6192500	4840
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	08/25/2005	color	1-meter pixels	6192500	2390
2007	Woolpert		Color		6192500	
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2011	NAIP	8/24/2011	Color	1-meter pixels	6192500	5170
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	
2013	NAIP	08/31/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature	Feature	2001	% of	2011	% of	2001-2011
Class	Туре	Length (ft)	Bankline	Length (ft)	Bankline	Change
Stream St	abilization					
	Tree Revetments	945	1.3%	0	0.0%	-945
	Rock RipRap	10,633	14.6%	12,306	16.9%	1,673
	Flow Deflectors	0	0.0%	154	0.2%	154
	Concrete RipRap	0	0.0%	1,015	1.4%	1,015
	Feature Type Totals	11,578	15.9%	13,475	18.5%	1,897
Floodplair	n Control					'
	Transportation Encroachment	12,335	16.9%	12,335	16.9%	0
	Floodplain Dike/Levee	1,169	1.6%	1,169	1.6%	0
	Feature Type Totals	13,504	18.5%	13,504	18.5%	0
	Reach Totals	25,082	34.4%	26,979	37.0%	1,897

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		2,729	2,588	1,204	3,093	0	0	0	0
Rock RipRap		925	2,870	0	0	0	2,352	0	0
	Totals	3,654	5,458	1,204	3,093	0	2,352	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan.	Anab. Ch.	Bankfull Braiding Parameter		% Change in Braiding
1950	38.287	33.176	1.87	1950 to 1976:	-7.11%
1976	36,820	27,020	1.73	1976 to 1995:	-4.04%
1995	36,672	24,344	1.66	1995 to 2001:	-4.33%
2001	36,483	21,587	1.59	1950 to 2001:	-14.72%
Change 1950 - 2001	-1,805	-11,588	-0.27		
Lenath of Side		Pre-1950s (ft)	3,125		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	23	3.1%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	723		853		
Total Floodplain Area (Ac)	747		870		
Total Isolated (Ac)	23	3.1%	16	4.1%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	26	0	0	26

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 213	Erosion Buffer (ft) 425	To CM Acre 1,0	tal AZ eage 96	Restricted CMZ Acreage 139	% Restrictor Migration Area 13%	ed Tota AH2 Acrea 130	al F Z Age)	AHZ ACreage	% Restricted Avulsion Area 0%
2011 Res	stricted Mig	ration A	rea Sun	nma	ry	Note that the	se data refle	ect the ob	served con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc	cent of MZ	2011 aerial p Counties, CC	hotography E for the re	(NAIP for st of the r	Park and s iver).	Sweet Grass
Road/Railro	oad Prism									
	Railroad		19	1	.5%					
RipRap										
	Public Road		8	0	.7%					
	Other Infrast	ructure	13	1	.1%					
	Non-Irrigated	ł	38	3	.1%					
	Irrigated		40	3	.2%					
	Canal		20	1	.6%					
	Agricultural F	Roads	3	0	.3%					
		Totals	140	11	1.5%					
Land Us	es within th	e CMZ (A	Acres)	l Irr	Flood igation 87.8	Sprinkler Irrigation 0.8	Pivot Irrigation 4.5	Urba ExUrb 0.0	n/ T ban pc	frans- ortation 5.4

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	55	55	54	54	1.2%	1.2%	1.2%	1.2%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	86	119	129	163	1.9%	2.6%	2.8%	3.6%	
	Totals	141	174	183	218	3.1%	3.8%	4.0%	4.8%	
Agricultural Lan	d								1.1	
	Non-Irrigated	1,699	1,339	1,531	1,505	37.3%	29.4%	33.6%	33.0%	
	Irrigated	2,015	2,327	2,114	2,044	44.2%	51.1%	46.4%	44.9%	
	Totals	3,713	3,667	3,646	3,549	81.5%	80.5%	80.1%	77.9%	
Channel									1	
	Channel	608	622	575	623	13.4%	13.7%	12.6%	13.7%	
	Totals	608	622	575	623	13.4%	13.7%	12.6%	13.7%	
ExUrban										
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	0	0	13	0.0%	0.0%	0.0%	0.3%	
	Totals	0	0	0	13	0.0%	0.0%	0.0%	0.3%	
Transportation									1.1	
	Public Road	52	52	49	49	1.1%	1.1%	1.1%	1.1%	
	Interstate	0	0	62	62	0.0%	0.0%	1.4%	1.4%	
	Railroad	40	40	40	40	0.9%	0.9%	0.9%	0.9%	
	Totals	92	91	150	150	2.0%	2.0%	3.3%	3.3%	
Urban									1.1	
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	neline - Tiers 3 and	4								Char	ige Beti	ween Y	ears
			Acr	es		%	of Rea	ch Area	1	(% of	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	0	14	95	94	0.0%	0.4%	2.6%	2.6%	0.4%	2.2%	0.0%	2.6%
	Pivot	0	0	454	737	0.0%	0.0%	12.4%	20.8%	0.0%	12.4%	8.3%	20.8%
	Flood	2,015	2,314	1,565	1,213	54.3%	63.1%	42.9%	34.2%	8.8%	-20.2%	-8.7%	-20.1%
	Totals	2,015	2,327	2,114	2,044	54.3%	63.5%	58.0%	57.6%	9.2%	-5.5%	-0.4%	3.3%

Reach A2

Non-Irrigated													
	Multi-Use	1,400	1,127	1,374	1,348	37.7%	30.7%	37.7%	38.0%	-7.0%	6.9%	0.3%	0.3%
	Hay/Pasture	298	212	158	156	8.0%	5.8%	4.3%	4.4%	-2.2%	-1.5%	0.1%	-3.6%
	Totals	1,699	1,339	1,531	1,505	45.7%	36.5%	42.0%	42.4%	-9.2%	5.5%	0.4%	-3.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	;	Shrub (Acres	5)	Close	ed Timber (A	Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.5	0.3	0.2	0.2	0.4	0.4	1.5	2.7	2.2
Max	20.4	13.8	13.6	56.5	51.0	35.6	18.5	42.6	39.2
Average	3.7	3.3	3.4	13.5	10.1	11.5	7.6	14.4	11.1
Sum	66.2	69.9	106.7	430.9	352.8	275.2	45.9	100.9	121.8
Riparian	Turnove	er			Disorios	to Channel (a		104 4	

Conversion of riparian areas to channel, or from channel to riparian between the 1950's and 2001 data set.

Riparian Encroachment (acres)	-30.6
Channel to Riparian (acres)	100.5
Riparian to Channel (acres)	131.1
1	

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	17.0	257.8	80.9	0.0	355.7
Acres/Valley Mile	2.6	39.9	12.5	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.44	0.10%	1.38	0.12	0.04	0.04

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

Reach A	13
---------	----

County	Sweet Grass	Upstream River Mile	468.5
Classification	PCB: Partially confined braided	Downstream River Mile	463
General Location	Upstream of Big Timber	Length	5.50 mi (8.85 km)
General Comments	Upstream of Big Timber; Hell Creek Formation valley wall		

Narrative Summary

Reach A3 is 5.5 miles long and is just located upstream of the town of Big Timber. It is classified as a Partially Confined Braided (PCB) reach type indicating some valley wall influence and relative extensive open gravel bars and low flow secondary channels. This reach shows the passive loss of miles of anabranching channel length since 1950, similar to Reach A2 just upstream. The river has converted from having more than one primary channel to having a dominant main thread with intermittent side channels.

About 12.5 percent of the banks in Reach A3 are armored, with the majority of that armor being rock riprap. Between 2001 and 2011, about 1,700 feet of new bank armor, of which 277 feet are flow deflectors, were installed. There are about 2,000 feet of floodplain dikes in the reach.

Similar to Reach A2 just upstream, this reach has experienced extensive loss of anabranching channel length since 1950. In 1950, the total length of anabranching channels was 6.7 miles, and by 2001 that length had dropped to 4.7 miles, resulting in a reduction in braiding parameter of 17 percent.

Reach A3 shows a reduction in floodplain turnover rates since 1976; prior to that time, average rates of turnover were 103 acres per year, and since that time the average rate of floodplain erosion by the river has been reduced to 65.4 acres per year.

Land use in Reach A3 is predominantly agricultural, with about ½ of all agricultural acreage in flood irrigation. Approximately 13 percent of the 5-year floodplain has been isolated in the reach. This isolation reflects the slight reduction in the magnitude flows in this reach due primarily to irrigation-related withdrawals upstream.

Over 600 acres of wetland have been mapped in Reach A3, most of which is emergent marshes and wet meadows on the south side of the river. The 4.6 acres of Russian olive mapped is dispersed throughout the riparian corridor.

Almost 50 acres of riparian forest per valley mile is considered at low risk of cowbird infestation due to its relative distance from agricultural infrastructure that provides cowbird foraging habitat.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 11,900 cfs to 11,500 cfs, a drop of about 3.4 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,770 cfs to 1,580 cfs with human development, a reduction of 11 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A3 include:

•Passive abandonment of over two miles of side channel since 1950.

•Conversion from a river channel with multiple large primary channels to a single main thread with small anabranches. •Reduced floodplain turnover rates.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A3 include: •Russian olive removal

•Wetland management/restoration due to high density of mapped emergent wetland

PHYSICAL FEATURES MAP (2011)
HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Dat	e Fl	ow on Date	Return Ir	nterval			Gago No		Gage 6192500
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun '	11	30,100	10-25	5 yr		Period		1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Distance		00.0	1020 2010
	1974	Jun '	17	36,300	50-10	0 yr		Distance	lo (miles)	98.6	38.1
	1996	96 Jun 10 37,100		50-10	0 yr						
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	11,900	23,300	29,200	32,900	40,300	43,400	50,300	1,770	1,760
	Regul	ated	11,500	22,900	28,800	32,500	40,000	43,200	50,100	1,580	1,680
	% Cha	ange	-3.36%	-1.72%	-1.37%	-1.22%	-0.74%	-0.46%	-0.40%	-10.73%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	5-Jul-48	B/W	1:23,600	6192500	9810
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	8/23/97 - 8/28/97	B/W		6192500	4840
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	08/25/2005	color	1-meter pixels	6192500	2390
2007	Woolpert	10/15/2007 - 11/2/2007	Color		6192500	
2009	NAIP	7/16/2009	Color	1-meter pixels	6192500	8450
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2013	NAIP	08/25/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	5,474	9.7%	6,765	12.0%	1,291
	Flow Deflectors	0	0.0%	277	0.5%	277
	Feature Type Totals	5,474	9.7%	7,043	12.5%	1,568
Floodplain	Control					
	Floodplain Dike/Levee	1,949	3.5%	1,971	3.5%	22
	Feature Type Totals	1,949	3.5%	1,971	3.5%	22
	Reach Totals	7,424	13.2%	9,013	16.0%	1,590

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		1,092	3,592	0	0	0	0	0	0
Tree Revetments		945	0	0	0	0	0	0	0
	Totals	2,037	3,592	0	0	0	0	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	27,827	35,195	2.26	1950 to 1976:	-4.80%
1976	28,236	32,641	2.16	1976 to 1995:	-14.37%
1995	28,264	23,919	1.85	1995 to 2001:	1.97%
2001	28,191	24,882	1.88	1950 to 2001:	-16.87%
Change 1950 - 2001	364	-10,312	-0.38		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%		
Agriculture (generally relates to field boundaries)	0	0.0%		
Agriculture (isloated by canal or large ditch)	0	0.0%		
Levee/Riprap (protecting agricultural lands)	0	0.0%		
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%		
Railroad	0	0.0%		
Abandoned Railroad	0	0.0%		
Transportation (Interstate and other roads)	0	0.0%		
Total Not Isolated (Ac)	864		882	
Total Floodplain Area (Ac)	864		895	
Total Isolated (Ac)	0	0.0%	13	2.5%

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	104	0	0	104

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tot CN Acre	tal IZ age	Restricted CMZ Acreage	% Restrict Migratio Area	ted Tota n AHA Acrea	al Res Z age Ad	stricted AHZ creage	% Restricted Avulsion Area
	217	435	99	4	67	7%	170	C	21	12%
2011 Res	stricted Migr	ration A	rea Sun	nmar	y	Note that the	ese data refle	ect the obse	rved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perce Cl	ent of MZ	Counties, CO	DE for the re	st of the rive	er).	Sweet Glass
RipRap/Flo	w Deflectors									
	Non-Irrigated		27	2.3	3%					
RipRap										
	Non-Irrigated		40	3.4	4%					
	Irrigated		33	2.8	3%					
		Totals	99	8.	5%					
Land Us	es within the	e CMZ (/	Acres)	Fl Irrig 1	ood gation 67.0	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrba 0.0	n pc	Frans- ortation 0.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Aci	res		%	of Rea	ch Area	à i		
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	976 2001 20			
Agricultural Infra	astructure										
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Other Infrastructure	7	12	22	22	0.2%	0.3%	0.6%	0.6%		
	Totals	7	12	22	22	0.2%	0.3%	0.6%	0.6%		
Agricultural Lan	d										
	Non-Irrigated	1,558	1,351	1,315	1,311	43.2%	37.4%	36.5%	36.3%		
	Irrigated	1,492	1,627	1,668	1,670	41.4%	45.1%	46.3%	46.3%		
	Totals	3,050	2,977	2,984	2,981	84.6%	82.6%	82.7%	82.7%		
Channel											
	Channel	546	611	594	597	15.1%	16.9%	16.5%	16.6%		
	Totals	546	611	594	597	15.1%	16.9%	16.5%	16.6%		
ExUrban									1		
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
Transportation						•			1		
	Public Road	1	3	4	4	0.0%	0.1%	0.1%	0.1%		
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Railroad	2	2	2	2	0.1%	0.1%	0.1%	0.1%		
	Totals	3	6	6	6	0.1%	0.2%	0.2%	0.2%		
Urban											
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%		
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%		

Land Use Ti	meline - Tiers 3 a	nd 4								Char	nge Betv	ween Y	ears
					Acres			ch Area	1	(% 0	f Agricu	Itural L	and)
Feature ClassFeature Type1			1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	1,492	1,627	1,668	1,670	48.9%	54.6%	55.9%	56.0%	5.7%	1.3%	0.1%	7.1%
	Totals	1,492	1,627	1,668	1,670	48.9%	54.6%	55.9%	56.0%	5.7%	1.3%	0.1%	7.1%

Non-Irrigated

Multi-Use	1,249	1,114	1,226	1,224	41.0%	37.4%	41.1%	41.1%	-3.5%	3.7%	0.0%	0.1%
Hay/Pasture	308	237	89	87	10.1%	7.9%	3.0%	2.9%	-2.2%	-5.0%	-0.1%	-7.2%
Totals	1,558	1,351	1,315	1,311	51.1%	45.4%	44.1%	44.0%	-5.7%	-1.3%	-0.1%	-7.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	5	Shrub (Acres	s)	Clos	ed Timber (A	(cres)	Ор	Open Timber (Acres				
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001			
Min	1.1	0.0	1.4	0.5	0.1	0.9		2.0	9.0			
Max	43.3	29.5	38.3	116.9	108.3	104.6		20.9	32.0			
Average	15.8	4.4	10.8	12.8	13.2	20.5		11.5	17.9			
Sum	142.0	74.5	97.3	358.4	410.6	347.8		23.0	53.7			
Riparian Turnover					Riparian t	to Channel (a	cres)	83.0				
from ch	rsion of ripar nannel to ripa	an areas to a	n the 1950's		Channel to Riparian (acres) 75.0							
and 20	01 data set.			R	iparian Encre	oachment (a	cres)	-8.0				
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	0.0					
Creation of riparian areas 1950s Floo				dplain Mapped as 2011 Channel (Ac) 7.8								
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	7.8					

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	5.1	558.7	86.5	0.0	650.3
Acres/Valley Mile	1.1	120.5	18.7	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	4.64	0.30%	0.64	1.66	0.92	0.67

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Sweet Grass	Upstream River Mile	463					
Classification	UB: Unconfined braided	Downstream River Mile	459.7					
General Location	Big Timber	Length	3.30 mi (5.31 km)					
General Comments	To Boulder River confluence; encroachment at Big Timber; extensive armor							

Narrative Summary

Reach A4 is approximately 3.3 miles long, extending from near the Sweet Grass County Fairgrounds downstream to the Boulder River confluence. Reach A4 is very dynamic with active channel migration, threats to infrastructure, bank armor, flanked barbs, and active riparian recruitment on raw gravel bars. The most dynamic portion of the reach is upstream of the Highway 191 Bridge; in spring of 2013 a large meander formed a 1,500 foot long chute cutoff near the fairgrounds which abandoned about 3,500 feet of channel to the south.

About 19 percent of the banks in Reach A4 are armored, with the majority of that armor being rock riprap. Between 2001 and 2011, there was a loss of about 1,000 feet of armor in the reach. Over 800 feet of that lost bank protection was flow deflectors; flanked barbs are visible in the middle of the channel downstream of the fairgrounds. With the avulsion of 2013, those flanked barbs are now sitting in the abandoned channel. Similar to reaches upstream, the river channel in Reach A4 has increased in size since 1950 by about 19 acres, and the channel expansion has been at the expense of riparian cover. Almost a quarter of the Channel Migration Zone (CMZ) has been restricted by physical features, and the restrictions are primarily due to bank armor that is protecting agricultural land.

Since 1950, over 7,500 feet of side channels in Reach A4 have been blocked by berms, which have caused a 25 percent drop in braiding parameter for the reach. Russian olive has colonized these historic channels. Like many other reaches the loss of active side channels in this reach has been accompanied by a lengthening of the main thread. Between 1950 and 2001, the main channel lengthened by about 1,000 feet through the 3.3 mile reach.

Land use in Reach A4 is predominantly agricultural, although there are several hundred acres of urban/exurban development associated with the town of Big Timber. Most of the agricultural land is non-irrigated; however there are hundreds of acres of flood, sprinkler, and pivot irrigation in the reach. Almost 150 acres of irrigated ground are within the 5-year floodplain in Reach A4, and most of that commonly flooded ground is south of the fairgrounds. This area also has most of the 160 acres of mapped wetlands in the reach.

There is one mapped dump site in Reach A4, which is on the high terrace edge at Big Timber. There is also one major petroleum product pipeline in the reach that runs parallel to the river on its north side. The pipeline is owned by ConocoPhillips, and passes under both Big Timber Creek and Otter Creek within 1,500 feet of the Yellowstone River.

Almost 200 acres of land in Reach A4 are within the mapped Channel Migration Zone. This includes 83 acres of flood, 42 acres of sprinkler, and 37 acres of pivot. A total of 21 acres of land in the CMZ has been developed to urban/exurban use.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 11,900 cfs to 11,500 cfs, a drop of about 3.4 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,880 cfs to 1,620 cfs with human development, a reduction of 14 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A4 include:

•Restriction of the Historic Migration Zone (HMZ) isolating side channels and reducing riparian turnover.

•Primary channel lengthening in association with loss of side channels.

•Rapid migration and channel realignment resulting in barb flanking and abandonment of rock in channel.

•Isolation of historic channels (over 7,500 feet) by berms.

•Russian olive colonization within isolated side channels.

•Riparian recruitment (cottonwood establishment) on islands created by channel migration.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A4 include: •Removal of flanked armor at RM 462.3

•Side channel restoration/management (RM 461.2, RM 462)

•CMZ management due to encroachment (200 acres restricted)

•Russian olive removal (2.7 acres)

•Solid waste removal from dump on right bank at RM 461

•Pipeline management at Big Timber Creek and Otter Creek tributary crossings just north of Yellowstone River.

Reach A

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream	
	Year	Dat	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500	
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston	
	1902	Jun '	11	30,100	10-25	5 yr		Period		1929-2015	1929-2015	
	1943	Jun 2	20	30,600	10-25	5 yr				05.0	1020 2010	
	1974	Jun '	17	36,300	50-10	50-100 yr		Distance TO (miles)		95.3	43.0	
	1996	Jun '	10	37,100	50-10	50-100 yr						
	1997	Jun	6	38,000	50-100 yr							
	2011	Jun 3	30	40,600	>100	-yr						
Di	scharg	е								7Q10	95% Sum.	
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration	
	Unregul	ated	11,900	23,300	29,200	32,900	40,300	43,400	50,300	1,880	1,760	
	Regul	ated	11,500	22,900	28,800	32,500	40,000	43,200	50,100	1,620	1,680	
	% Cha	ange	-3.36%	-1.72%	-1.37%	-1.22%	-0.74%	-0.46%	-0.40%	-13.83%	-4.55%	

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	7/5/1948 - 7/13/51	B/W	1:23,600	6192500	9810
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	8/28/97 - 9/11/96	B/W		6192500	4840
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	08/25/2005	color	1-meter pixels	6192500	2390
2005	NAIP	08/21/2005	color	1-meter pixels	6192500	2630
2007	Woolpert	10/15/2007 - 11/2/2007	Color		6192500	
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	
2013	NAIP	08/21/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	6,311	17.2%	6,143	16.8%	-168
	Flow Deflectors	449	1.2%	352	1.0%	-98
	Between Flow Deflectors	1,337	3.7%	581	1.6%	-757
	Feature Type Totals	8,097	22.1%	7,075	19.3%	-1,022
Floodplain	Control					I
	Transportation Encroachment	429	1.2%	429	1.2%	0
	Floodplain Dike/Levee	986	2.7%	986	2.7%	0
	Feature Type Totals	1,415	3.9%	1,415	3.9%	0
	Reach Totals	9,512	26.0%	8,490	23.2%	-1,022

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FDs		0	0	1,788	0	0	0	0	0
Rock RipRap		272	1,312	466	0	0	0	1,351	456
Т	otals	272	1,312	2,253	0	0	0	1,351	456

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan.	Anab. Ch.	Bankfull Braiding		% Change in
	Length (ft)	Length (ft)	Parameter		Braiding
1950	17,375	16,020	1.92	1950 to 1976:	-8.19%
1976	17,028	13,019	1.76	1976 to 1995:	-17.10%
1995	18,251	8,448	1.46	1995 to 2001:	-2.22%
2001	18,302	7,877	1.43	1950 to 2001:	-25.58%
Change 1950 - 2001	928	-8,143	-0.49		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	7,575		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	481		565		
Total Floodplain Area (Ac)	481		573		
Total Isolated (Ac)	0	0.0%	9	2.7%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	95	41	14	150

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 376	Erosion Buffer (ft) 753	To CM Acre 77	tal IZ age 9	Restricted CMZ Acreage 169	% Restricte Migration Area 22%	ed Tota AHZ Acreag 12	I Rest A ge Acr	ricted HZ eage 12	% Restricted Avulsion Area 100%
2011 Res	stricted Migr	ation A	rea Sun	nma	ry	Note that the	se data reflec	ct the observ	/ed conc	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Pero	cent of CMZ	2011 aerial pl Counties, CO	notography (E for the res	NAIP for Pa t of the river	rk and S).	weet Grass
Road/Railro	ad Prism									
RipRap	Public Road		19	2	.4%					
	Urban Reside	ential	5	0	.6%					
	Non-Irrigated		52	6	.6%					
	Irrigated		50	6	.4%					
	Exurban Resi	idential	20	2	.6%					
Dike/Levee										
	Non-Irrigated		37	4	.6%					
		Totals	183	23	3.1%					
Land Use	es within the	e CMZ (A	Acres)	l Irr	Flood igation 84.9	Sprinkler Irrigation 42.2	Pivot Irrigation 37.6	Urban/ ExUrban 20.5	T po	rans- rtation 5.8

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	113	146	129	139	3.7%	4.8%	4.2%	4.6%
	Totals	113	146	129	139	3.7%	4.8%	4.2%	4.6%
Agricultural Lan	d								
	Non-Irrigated	1,219	1,431	1,249	1,273	40.2%	47.2%	41.2%	42.0%
	Irrigated	1,162	858	900	882	38.3%	28.3%	29.7%	29.1%
	Totals	2,381	2,289	2,148	2,155	78.5%	75.5%	70.9%	71.1%
Channel									
	Channel	278	283	292	299	9.2%	9.3%	9.6%	9.9%
	Totals	278	283	292	299	9.2%	9.3%	9.6%	9.9%
ExUrban									1
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	28	19	0.0%	0.0%	0.9%	0.6%
	ExUrban Industrial	0	0	14	0	0.0%	0.0%	0.5%	0.0%
	ExUrban Commercial	22	22	36	44	0.7%	0.7%	1.2%	1.5%
	ExUrban Residential	0	0	42	42	0.0%	0.0%	1.4%	1.4%
	Totals	22	23	120	105	0.7%	0.7%	3.9%	3.5%
Transportation									
	Public Road	42	42	45	45	1.4%	1.4%	1.5%	1.5%
	Interstate	0	0	1	1	0.0%	0.0%	0.0%	0.0%
	Railroad	19	19	19	19	0.6%	0.6%	0.6%	0.6%
	Totals	61	61	64	64	2.0%	2.0%	2.1%	2.1%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	61	60	78	78	2.0%	2.0%	2.6%	2.6%
	Urban Commercial	50	89	142	120	1.7%	2.9%	4.7%	4.0%
	Urban Undeveloped	65	63	53	66	2.2%	2.1%	1.8%	2.2%
	Urban Industrial	0	17	5	5	0.0%	0.6%	0.2%	0.2%
	Totals	177	229	278	269	5.8%	7.6%	9.2%	8.9%

Land Use Tir	neline - Tiers 3 and	4								Char	ige Betv	veen Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricul	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	208	195	0.0%	0.0%	9.7%	9.0%	0.0%	9.7%	-0.7%	9.0%
	Pivot	0	0	0	302	0.0%	0.0%	0.0%	14.0%	0.0%	0.0%	14.0%	14.0%
	Flood	1,162	858	692	385	48.8%	37.5%	32.2%	17.9%	-11.3%	-5.3% -	-14.3%	-30.9%
	Totals	1,162	858	900	882	48.8%	37.5%	41.9%	40.9%	-11.3%	4.4%	-1.0%	-7.9%

Non-	Irrigated	
	0	

Multi-Use	1,027	1,167	1,123	1,128	43.1%	51.0%	52.3%	52.3%	7.9%	1.3%	0.1%	9.2%
Hay/Pasture	192	263	125	145	8.1%	11.5%	5.8%	6.7%	3.4%	-5.7%	0.9%	-1.3%
Totals	1,219	1,431	1,249	1,273	51.2%	62.5%	58.1%	59.1%	11.3%	-4.4%	1.0%	7.9%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (/			es) Closed Timber (Acres)			Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.5	0.1	1.7	1.9	1.5	1.5	0.7	3.9	5.6
Max	5.1	23.0	7.3	57.5	40.4	48.0	8.9	9.7	12.3
Average	2.4	2.7	3.6	18.4	11.3	14.7	5.6	6.4	8.4
Sum	22.0	46.6	21.7	275.5	181.0	205.3	22.6	19.1	25.2
Riparian	Turnove	er			Riparian t	to Channel (a	cres)	78.5	
Conver from ch	rsion of ripar nannel to rip	arian areas to e arian betwee	channel, or n the 1950's		Channel t	to Riparian (a	cres)	42.7	
and 20	01 data set.			R	iparian Encre	oachment (a	cres)	-35.8	
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	0.0		
Creation of riparian areas 1950s Floo				olain Mapped	as 2011 Cha	innel (Ac)	19.7		
between 19	950s and 20	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	19.7		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	3.7	140.0	20.5	0.0	164.1
Acres/Valley Mile	1.3	47.6	7.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	2.70	0.35%	1.27	1.16	1.36	0.92

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

<u>Reach</u> A

Narrative Summary

Reach A5 is approximately 3.3 miles long, and is located just below Big Timber near the Otter Creek Fishing Access Site starting just below the mouth of the Boulder River. Reach A5 is shows low migration rates and has a relatively narrow CMZ as a result. Similar to other reaches in Region A, the channel footprint has enlarged since 1950; in this reach the channel shows continual expansion from 1950 to 2001 of about 24 acres. This has been accompanied by a loss of 16 acres of riparian area in the main river corridor.

About 7 percent of the banks in Reach A5 are armored by rock riprap. Another 250 feet of bank is protected by tree revetments which are unusual on the Yellowstone River.

Land use in Reach A5 is predominantly agricultural, although there over 60 acres of urban/exurban development on the outskirts of Big Timber. Most of the agricultural land is non-irrigated, although there are almost 400 acres of ground under flood irrigation and another 150 acres under pivot. There are corrals associated with an Animal Holding Facility on the left bank of the river at RM 459.

Reach A5 has substantial irrigated land in the Channel Migration Zone. Land use mapping for 2011 conditions show 62 acres of flood, 2 acres of sprinkler, and 9 acres of pivot irrigated land within the CMZ boundary.

Reach A5 has seen almost a quarter (18 acres) of its riparian corridor converted to developed land uses since 1950. Most of that (17 acres) was conversion to irrigation.

Over 170 acres of wetland have been mapped in Reach A5. Most of the wetland area is on the eastern portion of the large alluvial fan formed at the mouth of the Boulder River, where there are open water wetlands and wet marsh areas.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 12,600 to 12,100 cfs, a drop of about 4 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,910 cfs to 1,630 cfs with human development, a reduction of 15 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A5 include:

- •Riparian clearing in support of irrigation.
- •Presence of corrals on the edge of the corridor at RM 459.
- •Extensive wetland complex on low alluvial ground at the toe of a terrace.
- •Encroachment of irrigated land into Channel Migration Zone.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A5 include: •Nutrient management at corrals at RM 459

•Wetland management/restoration due to extent of emergent marsh (>170 acres)

Reach A5

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Dat	e F	low on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500
	1971	Jun	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun	11	30,100	10-25	5 yr		Period		1929-2015	1929-2015
	1943	Jun	20	30,600	10-25	5 yr		Dist		1020 2010	1020 2010
	1974	Jun	17	36,300	50-10	0 yr		Distance	lo (miles)	92.0	46.9
	1996	Jun	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Y	r 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	12,600	24,500	30,800	34,600	42,400	45,500	52,700	1,910	1,760
	Regul	ated	12,100	24,000	30,300	34,100	42,000	45,200	52,500	1,630	1,680
	% Cha	ange	-3.97%	-2.04%	-1.62%	-1.45%	-0.94%	-0.66%	-0.38%	-14.66%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	13-Jul-51	B/W	1:28,400	6192500	9640
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	11-Sep-96	B/W		6192500	2560
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	08/21/2005	color	1-meter pixels	6192500	2630
2005	NAIP	07/28/2005	color	1-meter pixels	6192500	3380
2007	Woolpert	10/15/2007 - 11/2/2007	Color		6192500	
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Tree Revetments	248	0.7%	248	0.7%	0
	Rock RipRap	1,266	3.7%	2,117	6.2%	851
	Feature Type Totals	1,514	4.4%	2,365	6.9%	851
	Reach Totals	1,514	4.4%	2,365	6.9%	851

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		2,342	0	282	0	0	0	0	0
Tree Revetments		0	0	249	0	0	0	0	0
	Totals	2,342	0	531	0	0	0	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)			Bankfull		
	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Braiding Parameter		% Change in Braiding
1950	17,866	9,054	1.51	1950 to 1976:	4.15%
1976	16,871	9,604	1.57	1976 to 1995:	1.96%
1995	17,021	10,213	1.60	1995 to 2001:	-5.93%
2001	17,021	8,598	1.51	1950 to 2001:	-0.11%
Change 1950 - 2001	-845	-456	0.00		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	96		214		
Total Floodplain Area (Ac)	96		215		
Total Isolated (Ac)	0	0.0%	1	-31.1%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	1	0	0	1

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 113	Erosion Buffer (ft) 225	Tot CN Acre 42	al Restricted IZ CMZ age Acreage 8 11	M Restricte Migration Area 3%	ed Total AHZ Acreag 0	Restricted AHZ e Acreage 0	I % Restricted Avulsion Area 0%
2011 Res	stricted Mig	ration A	rea Sun	nmary	Note that the	se data reflect	t the observed co	nditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, CO	E for the rest	of the river).	Gweet Class
RipRap								
Other Infrastructure		ructure	10 6	2.3% 1.4%				
		Totals	16	3.7%				
Land Use	es within th	e CMZ (A	Acres)	Flood Irrigation 62.9	Sprinkler Irrigation 1.9	Pivot Irrigation 9.2	Urban/ ExUrban p 6.7	Trans- portation 0.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3		Aci	res		% of Reach Area				
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	structure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	18	34	62	63	1.0%	1.9%	3.4%	3.5%	
	Totals	18	34	62	63	1.0%	1.9%	3.4%	3.5%	
Agricultural Land	t									
	Non-Irrigated	847	798	936	893	46.6%	43.9%	51.5%	49.1%	
	Irrigated	734	746	543	554	40.4%	41.1%	29.9%	30.5%	
	Totals	1,581	1,544	1,479	1,447	87.0%	85.0%	81.4%	79.7%	
Channel										
	Channel	210	219	236	235	11.5%	12.0%	13.0%	13.0%	
	Totals	210	219	236	235	11.5%	12.0%	13.0%	13.0%	
ExUrban										
	ExUrban Other	0	0	5	5	0.0%	0.0%	0.3%	0.3%	
	ExUrban Undeveloped	0	0	3	7	0.0%	0.0%	0.2%	0.4%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	1	13	18	18	0.0%	0.7%	1.0%	1.0%	
	ExUrban Residential	0	0	6	33	0.0%	0.0%	0.3%	1.8%	
	Totals	1	13	32	64	0.0%	0.7%	1.8%	3.5%	
Transportation										
	Public Road	4	4	4	4	0.2%	0.2%	0.2%	0.2%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	3	3	3	3	0.2%	0.2%	0.2%	0.2%	
	Totals	7	7	7	7	0.4%	0.4%	0.4%	0.4%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	neline - Tiers 3 and	14								Char	ige Betv	veen Y	ears
			Acı	res		%	of Rea	ch Area	I	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	8	0.0%	0.0%	0.0%	0.6%	0.0%	0.0%	0.6%	0.6%
	Pivot	0	0	78	154	0.0%	0.0%	5.2%	10.7%	0.0%	5.2%	5.4%	10.7%
	Flood	734	746	465	392	46.4%	48.3%	31.5%	27.1%	1.9%	-16.8%	-4.4%	-19.4%
	Totals	734	746	543	554	46.4%	48.3%	36.7%	38.3%	1.9%	-11.6%	1.6%	-8.1%

Non-Irrigated													
Ν	/ulti-Use	690	772	885	852	43.6%	50.0%	59.8%	58.9%	6.4%	9.8%	-0.9%	15.3%
Н	lay/Pasture	157	26	51	40	9.9%	1.7%	3.4%	2.8%	-8.3%	1.8%	-0.6%	-7.1%
	Totals	847	7 9 8	936	893	53.6%	51.7%	63.3%	61.7%	-1.9%	11.6%	-1.6%	8.1%
RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Closed Timber (Acres)			Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.3	0.1	0.1	1.7	1.4	0.7	3.8	1.3	6.9
Max	1.8	2.3	1.5	8.4	10.6	17.1	11.9	7.1	6.9
Average	1.1	0.8	0.8	4.3	4.4	5.1	7.5	4.8	6.9
Sum	2.2	6.6	3.3	55.9	61.1	51.3	29.8	14.5	6.9
Diparian	Turnova								

Riparian Turnover

Conversion of riparian areas to channel, or from channel to riparian between the 1950's and 2001 data set.

01.1	01.0	20.0	14
Riparian t	o Channel (ac	res)	24.2
Channel t	o Riparian (ac	res)	8.3
Riparian Encro	oachment (ac	res)	-15.9

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	6.3	157.3	9.5	0.0	173.2
Acres/Valley Mile	2.1	52.8	3.2	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.21	0.08%	0.28	0.08	0.01	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Sweet Grass
Classification	PCS: Partially confined straight
General Location	Below Big Timber
General Comments	Channel closely follows left valley wall

Reach A6

Narrative Summary

Reach A6 is approximately 3.1 miles long, and is located below Big Timber. The reach is classified as Partially Confined Straight (PCS), which indicates some valley wall influences on river form and minimal meandering. Within this reach, the river consistently follows the northern bluff line of the river valley which is comprised of Cretaceous-age Hell Creek Formation sandstones and mudstones. The other side of the river consists of low floodplain and terrace deposits. Because of the valley wall confinement, migration rates are low in the reach and the Channel Migration Zone (CMZ) is narrow.

Similar to other reaches in Region A, the overall footprint of the river channel has increased in size since 1950. In 1950, the channel footprint was 161 acres but by 2001 it had expanded to 202 acres.

About 7 percent of the banks in Reach A6 are armored, and most of that bank protection is flow deflectors (2,165 feet). There is another 650 feet of rock riprap, all of which was constructed between 2001 and 2011.

One side channel in Reach A6 was blocked prior to 1950. It is about 2,700 feet long and is blocked by a dike as well as flow deflectors along the bank. The side channel currently hosts riverine and emergent wetland areas.

Land use in Reach A6 is predominantly agricultural, although there almost 200 acres of exurban development on the low terraces between the river and I-90. Most of the agricultural land is non-irrigated, although there are 760 acres of ground under flood irrigation and another 64 acres under pivot. A total of 35 acres of flood irrigated land are in the Channel Migration Zone.

Reach A6 has seen 28 percent (18 acres) of its riparian corridor converted to developed land uses since 1950. Most of that (17 acres) was conversion to irrigation.

This area of the upper Yellowstone River has seen three severe floods in the last 20 years. The 1996 and 1997 floods were very damaging, early-June events that peaked at 37,100 and 38,000 cfs, respectively. At the time, these were considered to be sequential 100-year floods. Then in late June of 2011, the river peaked at 40,600 cfs, which is currently the flood of record at Livingston. This flood exceeded a 100-year event, with both the 1996/1997 events considered to have exceeded a 75-year flood.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 12,600 to 12,100 cfs, a drop of about 4 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 1,910 cfs to 1,630 cfs with human development, a reduction of 15 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

The reduction in flows is evident by the contraction of the 5-year floodplain area in Reach A6 by 4.8 acres, or 30 percent.

CEA-Related observations in Reach A6 include: •Riparian clearing in support of irrigation. •Side Channel Blockage

•Contraction of 5-year floodplain due to flow alterations.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A6 include: •Side channel restoration at RM 454.5

Reach A6

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream	
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500	
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston	
	1902	Jun ´	11	30,100	10-25	5 yr		Period	l of Record	1929-2015	1929-2015	
	1943	Jun 2	20	30,600	10-25	5 yr				1020 2010	1929-2013	
	1974	Jun ´	17	36,300	50-10	0 yr		Distance	lo (miles)	88.9	50.2	
	1996	Jun 1	10	37,100	50-10	0 yr						
	1997	Jun	6	38,000	50-10	0 yr						
	2011	Jun 3	30	40,600	>100	-yr						
Di	scharg	е								7Q10	95% Sum.	
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration	
	Unregul	ated	12,600	24,500	30,800	34,600	42,400	45,500	52,700	1,910	1,760	
	Regul	ated	12,100	24,000	30,300	34,100	42,000	45,200	52,500	1,630	1,680	
	% Cha	ange	-3.97%	-2.04%	-1.62%	-1.45%	-0.94%	-0.66%	-0.38%	-14.66%	-4.55%	

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	13-Jul-51	B/W	1:28,400	6192500	9640
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	11-Sep-96	B/W		6192500	2560
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	07/28/2005	color	1-meter pixels	6192500	3380
2007	Woolpert	10/15/2007 - 11/2/2007	Color		6192500	
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Lenath (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					er e
	Rock RipRap	0	0.0%	648	2.1%	648
	Flow Deflectors	580	1.9%	633	2.0%	52
	Between Flow Deflectors	1,544	4.9%	1,533	4.9%	-11
	Feature Type Totals	2,124	6.8%	2,814	9.0%	690
Other In C	Channel					'
	Bedrock Outcrop	157	0.5%	157	0.5%	0
	Feature Type Totals	157	0.5%	157	0.5%	0
Floodplair	n Control					'
	Transportation Encroachment	7,844	25.0%	7,844	25.0%	0
	Feature Type Totals	7,844	25.0%	7,844	25.0%	0
	Reach Totals	10,125	32.3%	10,815	34.5%	690

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FDs	6	1,968	0	0	0	0	0	0	154
1	Fotals	1,968	0	0	0	0	0	0	154

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	15,359	1,749	1.11	1950 to 1976:	-10.23%
1976	15,307		1.00	1976 to 1995:	9.11%
1995	15,523	1,414	1.09	1995 to 2001:	-2.30%
2001	15,675	1,034	1.07	1950 to 2001:	-4.30%
Change 1950 - 2001	316	-715	-0.05		
Length of Side		Pre-1950s (ft)	2,691		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	103		213		
Total Floodplain Area (Ac)	103		218		
Total Isolated (Ac)	0	0.0%	5	30.5%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	1	0	0	1

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal Restricte MZ CMZ eage Acreage	d % Restric Migratio Area	ted Tota n AHZ Acreag	I Restri AH ge Acrea	cted % Restricted Z Avulsion age Area
	146	292	30)4 14	5%	30	0	0%
2011 Res	stricted Mig	ration A	rea Sur	nmary	Note that the	ese data reflec	ct the observe	d conditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, C	OE for the res	t of the river).	and Sweet Grass
RipRap								
	Irrigated		6	1.8%				
Flow Deflect	ctors							
	Irrigated		14	4.2%				
		Totals	20	6.0%				
Land Us	es within th	ne CMZ (/	Acres)	Flood Irrigation	Sprinkler Irrigation	Pivot Irrigation	Urban/ ExUrban	Trans- portation

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	17	22	22	6	0.8%	1.1%	1.1%	0.3%
	Totals	17	22	22	6	0.8%	1.1%	1.1%	0.3%
Agricultural Land									
	Non-Irrigated	885	947	805	714	43.8%	46.8%	39.8%	35.3%
	Irrigated	936	870	834	825	46.3%	43.0%	41.2%	40.8%
	Totals	1,822	1,817	1,639	1,539	90.0%	89.8%	81.0%	76.0%
Channel									
	Channel	166	165	181	202	8.2%	8.1%	8.9%	10.0%
	Totals	166	165	181	202	8.2%	8.1%	8.9%	10.0%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	37	0.0%	0.0%	0.0%	1.8%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	104	162	0.0%	0.0%	5.1%	8.0%
	Totals	0	0	104	199	0.0%	0.0%	5.1%	9.8%
Transportation									
	Public Road	7	7	7	7	0.3%	0.3%	0.3%	0.3%
	Interstate	0	0	58	58	0.0%	0.0%	2.9%	2.9%
	Railroad	13	13	13	13	0.6%	0.6%	0.6%	0.6%
	Totals	19	19	77	77	0.9%	0.9%	3.8%	3.8%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 and	4								Char	nge Betv	veen Y	ears
			Acr	res		%	of Rea	ch Area	l I	(% 0	f Agricu	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	64	0.0%	0.0%	0.0%	4.2%	0.0%	0.0%	4.2%	4.2%
	Flood	936	870	834	761	51.4%	47.9%	50.9%	49.5%	-3.5%	3.0%	-1.4%	-1.9%
	Totals	936	870	834	825	51.4%	47.9%	50.9%	53.6%	-3.5%	3.0%	2.7%	2.2%

Reach A6

Non-Irrigated													
Mul	ti-Use	855	738	791	681	46.9%	40.6%	48.3%	44.3%	-6.3%	7.7%	-4.0%	-2.7%
Hay	/Pasture	30	210	13	32	1.7%	11.5%	0.8%	2.1%	9.9%	-10.7%	1.3%	0.4%
	Totals	885	947	805	714	48.6%	52.1%	49.1%	46.4%	3.5%	-3.0%	-2.7%	-2.2%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Close	ed Timber (A	Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.7	0.1	2.9	0.6	0.3	0.3	20.4	17.1	2.2
Max	17.0	5.4	2.9	18.0	13.3	10.8	53.8	25.3	23.9
Average	5.2	1.2	2.9	5.2	3.7	3.8	37.1	21.2	10.6
Sum	46.7	8.2	2.9	26.0	29.6	15.0	74.2	42.4	42.3
Rinarian	Turnove	r							

Riparian i urnover

Conversion of riparian areas to channel, or from channel to riparian between the 1950's and 2001 data set.

4	/4.2	15.0	29.6
10.7	cres)	Channel (a	Riparian to
4.2	cres)	Riparian (a	Channel to
-6.5	cres)	achment (a	Riparian Encro

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed -AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	14.3	23.3	1.1	0.0	38.6
Acres/Valley Mile	5.1	8.3	0.4	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a **GIS** environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.11	0.01%	0.01	0.00	0.01	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Sweet Grass
Classification	PCB: Partially confined braided
General Location	Greycliff
General Comments	Greycliff: Narrow valley bottom with alluvial fan margins

Upstream River Mile	453.3
Downstream River Mile	443.6
Length	9.70 mi (15.61 km)

Narrative Summary

Reach A7 is approximately 9.7 miles long, and is at Greycliff. The reach is classified as Partially Confined Braided (PCB), which indicates some valley wall influences on river form and relatively extensive gravel bars and low flow channel complexity. Within this reach, the river intermittently follows the northern bluff line of the river valley which is comprised of Cretaceous-age Hell Creek Formation sandstones and mudstones. The other side of the river valley consists of low floodplain and terrace deposits. In several places, such as at Greycliff Bridge, the terrace toe is sandstone. Several tributaries enter the river in this reach, including Sweet Grass Creek and Deer Creek.

Similar to other reaches in Region A, the overall footprint of the river channel has increased in size since 1950. In 1950, the channel footprint was 613 acres but by 2001 it had expanded to 723 acres.

As of 2011, about 12 percent of the banks in Reach A7 were armored, and most of that bank protection is rock riprap (11,254 feet). There are also 1,500 feet of flow deflectors in the reach. Between 2001 and 2011, about 2,400 feet of riprap and 230 feet of flow deflectors were constructed. There are also minor amounts of gabions and steel retaining wall in the reach.

Reach A7 has experienced the loss of thousands of feet of side channels both pre- and post- 1950. Prior the collection of the 1950s imagery, a channel that was almost a mile long was blocked in multiple places. The land that this blocked side channel is about ½ mile downstream of the Greycliff Bridge on the right bank and is part of the Pelican Fishing Access Site. Currently, only the downstream portion of this channel has good definition; the upper end has largely decayed. Since 1950, side channels have been blocked at RM 445 and RM 452. Both of these side channels were relatively small features that flowed on the south side of the river corridor. In total, 4,600 feet of channel were blocked post-1950. Since 1950 there has been a net loss of about 9,000 feet of side channel in the reach, indicating some passive loss as well as loss due to blockages.

In contrast to the general trend on the river, floodplain turnover rates in Reach A7 have increased since 1976. From 1950-1976 the average floodplain turnover rate in this reach was 3.4 acres per year, and from 1976-2001, that rate had increased to 5.5 acres per year.

Land use in Reach A7 is predominantly agricultural, although there almost 140 acres of exurban development on the low terraces between the river and I-90. Transportation infrastructure also comprises almost 300 acres of the mapping footprint. Most of the agricultural land is non-irrigated, although there are 1,500 acres of ground under flood irrigation, 225 acres under sprinkler and another 914 acres under pivot. A total of 267 acres of developed land are in the Channel Migration Zone. Most of that is in flood irrigation (196 acres), but 51 acres are in pivot. At RM 450, pivots extend to the active streambank on both sides of the river. About 10 percent of the CMZ is restricted by physical features.

Reach A7 has seen 5 percent (33 acres) of its riparian corridor converted to developed land uses since 1950. Most of that (23 acres) was conversion to irrigation. Currently, there are about 26 acres of land under pivot irrigation within the mapped 5-year floodplain.

Reach A7was sampled as part of the avian study. The average species richness in Reach A7 was 9.9, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for sites evaluated is 8. One bird Species of Concern (SOC), the Bobolink, was identified in the reach. Three bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) were also found, including the Chimney Swift, Dickscissel, and Ovenbird.

On area in Reach A7 that has become persistently problematic is the Greycliff Bridge at RM 448.5. Bank migration upstream of the bridge has approached 1,000 feet of lateral movement since 1950. Bank armor has been flanked and now sits In the middle of the river. The county road that lies in the CMZ has been threatened; it was treated with buried revetment that has become exposed in recent years. Efforts are ongoing to develop an optimal strategy to funnel the river meanderbelt through the bridge without disrupting sediment transport patterns and causing accelerated erosion.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 13,200 cfs to 12,700 cfs, a drop of about 4 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,000 cfs to 1,670 cfs with human development, a reduction of 17 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

The reduction in flows is evident by the contraction of the 5-year floodplain area in Reach A7 by 62 acres, or 25 percent.

CEA-Related observations in Reach A7 include:

- •Flanking of armor and accelerated erosion behind.
- •Side Channel Blockage
- •Contraction of 5-year floodplain due to flow alterations.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A7 include: •Side channel restoration RM 452, RM 447.9, RM 445 •Bank armor removal upstream of Greycliff Bridge

•CMZ management due to encroachment of pivots

Reach A7

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream		
	Year	Dat	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500		
	1971	Jun 2	23	29,200	10-25 yr			Location				Billings	Livingston
	1902	Jun	11	30,100	10-25 yr			Pariod of Pacard		1929-2015	1929-2015		
	1943 Jun 20		20	30,600	10-25	5 yr		Fenot		1323-2013	1323-2013		
	1974	Jun	17	36,300	50-10	0 yr		Distance	e lo (miles)	79.2	53.3		
	1996	Jun	10	37,100	50-10	0 yr							
	1997	Jun	6	38,000	50-10	0 yr							
	2011	Jun :	30	40,600	>100	-yr							
Di	scharg	е								7Q10	95% Sum.		
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration		
	Unregul	ated	13,200	25,600	32,100	36,000	44,100	47,400	54,800	2,000	1,760		
	Regul	ated	12,700	25,100	31,600	35,500	43,700	47,100	54,600	1,670	1,680		
	% Cha	ange	-3.79%	-1.95%	-1.56%	-1.39%	-0.91%	-0.63%	-0.36%	-16.50%	-4.55%		

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	6/15/1951 - 7/12/51	B/W	1:28,400	6192500	13700
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	9/11/96 - 8/28/97	B/W		6192500	2560
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	07/28/2005	color	1-meter pixels	6192500	3380
2005	NAIP	07/27/2005	color	1-meter pixels	6192500	3540
2007	Woolpert	10/15/2007 - 11/2/2007	Color		6192500	
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2011	NAIP	7/24/2011	Color	1-meter pixels	6192500	13100
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature	Feature	2001	% of	2011	% of	2001-2011
Class	Туре	Length (ft)	Bankline	Length (ft)	Bankline	Change
Stream St	abilization					
	Steel Retaining Wall	33	0.0%	33	0.0%	0
	Rock RipRap	8,917	8.5%	11,255	10.8%	2,338
	Gabions	797	0.8%	797	0.8%	0
	Flow Deflectors	305	0.3%	531	0.5%	226
	Between Flow Deflectors	977	0.9%	977	0.9%	0
	Feature Type Totals	11,028	10.6%	13,592	13.0%	2,564
Other In C	Channel					1
	Bedrock Outcrop	74	0.1%	74	0.1%	0
	Feature Type Totals	74	0.1%	74	0.1%	0
Floodplair	n Control			I		1
	Transportation Encroachment	10,046	9.6%	10,046	9.6%	0
	Feature Type Totals	10,046	9.6%	10,046	9.6%	0
	Reach Totals	21,148	20.2%	23,712	22.7%	2,564

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Gabions		0	0	797	0	0	0	0	0
Rock RipRap		4,943	3,241	656	656	0	1,187	0	0
	Totals	4,943	3,241	1,453	656	0	1,187	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	51,418	30,696	1.60	1950 to 1976:	14.62%
1976	51,762	42,983	1.83	1976 to 1995:	-19.10%
1995	52,381	25,182	1.48	1995 to 2001:	-4.54%
2001	52,254	21,606	1.41	1950 to 2001:	-11.49%
Change 1950 - 2001	836	-9,090	-0.18		
Lenath of Side		Pre-1950s (ft)	4,756		
Channels Blocked		Post-1950s (ft)	4,610		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	13	1.6%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	780		911		
Total Floodplain Area (Ac)	793		973		
Total Isolated (Ac)	13	1.6%	62	24.8%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	5	0	25	31

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal IZ age	Restricted CMZ Acreage	% Restrict Migration Area	ed Tota n AHZ Acrea	I Res : / ge Ac	tricted AHZ reage	% Restricted Avulsion Area
	240	481	1,59	97	147	9%	68		0	0%
2011 Res	stricted Mig	ration A	rea Sun	nmar	у	Note that the	se data refle	ct the obser	ved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	Counties, CC	DE for the res	t of the rive	irk and t r).	Sweet Grass
Road/Railro	oad Prism									
	Public Road		7	0.	4%					
RipRap/Flo	w Deflectors									
	Irrigated		20	1.	2%					
RipRap										
	Railroad		16	1.	0%					
	Non-Irrigated		54	3.	2%					
	Irrigated		37	2.	2%					
Other										
	Public Road		3	0.	2%					
	Other Infrastr	ructure	11	0.	6%					
Flow Deflect	ctors									
	Irrigated		16	1.	0%					
		Totals	164	9.	9%					
Land Us	es within the	e CMZ (A	Acres)	F Irri 1	lood gation 95.9	Sprinkler Irrigation 0.0	Pivot Irrigation 50.6	Urban/ ExUrban 5.1	ד pc ו	rans- ortation 15.4

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	1	7	0.0%	0.0%	0.0%	0.1%
	Other Infrastructure	78	107	161	161	1.2%	1.6%	2.4%	2.4%
	Totals	78	107	162	168	1.2%	1.6%	2.5%	2.6%
Agricultural Lan	d								
	Non-Irrigated	3,626	3,238	2,560	2,551	55.2%	49.3%	38.9%	38.8%
	Irrigated	2,027	2,203	2,663	2,604	30.8%	33.5%	40.5%	39.6%
	Totals	5,653	5,441	5,224	5,155	86.0%	82.8%	79.5%	78.4%
Channel									
	Channel	716	760	763	817	10.9%	11.6%	11.6%	12.4%
	Totals	716	760	763	817	10.9%	11.6%	11.6%	12.4%
ExUrban						•			
	ExUrban Other	0	5	9	13	0.0%	0.1%	0.1%	0.2%
	ExUrban Undeveloped	0	0	6	0	0.0%	0.0%	0.1%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	8	12	0.0%	0.0%	0.1%	0.2%
	ExUrban Residential	17	20	107	113	0.3%	0.3%	1.6%	1.7%
	Totals	17	25	130	138	0.3%	0.4%	2.0%	2.1%
Transportation									
	Public Road	64	83	87	87	1.0%	1.3%	1.3%	1.3%
	Interstate	0	112	162	162	0.0%	1.7%	2.5%	2.5%
	Railroad	46	46	46	46	0.7%	0.7%	0.7%	0.7%
	Totals	110	241	295	296	1.7%	3.7%	4.5%	4.5%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	meline - Tiers 3 and	4								Char	nge Betv	ween Y	ears
			Acr	res		%	of Rea	ch Area	1	(% oʻ	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	0	0	250	224	0.0%	0.0%	4.8%	4.4%	0.0%	4.8%	-0.4%	4.4%
	Pivot	0	0	941	914	0.0%	0.0%	18.0%	17.7%	0.0%	18.0%	-0.3%	17.7%
	Flood	2,027	2,203	1,473	1,466	35.9%	40.5%	28.2%	28.4%	4.6%	-12.3%	0.2%	-7.4%
	Totals	2,027	2,203	2,663	2,604	35.9%	40.5%	51.0%	50.5%	4.6%	10.5%	-0.5%	14.7%

Reach A7

Non-I	rrigated	
	J	

Multi-Use	2,832	2,620	2,113	2,085	50.1%	48.2%	40.5%	40.5%	-1.9%	-7.7%	0.0%	-9.6%
Hay/Pasture	794	618	447	465	14.0%	11.4%	8.6%	9.0%	-2.7%	-2.8%	0.5%	-5.0%
Totals	3,626	3,238	2,560	2,551	64.1%	59.5%	49.0%	49.5%	-4.6%	-10.5%	0.5%	-14.7%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	8	Shrub (Acres	5)	Clos	ed Timber (A	Acres)	Оре	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.5	0.2	0.3	0.1	0.1	0.1	1.8	2.7	0.1	
Max	36.8	28.6	15.4	87.2	87.7	80.3	38.2	48.3	40.8	
Average	6.8	5.0	4.8	18.2	8.2	14.2	14.2	21.0	11.7	
Sum	136.8	75.3	100.0	417.7	391.6	382.4	99.3	105.0	93.2	
Riparian	Turnove	er			Riparian t	to Channel (a	cres)	112.5		
from ch	rsion of ripar nannel to ripa	arian areas to	channel, or n the 1950's		Channel t	to Riparian (a	cres)	108.7		
and 20	01 data set.			Ri	iparian Encro	oachment (a	cres)	-3.8		
Riparian	Recruit	nent	1950s Chai	nnel Mapped	as 2011 Ripa	arian (Ac)	0.0			
Creation of	f riparian are	as	1950s Floodp	plain Mapped as 2011 Channel (Ac) 5.4						
between 1	950s and 20	01.	Tota	Recruitmer	nt (1950s to 2	2011)(Ac)	5.4			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	14.1	56.6	42.5	0.0	113.2
Acres/Valley Mile	1.6	6.2	4.7	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.51	0.05%	0.77	0.04	0.19	0.02

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region Reach
	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	✓ ✓ Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	🗹 🗹 Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	✓ ✓ Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	V Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	✓ ✓ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	Venbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	✓ ✓ Eastern Kingbird	Plumbeous Vireo	Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	✓ ✓ Western Meadowlark
	Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	Field Sparrow	Red Crossbill	☐ ✔ White-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	Ring-necked Pheasant	☐ ✔ White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	✓ ✓ Yellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	✓ ✓ Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Sweet Grass
Classification	PCB: Partially confined braided
General Location	Bridger Creek
General Comments	Floodplain isolation behind interstate and R/R

Upstream River Mile	443.6
Downstream River Mile	438.5
Length	5.10 mi (8.21 km)

Reach

Narrative Summary

Reach A8 is 5.1 miles long, and is at Bridger Creek. The reach is classified as Partially Confined Braided (PCB), which indicates some valley wall influences on river form and relatively extensive gravel bars and low flow channel complexity. Within this reach, the river intermittently follows the northern bluff line of the river valley which is comprised of Cretaceous-age Hell Creek Formation sandstones and mudstones. The other side of the river valley consists of low floodplain and terrace deposits. The Bratten fishing access site is located in the lower end of the reach.

Similar to other reaches in Region A, the overall footprint of the river channel has increased in size since 1950. In 1950, the channel footprint was 436 acres but by 2001 it had expanded to 482 acres.

As of 2011, about 10 percent of the banks in Reach A8 were armored by almost 4,000 feet of rock riprap and 1,400 feet of flow deflectors. There is also a ~760 foot long retaining wall on the right bank at the very upstream most end of the reach that protects several structures. At Rm 441.1, rock riprap on both sides of the river has constricted the channel corridor to essentially the width of the active channel, which is about 550 feet. Physical features also occupy the floodplain; over three miles of transportation encroachment and 1,800 feet of floodplain dikes have been mapped in the reach. Transportation infrastructure and agriculture-related dikes have isolated 25 percent of the historic 100-year floodplain in the reach.

Reach A8 has experienced the loss of almost a mile of side channel since the 1950s due to dike construction. All of the side channel loss is from one project at the mouth of Bridger Creek, where the lower portion of the creek was channelized downstream of the I-90 Bridge. This channelization included re-routing the creek through a channelized section to an active side channel of the Yellowstone River. The channelization included construction of a dike that guides Bridger Creek into the side channel, and blocks the side channel at the intersection, essentially turning the lower portion of the side channel into lowermost Bridger Creek. The channelization of lower Bridger Creek occurred between 1950 and 1976.

Even though Reach A8 has experienced some side channel loss, it still supports extensive side channel length. As of 2001 there were 6.6 miles of active side channel in the 5.1 mile long reach.

Land use in Reach A8 is predominantly agricultural, although there almost 230 acres of transportation-related development in the mapping footprint. Most of the agricultural land is non-irrigated, although there are 900 acres of ground under flood irrigation and 56 acres under pivot. A total of 236 acres of developed land are in the Channel Migration Zone. Most of that is in flood irrigation (211 acres), but 8 acres are in pivot and 4 are in exurban development. About 16 percent of the CMZ is restricted by physical features.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 13,700 cfs to 13,000 cfs, a drop of about 5 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,020 cfs to 1,670 cfs with human development, a reduction of 17 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

The reduction in flows is evident by the contraction of the 5-year floodplain area in Reach A8 by 24 acres, or 11 percent.

CEA-Related observations in Reach A8 include: •Side channel loss as part of tributary channelization •Isolation of 25 percent of historic 100-year floodplain primary due to transportation infrastructure •Contraction of 5-year floodplain due to flow alterations.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A8 include: •Side channel restoration at RM 442

•Floodplain restoration/reconnection on south side of interstate at RM 439.5

•CMZ management due to extent of CMZ restriction (16 percent)

PHYSICAL FEATURES MAP (2011)
HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	Return Interval Gage No.					6192500
	1971	Jun 2	23	29,200	10-25	10-25 yr			Location	Billings	Livingston
	1902	Jun ´	11	30,100	10-25	5 yr		Period		1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Disc		74.4	1020 2010
	1974	Jun ´	17	36,300	50-10	0 yr		Distance	lo (miles)	74.1	63.0
	1996	96 Jun 10 37,100		50-10	0 yr						
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	13,700	26,600	33,200	37,300	45,600	49,000	56,700	2,020	1,760
	Regul	ated	13,000	25,800	32,400	36,600	45,000	48,500	56,400	1,670	1,680
	% Cha	ange	-5.11%	-3.01%	-2.41%	-1.88%	-1.32%	-1.02%	-0.53%	-17.33%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	7/12/1951 - 6/15/51	B/W	1:28,400	6192500	13700
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	9/26/97 - 9/11/96	B/W		6192500	2560
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2005	NAIP	07/27/2005	color	1-meter pixels	6192500	3540
2007	Woolpert	10/15/2007 - 11/2/2007	Color	NA	6192500	
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	NAIP	7/24/2011	Color	1-meter pixels	6192500	13100
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Lenath (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					0.000.000
	Steel Retaining Wall	758	1.4%	758	1.4%	0
	Rock RipRap	3,697	6.9%	3,970	7.4%	274
	Flow Deflectors	451	0.8%	431	0.8%	-21
	Between Flow Deflectors	1,098	2.1%	985	1.8%	-113
	Feature Type Totals	6,004	11.2%	6,144	11.5%	140
Floodplair	Control			'		,
	Transportation Encroachment	15,631	29.2%	15,631	29.2%	0
	Floodplain Dike/Levee	1,853	3.5%	1,853	3.5%	0
	Feature Type Totals	17,484	32.7%	17,484	32.7%	0
	Reach Totals	23,489	43.9%	23,628	44.1%	140

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FDs	;	2,430	0	417	0	0	0	0	0
Rock RipRap		1,863	0	0	0	0	2,089	0	0
Steel Retaining Wall		0	0	79	0	0	0	0	0
1	otals	4,294	0	495	0	0	2,089	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	27,141	25,371	1.93	1950 to 1976:	25.94%
1976	27,419	39,394	2.44	1976 to 1995:	-13.93%
1995	26,852	29,464	2.10	1995 to 2001:	9.78%
2001	26,774	34,867	2.30	1950 to 2001:	18.99%
Change 1950 - 2001	-367	9,495	0.37		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	4,657		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	23	2.9%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	174	22.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	592		667		
Total Floodplain Area (Ac)	789		691		
Total Isolated (Ac)	197	25.0%	24	11.3%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	77	0	0	77

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal IZ age	Restricted CMZ Acreage	% Restrict Migration Area	ed Tota n AH2 Acrea	al R Z Ige /	estricted AHZ Acreage	% Restricted Avulsion Area
	229	458	1,0	82	88	8%	142	2	108	76%
2011 Res	stricted Mig	ration A	rea Sun	nma	ry	Note that the	ese data refle	ct the obs	served con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc	cent of CMZ	Counties, CO	DE for the res	(NAIP for st of the ri	Park and S ver).	Sweet Grass
Road/Railro	oad Prism									
	Railroad		2	0	.1%					
RipRap/Flo	w Deflectors									
	Other Infrast	ructure	9	0	.7%					
	Irrigated		39	3	.2%					
RipRap										
	Railroad		0	0	.0%					
	Non-Irrigated	1	10	0	.8%					
	Irrigated		48	3	.9%					
Other										
D:1 /	Other Infrast	ructure	8	0	.7%					
Dike/Levee	Non-Irrigated	4	81	6	6%					
	Non ingutet		400							
		lotais	196	10	5.0%					
Land Us	es within th	e CMZ (Acres)	l Irr	Flood igation 211.2	Sprinkler Irrigation 0.0	Pivot Irrigation 8.3	Urbar ExUrb 4.1	n/ T an pc	rans- rtation 12.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3		Aci	res		%	% of Reach Area		
Feature Class	Feature Type	1950	1976	2001	2011	1950 1976 2001 201			2011
Agricultural Infra	structure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	63	76	110	128	1.6%	1.9%	2.7%	3.2%
	Totals	63	76	110	128	1.6%	1.9%	2.7%	3.2%
Agricultural Land	t								
	Non-Irrigated	2,124	2,011	2,112	2,060	53.2%	50.3%	52.9%	51.6%
	Irrigated	1,161	1,098	947	960	29.1%	27.5%	23.7%	24.0%
	Totals	3,285	3,108	3,059	3,020	82.2%	77.8%	76.6%	75.6%
Channel									
	Channel	592	588	588	608	14.8%	14.7%	14.7%	15.2%
	Totals	592	588	588	608	14.8%	14.7%	14.7%	15.2%
ExUrban									
	ExUrban Other	0	3	3	3	0.0%	0.1%	0.1%	0.1%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	7	7	0.0%	0.0%	0.2%	0.2%
	Totals	0	3	10	10	0.0%	0.1%	0.3%	0.3%
Transportation									
	Public Road	28	52	61	61	0.7%	1.3%	1.5%	1.5%
	Interstate	0	141	141	141	0.0%	3.5%	3.5%	3.5%
	Railroad	27	27	27	27	0.7%	0.7%	0.7%	0.7%
	Totals	55	220	229	229	1.4%	5.5%	5.7%	5.7%
Urban									-
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir							Char	ige Beti	ween Y	ears			
			Acres			% of Reach Area				(% of Agricultural Land)			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	'01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	46	56	0.0%	0.0%	1.5%	1.9%	0.0%	1.5%	0.3%	1.9%
	Flood	1,161	1,098	901	904	35.3%	35.3%	29.5%	29.9%	0.0%	-5.9%	0.5%	-5.4%
	Totals	1,161	1,098	947	960	35.3%	35.3%	31.0%	31.8%	0.0%	-4.4%	0.8%	-3.6%

Reach A8

0.1% -0.4% -4.6% 4.3% -0.4% 8.2%

4.4% -0.8% 3.6%

Non-Irrigated										
	Multi-Use	1,955	1,716	1,691	1,658	59.5%	55.2%	55.3%	54.9%	-4.3%
	Hay/Pasture	169	294	421	402	5.1%	9.5%	13.7%	13.3%	4.3%
	Totals	2,124	2,011	2,112	2,060	64.7%	64.7%	69.0%	68.2%	0.0%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Statistic 1950 Min 0.9		Shrub (Acres	3)	Clos	ed Timber (A	Acres)	Ор	en Timber (Ad	cres)	
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.9	0.3	0.8	2.0	0.6	2.1	6.5	2.2	18.8	
Max	47.4	35.9	51.2	59.3	37.9	55.7	11.5	38.6	18.8	
Average	8.0	6.4	8.6	14.2	11.5	16.4	9.0	15.3	18.8	
Sum	135.4	121.3	172.5	312.5	206.6	296.0	18.0	106.9	18.8	
Riparian	Turnove	er			Riparian t	to Channel (a	cres)	107.7		
from cl	rsion of ripar hannel to rip	an areas to arian betwee	n the 1950's	Channel to Riparian (acres) 140.9						
and 20	01 data set.			Riparian Encroachment (acres) 33.2						
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	0.0			
Creation of riparian areas 1950s Flo				lain Mapped	as 2011 Cha	5.8				
between 1	950s and 20	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	5.8			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	14.8	73.1	24.6	0.0	112.5
Acres/Valley Mile	3.2	15.7	5.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.43	0.02%	0.02	0.08	0.02	0.03

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Sweet Grass	Upstream River Mile	438.5
Classification	UA: Unconfined anabranching	Downstream River Mile	434.7
General Location	Reed Point	Length	3.80 mi (6.12 km)
General Comments	Near Reed Point, Reach A9 provides a good example of a large	gely unmodified, dynamic ri	ver segment.

Narrative Summary

Reach A9 is located in lowermost Sweet Grass County, just upstream of the Sweet Grass/Stillwater county line near Reed Point. The reach is an Unconfined Anabranching reach type. The reach is 3.8 miles long, extending from RM 434.7 to RM 438.5. The lower reach break is the bridge crossing just north of Reed Point. This bridge was originally constructed in 1911 and rebuilt in 2000.

Reach A9 provides an excellent example of a dynamic, largely unmodified Unconfined Anabranching reach type. The stream corridor is typically one half mile wide through the reach, with significant narrowing of that corridor in the downstream direction as the river approaches the bridge at Reed Point. In the uppermost portion of the Reach (RM 437-438.5), the northern valley margin consists of an alluvial fan deposit that is currently irrigated with center pivots. Downstream, the river abuts Cretaceous-age Hell Creek Formation on the northern valley wall, which contains sandstones that tend to form steep cliffs. The reach is characterized by high displacement ratios, extensive split flow and islands, and riparian turnover. Although riparian turnover is evident, the rates of that turnover have gone down in the reach since 1976. Prior to that time (1950-1976), average turnover rates were 5.9 acres per year; from 1976 to 2001 that average rate dropped to 3.6 acres of riparian turnover per year.

Bank armor in Reach A9 consists primarily of 10,000 linear feet of riprap which drapes about 24 percent of the stream bank. About 2,000 feet of that armor was constructed since 2001. This new armor is on the right bank at RM 437.8 where the river was rapidly migrating southward toward the rail line. By the time the bank was armored, the river was within 60 feet of the tracks.

Much of the riprap in Reach A9 is located along the south bank of the river on lower end of the reach where the Yellowstone River approaches the bridge near Reed Point. This bridge marks a major narrowing of the river corridor from about 2,000 feet wide ½ mile upstream of the bridge to 360 feet at the bridge itself. The narrowing is achieved by a ~mile long section of bank armor on the right bank that on its lower end runs due north/south, which is perpendicular to the overall east/west trend of the river. This has caused the river to consolidate into a main thread and abandon an historic side channel just upstream of the bridge at the Indian Fort Fishing Access Site.

Reach A9 has experienced the loss of almost about 3,700 feet of side channel since the 1950s due to dike construction. All of the side channel loss is from one project at the upstream end of the reach, where a side channel was blocked on the north side of the river at RM 438.5.

Even though Reach A9 has experienced some side channel loss, it still supports extensive side channel length. As of 2001 there were 5.1 miles of active side channel in the 3.8 mile long reach. Large islands have persisted in the reach since 1950.

Land use in Reach A9 is predominantly agricultural, although there several hundred acres of non-agricultural uses due to the proximity of the transportation corridor as well as the town of Reed Point. Since 1950, 160 acres of agricultural land have been converted to pivot. A total of 300 acres of developed land are in the Channel Migration Zone. Most of that is in flood irrigation (250 acres), but 40 acres are in transportation. About 13 percent of the CMZ is restricted by physical features.

There is natural gas one pipeline that crosses under the Yellowstone River in Reach A9. It crosses at the upper most end of the reach at RM 438.5 and is consists of a 6 inch pipeline that is owned by Northwestern Energy.

Since 1950, Reach A9 has lost most of its forest that would be considered at low risk of cowbird infestation due to its separation from agricultural infrastructure. In 1950, about 17 acres of forest per valley mile were identified as low risk and by 2001 that forest area had been reduced to 2.5 acres due to development within the reach.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 14,000 cfs to 13,300 cfs, a drop of about 5 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,030 cfs to 1,680 cfs with human development, a reduction of 17 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

The reduction in flows is evident by the contraction of the 5-year floodplain area in Reach A9 by 15 acres, or 6 percent.

CEA-Related observations in Reach A9 include: •Reduced floodplain turnover rates since 1976 •Approximately 3,700 feet of side channel has been lost due to channel plugging between 1950 and 2011 •Meander belt encroachment at bridge crossing

•Side channel loss as part of armoring at bridge approach

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A9 include: •Side channel restoration at RM 438.5 Reach A

•CMZ management due to extent of CMZ restriction (13 percent) •Pipeline management for 6-inch natural gas pipeline that crosses under the river at RM 438.5

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream	
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	6214500	6192500	
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Rillings	Livingston	
	1902	Jun ´	11	30,100	10-25 yr			Period	l of Record	1929-2015	1929-2015	
	1943	Jun 2	20	30,600	10-25	5 yr		Disc		70.0	1020 2010	
	1974	Jun ´	17	36,300	50-10	0 yr		Distance	e lo (miles)	70.3	68.1	
	1996	Jun ´	10	37,100	50-10	0 yr						
	1997	Jun	6	38,000	50-10	0 yr						
	2011	Jun 3	30	40,600	>100	-yr						
Di	scharg	е								7Q10	95% Sum.	
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration	
	Unregul	ated	14,000	27,100	33,900	38,000	46,500	49,900	57,600	2,030	1,760	
	Regul	ated	13,300	26,300	33,100	37,300	45,900	49,400	57,300	1,680	1,680	
	% Cha	ange	-5.00%	-2.95%	-2.36%	-1.84%	-1.29%	-1.00%	-0.52%	-17.24%	-4.55%	

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	6/15/1951	B/W	1:28,400	6192500	13700
1976	USCOE	9/28/1976	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	9/11/96 - 8/28/97	B/W	NA	6192500	2560
2001	NRCS	8/2/2001 - 8/8/2001	CIR	1:24,000	6192500	2000
2005	NAIP	07/27/2005	color	1-meter pixels	6192500	3540
2007	Woolpert	10/15/2007 - 11/2/2007	Color	NA	6192500	1410-2090
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2011	NAIP	7/24/2011	Color	1-meter pixels	6192500	13100
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	7,886	19.2%	9,898	24.2%	2,012
	Flow Deflectors	0	0.0%	107	0.3%	107
	Feature Type Totals	7,886	19.2%	10,005	24.4%	2,120
Floodplain	n Control					
	Transportation Encroachment	6,033	14.7%	6,033	14.7%	0
	Feature Type Totals	6,033	14.7%	6,033	14.7%	0
	Reach Totals	13,918	34.0%	16,038	39.1%	2,120

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

	Totals	5,592	0	0	928	0	492	0	0
Rock RipRap		5,592	0	0	928	0	492	0	0
Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	23,308	30,404	2.30	1950 to 1976:	20.79%
1976	20,291	36,191	2.78	1976 to 1995:	-13.08%
1995	20,903	29,673	2.42	1995 to 2001:	-4.64%
2001	20,490	26,786	2.31	1950 to 2001:	0.12%
Change 1950 - 2001	-2,818	-3,618	0.00		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	3,717		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-`	/ear
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%		
Agriculture (generally relates to field boundaries)	0	0.0%		
Agriculture (isloated by canal or large ditch)	0	0.0%		
Levee/Riprap (protecting agricultural lands)	0	0.0%		
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%		
Railroad	19	3.5%		
Abandoned Railroad	0	0.0%		
Transportation (Interstate and other roads)	0	0.0%		
Total Not Isolated (Ac)	522		629	
Total Floodplain Area (Ac)	541		644	
Total Isolated (Ac)	19	3.5%	15	6.2%

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	90	0	0	90

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal Restrict //Z CMZ eage Acreage	ed % Restrie Migratie e Area	cted Tota on AHZ Acrea	I Restric AH2 ge Acrea	cted % Restricted Z Avulsion Ige Area
	360	720	1,1	09 151	14%	41	0	0%
2011 Res	stricted Mig	gration A	rea Sun	nmary	Note that th	nese data refle	ct the observed	l conditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, C	COE for the res	t of the river).	and Sweet Grass
Road/Railro	oad Prism							
	Railroad		3	0.3%				
RipRap								
	Railroad		148	12.8%				
		Totals	151	13.1%				
Land Us	es within th	ne CMZ (A	Acres)	Flood Irrigation	Sprinkler Irrigation	Pivot Irrigation	Urban/ ExUrban	Trans- portation

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	28	17	24	27	1.0%	0.6%	0.9%	1.0%
	Totals	28	17	24	27	1.0%	0.6%	0.9%	1.0%
Agricultural Lan	d								
	Non-Irrigated	1,547	1,441	1,319	1,146	56.7%	52.8%	48.3%	42.0%
	Irrigated	463	450	491	614	17.0%	16.5%	18.0%	22.5%
	Totals	2,009	1,891	1,809	1,760	73.6%	69.3%	66.3%	64.5%
Channel									
	Channel	622	624	622	657	22.8%	22.9%	22.8%	24.1%
	Totals	622	624	622	657	22.8%	22.9%	22.8%	24.1%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	9	45	67	0.0%	0.3%	1.7%	2.5%
	Totals	0	9	45	67	0.0%	0.3%	1.7%	2.5%
Transportation									
	Public Road	33	45	44	44	1.2%	1.6%	1.6%	1.6%
	Interstate	0	104	104	104	0.0%	3.8%	3.8%	3.8%
	Railroad	21	21	21	21	0.8%	0.8%	0.8%	0.8%
	Totals	54	170	169	169	2.0%	6.2%	6.2%	6.2%
Urban									
	Urban Other	0	0	2	2	0.0%	0.0%	0.1%	0.1%
	Urban Residential	16	11	16	16	0.6%	0.4%	0.6%	0.6%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	14	2	0.0%	0.0%	0.5%	0.1%
	Urban Industrial	0	6	28	27	0.0%	0.2%	1.0%	1.0%
	Totals	16	17	59	48	0.6%	0.6%	2.2%	1.8%

Land Use Ti	Land Use Timeline - Tiers 3 and 4 Change Between Years												
			Acı	res		%	of Rea	ch Area	a a a a a a a a a a a a a a a a a a a	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	146	163	0.0%	0.0%	8.1%	9.3%	0.0%	8.1%	1.2%	9.3%
	Flood	463	450	345	451	23.0%	23.8%	19.0%	25.6%	0.8%	-4.8%	6.6%	2.6%
	Totals	463	450	491	614	23.0%	23.8%	27.1%	34.9%	0.8%	3.3%	7.8%	11.9%

Reach A9

Multi-Use	1,359	1,319	1,134	1,027	67.6%	69.7%	62.7%	58.4%	2.1%	-7.1%	-4.3%	-9.3%
Hay/Pasture	187	122	185	119	9.3%	6.5%	10.2%	6.8%	-2.9%	3.8%	-3.5%	-2.6%
Totals	1,547	1,441	1,319	1,146	77.0%	76.2%	72.9%	65.1%	-0.8%	-3.3%	-7.8%	-11.9%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	;	Shrub (Acre	s)	Clos	ed Timber (A	Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.7	0.3	0.8	0.4	0.6	2.2	4.6	1.9	5.2
Max	15.5	18.6	30.1	60.7	53.8	71.0	53.8	15.6	50.1
Average	4.5	3.8	7.2	14.8	14.7	22.8	21.8	8.7	27.8
Sum	49.3	67.6	93.5	148.2	191.4	228.3	130.6	52.3	83.5
Riparian	Turnove	r			Riparian 1	to Channel (a	cres)	81.4	
Conver from ch	rsion of ripar nannel to rip	ian areas to arian betwee	channel, or en the 1950's		Channel f	to Riparian (a	cres)	126.5	
and 20	01 data set.			Riparian Encroachment (acres) 45.1					
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	0.0		
Creation of	f riparian are	as	1950s Floodp	olain Mapped	as 2011 Cha	nnel (Ac)	5.8		
between 1950s and 2001.		01.	Total Recruitment (1950s to 2011)(Ac) 5.8						

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	9.8	32.5	30.9	0.0	73.2
Acres/Valley Mile	2.9	9.7	9.2	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.07	0.01%	0.02	0.00	0.02	0.02

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Stillwater
Classification	PCS: Partially confined straight
General Location	Reed Point
General Comments	Channel closely follows left valley wall

Upstream River Mile	434.7
Downstream River Mile	430.3
Length	4.40 mi (7.08 km)

Narrative Summary

Reach A10 is 4.4 miles long and begins at Reed Point. The reach is a Partially Confined Straight (PCS) reach type, indicating valley wall influences and minimal meandering. The river flows closely along the north valley wall sandstones of the Hell Creek Formation. Migration activity to the south off of the valley wall has been limited and relatively slow, resulting in a fairly narrow Channel Migration Zone and relatively little bank armor. There is only 500 feet of bank armor in the reach, which protects less than 2 percent of the bankline.

No side channels have been physically blocked in Reach A10, however there still has been a net loss of almost 2 miles of side channel length since 1950. This is in part due to the loss of a several thousand foot side channel on the south side of the corridor at RM 431. The entrance to the side channel is just downstream of a series of flow deflectors that appear to have contributed to aggradation at the entrance to the side channel.

Riparian mapping in Reach A10 shows a reduction in total acreage of closed timber from 222 acres in 1950 to 155 acres in 2001.

One of the most evident impacts in Reach A10 is floodplain isolation. Due to the transportation encroachment into the reach by the rail line, approximately 30 percent of the 100 year floodplain has become isolated from the river.

Land use in Reach A10 is predominantly agricultural, although there several hundred acres of non-agricultural uses due to the proximity of the transportation corridor as well as the town of Reed Point. All of the irrigated land is in flood. A total of 163 acres of developed land are in the Channel Migration Zone. Almost all of that ground is in flood irrigation. Less than 1 percent of the CMZ is restricted by physical features.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 14,000 cfs to 13,300 cfs, a drop of about 5 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,060 cfs to 1,690 cfs with human development, a reduction of 18 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A10 include:

•Passive loss of anabranching channels, some potentially correlated to flow deflectors

•Floodplain isolation by active rail line.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A10 include: •Floodplain restoration/reconnection behind rail line at RM 430.1 •Side channel restoration at RM 431

Reach AI0

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream	
	Year	Date	Flo	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500	
	1971	Jun 23	3	29,200	10-25	5 yr			Location	Billings	Livingston	
	1902	Jun 1′	1	30,100	10-25	5 yr		Period	of Record	1929-2015	1929-2015	
	1943	Jun 20)	30,600	10-25	5 yr		Distance		020 2010	74.0	
	1974	Jun 17	7	36,300	50-10	0 yr		Distance	TO (miles)	65.9	71.9	
	1996	Jun 10)	37,100	50-10	0 yr						
	1997	Jun 6		38,000	50-10	0 yr						
	2011	Jun 30)	40,600	>100	-yr						
Di	scharg	е								7Q10	95% Sum.	
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration	
	Unregul	ated	14,000	27,100	33,900	38,000	46,500	49,900	57,600	2,060	1,760	
	Regul	ated	13,300	26,300	33,100	37,300	45,900	49,400	57,300	1,690	1,680	
	% Cha	ange	-5.00%	-2.95%	-2.36%	-1.84%	-1.29%	-1.00%	-0.52%	-17.96%	-4.55%	

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	15-Jun-51	B/W	1:28,400	6192500	13700
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	28-Aug-97	B/W		6192500	4430
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2004	Merrick	14-May-04	Color	1:15,840	6192500	4520
2005	NAIP	07/27/2005	color	1-meter pixels	6192500	3540
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	USCOE	October 2012	color	1-ft pixel	6192500	2530
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization	Longin (ii)	Daniano	Longth (it)	Daniano	onango
	Rock RipRap	187	0.4%	270	0.6%	82
	Flow Deflectors	0	0.0%	68	0.2%	68
	Car Bodies	136	0.3%	136	0.3%	0
	Between Flow Deflectors	0	0.0%	187	0.4%	187
	Feature Type Totals	323	0.7%	661	1.5%	338
Floodplain	Control			1		1
	Transportation Encroachment	3,650	8.1%	3,650	8.1%	0
	Feature Type Totals	3,650	8.1%	3,650	8.1%	0
	Reach Totals	3,973	8.8%	4,311	9.6%	338

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Car Bodies		0	134	0	0	0	0	0	0
Rock RipRap		0	33	0	95	0	0	0	0
	Totals	0	167	0	95	0	0	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

			Sum of Feature Length (ft)				
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005
Stream Stabilization							
	Rock RipRap	0	64	64	353	353	353
	Car Bodies	0	0	0	0	175	175
	Totals	0	64	64	353	528	528
Transportation En	croachment						
	Railroad	19,892	19,892	19,892	19,892	19,892	19,892
	Interstate	0	6,852	6,852	6,852	6,852	6,852
	County Road	11,122	13,828	13,828	13,828	13,828	13,828
	Bridge Approach	1,778	1,763	1,763	1,940	1,940	1,940
	Totals	32,792	42,335	42,335	42,512	42,512	42,512

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Brimen, Chen	Anch Ch	Bankfull Braiding		% Change in
	Length (ft)	Length (ft)	Parameter		Braiding
1950	22,613	20,949	1.93	1950 to 1976:	-6.87%
1976	22,331	17,734	1.79	1976 to 1995:	-27.05%
1995	22,532	6,960	1.31	1995 to 2001:	10.93%
2001	22,534	10,185	1.45	1950 to 2001:	-24.63%
Change 1950 - 2001	-79	-10,764	-0.47		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	91	14.1%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	101	15.6%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	454		321		
Total Floodplain Area (Ac)	646		329		
Total Isolated (Ac)	192	29.6%	8	21.7%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total	
Irrigated Acres within the 5 Year Flooplain:	5	0	0	5	

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal Restr IZ Cl age Acro	ricted MZ eage	% Restricte Migration Area	d Tota AHZ Acrea	ll R Z ge /	estricted AHZ Acreage	% Restricted Avulsion Area
	182	365	54	3	6	1%	133		0	0%
2011 Res	stricted Mig	ration A	ea Sun	nmary		Note that thes	e data refle	ct the obs	served con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ		Counties, COE for the rest of the river).			Sweet Glass	
Road/Railro	ad Prism									
	Public Road		6	0.9%						
		Totals	6	0.9%						
Land Us	es within th	e CMZ (A	Acres)	Flood Irrigatior 160.8	n I	Sprinkler rrigation 0.0	Pivot Irrigation 0.0	Urbar ExUrb 0.0	n/ T an pc	rans- ortation 2.0
LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	23	16	22	28	0.8%	0.5%	0.8%	0.9%
	Totals	23	16	22	28	0.8%	0.5%	0.8%	0.9%
Agricultural Lan	d								
	Non-Irrigated	1,915	1,825	1,816	1,773	64.0%	61.0%	60.7%	59.3%
	Irrigated	636	604	602	597	21.3%	20.2%	20.1%	20.0%
	Totals	2,551	2,429	2,418	2,371	85.2%	81.2%	80.8%	79.2%
Channel						•			
	Channel	317	319	313	349	10.6%	10.7%	10.5%	11.7%
	Totals	317	319	313	349	10.6%	10.7%	10.5%	11.7%
ExUrban						•			
	ExUrban Other	0	17	26	26	0.0%	0.6%	0.9%	0.9%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	1	4	0.0%	0.0%	0.0%	0.1%
	Totals	0	17	27	30	0.0%	0.6%	0.9%	1.0%
Transportation									
	Public Road	33	27	27	27	1.1%	0.9%	0.9%	0.9%
	Interstate	0	109	109	109	0.0%	3.6%	3.6%	3.6%
	Railroad	22	22	22	22	0.8%	0.7%	0.7%	0.7%
	Totals	55	158	158	158	1.8%	5.3%	5.3%	5.3%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	46	44	44	44	1.5%	1.5%	1.5%	1.5%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	9	9	12	0.0%	0.3%	0.3%	0.4%
	Totals	46	53	53	56	1.5%	1.8%	1.8%	1.9%

Land Use Til	meline - Tiers 3 a	and 4								Char	nge Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	636	604	602	597	24.9%	24.9%	24.9%	25.2%	-0.1%	0.0%	0.3%	0.3%
	Totals	636	604	602	597	24.9%	24.9%	24.9%	25.2%	-0.1%	0.0%	0.3%	0.3%

Reach AI0

NIOn	Irria	hote
	IIIIu	aleu

Multi-Use	1,724	1,671	1,777	1,663	67.6%	68.8%	73.5%	70.2%	1.2%	4.7%	-3.3%	2.6%
Hay/Pasture	191	154	40	110	7.5%	6.3%	1.6%	4.6%	-1.2%	-4.7%	3.0%	-2.8%
Totals	1,915	1,825	1,816	1,773	75.1%	75.1%	75.1%	74.8%	0.1%	0.0%	-0.3%	-0.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Clos	ed Timber (A	Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.7	0.2	1.5	1.6	0.5	2.9	1.3	12.4	1.9
Max	20.8	7.1	14.5	57.2	81.3	81.9	5.9	12.4	38.4
Average	8.5	2.9	4.5	17.1	14.0	19.3	3.2	12.4	11.6
Sum	51.2	20.4	27.0	221.9	210.2	154.8	9.6	12.4	69.4
Riparian	Turnove	er							

Conversion of riparian areas to channel, or

from channel to riparian between the 1950's and 2001 data set.

210.3	2	154.8		9.6	12
Ripar	rian to	Channel (a	acr	es)	44.1
Chan	inel to	Riparian (a	acr	es)	41.6
Riparian E	Incro	achment (a	acr	es)	-2.5

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	0.3	15.9	6.4	0.0	22.6
Acres/Valley Mile	0.1	3.9	1.6	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.05	0.00%	0.00	0.00	0.01	0.03

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

Reach AII

County	Stillwater	Upstream River Mile	430.3
Classification	PCB: Partially confined braided	Downstream River Mile	423.3
General Location	I-90 bridge crossing	Length	7.00 mi (11.27 km)
General Comments	High right bank terrace with bedrock toe: I-90 bridge crossing		

Narrative Summary

Reach A11 is seven miles long and is located at the I-90 Bridge crossing below Reed Point. The reach is a Partially Confined Braided (PCB) reach type, indicating valley wall influences and relatively extensive open gravel bars and small islands. The valley is relatively narrow in this reach, and the river swings from the north valley wall upstream of the bridge to the south valley wall downstream. The valley wall consists of erosion-resistant sandstone cliffs of the Hell Creek Formation. The river has been extremely dynamic in this reach, and over a thousand feet of bank armor has been flanked since 2001. Since 1950, numerous areas have experienced over 500 feet of bank movement.

Similar to other reaches in Region A, the overall footprint of the river channel has increased in size since 1950. In 1950, the channel footprint was 451 acres but by 2001 it had expanded to 567 acres.

About 13 percent of the banks in Reach A11 are armored, with the majority of that armor being rock riprap. Between 2001 and 2011, there was a loss of about 1,200 feet of armor in the reach. Rock riprap was eroded out from the left (north) bank at RM 424.5, where the river flanked about a thousand feet of rock between 2005 and 2011. Since that time, the river has migrated at least 250 feet behind the armor. At least one flow deflector was lost on the same bankline just upstream. About 320 feet of the lost bank protection was flow deflectors.

Over a mile of side channels have been physically blocked in Reach A11 since 1950. The loss has occurred at RM 424, where a road/field dike crosses the old side channel at two locations.

Land use in Reach A11 is predominantly agricultural, although there several hundred acres of transportation-related use associated with I-90 and the rail line. All of the irrigated land is in under flood irrigation. A total of 210 acres of developed land are in the Channel Migration Zone. Almost all of that ground is in flood irrigation, and about 50 acres of the transportation corridor are within the CMZ. About 17 percent of the CMZ is isolated by physical features.

There is one diversion structure on the right bank at RM 428.3 that feeds the Merrill Columbus Ditch. The diversion is located just downstream of the railroad and county road bridges, which are about 2,100 feet upstream of the I-90 Bridge.

There is one dump site mapped in Reach A11 at RM 425.8.

Riparian mapping in Reach A11 shows a reduction in total acreage of closed timber from 400 acres in 1950 to 230 acres in 2001. Similarly, the extent of mapped shrubs dropped from 170 acres to 82 acres for the same timeframe.

Reach A11 was sampled as part of the avian study. The average species richness in Reach A11 was 9.6, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for all sites evaluated is 8. One bird Species of Concern (SOC), the Bobolink, was identified in the reach. One bird species identified by the Montana Natural Heritage Program as a Potential Species of Concern (PSOC), the Ovenbird, was also found.

Since 1950, Reach A11 has lost most of its forest that would be considered at low risk of cowbird infestation due to its separation from agricultural infrastructure. In 1950, about 35 acres of forest per valley mile were identified as low risk and by 2001 that forest area had been reduced to 13 acres due to development within the reach.

Reach A11 marks a distinct jump in the extent of Russian olive present in the river corridor. The reach has approximately 2.3 acres of mapped Russian olive, which is most concentrated in the vicinity of the bridges.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 14,200 cfs to 13,400 cfs, a drop of about 6 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,070 cfs to 1,690 cfs with human development, a reduction of 18 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A11 include:

•Accelerated erosion behind 1,000 feet of flanked rock riprap.

•Blockage of several thousand feet of side channel

•At least one flanked barb

•Expansion of Russian olive infestation relative to upstream.

•Reduction in both closed timber and shrub riparian extent.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A11 include: •Floodplain restoration/reconnection behind rail line at RM 430

•Side channel restoration at RM 424

•Bank armor removal at RM 424.5

- •CMA management due to extent of CMZ restriction (17 percent)
- •Russian olive removal-this is the most upstream reach of major Russian olive colonization
- •Solid waste removal from right (south) bank area at RM 425.8
- •Irrigation diversion structure management at Merrill Columbus Ditch Diversion at RM 428.3

Reach AII

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	6214500	6192500
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun 1	1	30,100	10-25	5 yr		Period		1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25	5 yr		Disc		50.0	70.0
	1974	Jun 1	17	36,300	50-10	0 yr		Distance	lo (miles)	58.9	76.3
	1996	Jun 1	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	14,200	27,500	34,400	38,600	47,200	50,600	58,500	2,070	1,760
	Regul	ated	13,400	26,700	33,600	37,800	46,600	50,100	58,200	1,690	1,680
	% Cha	ange	-5.63%	-2.91%	-2.33%	-2.07%	-1.27%	-0.99%	-0.51%	-18.36%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	15-Jun-51	B/W	1:28,400	6192500	13700
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	8/28/97 - 9/10/96	B/W		6192500	4430
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2004	Merrick	14-May-04	Color	1:15,840	6192500	4520
2005	NAIP	07/27/2005	color	1-meter pixels	6192500	3540
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	USCOE	October 2012	color	1-ft pixel	6192500	2530
2011	NAIP	8/22/2011	Color	1-meter pixels	6192500	5480
2011	NAIP	7/24/2011	Color	1-meter pixels	6192500	13100
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	10,657	14.5%	9,701	13.2%	-956
	Flow Deflectors	104	0.1%	286	0.4%	183
	Between Flow Deflectors	504	0.7%	0	0.0%	-504
	Feature Type Totals	11,264	15.3%	9,987	13.6%	-1,277
Floodplain	Control					
	Transportation Encroachment	14,288	19.4%	14,288	19.4%	0
	Floodplain Dike/Levee	2,719	3.7%	2,719	3.7%	0
	Feature Type Totals	17,007	23.1%	17,007	23.1%	0
	Reach Totals	28,271	38.4%	26,994	36.7%	-1,277

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FD	s	574	0	0	0	0	0	0	0
Rock RipRap		0	1,794	1,794	98	1,155	5,845	0	0
	Totals	574	1,794	1,794	98	1,155	5,845	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

		Sum of Feature Length (ff								
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005			
Irrigation										
	In Channel Diversion	0	0	177	177	177	177			
	Floodplain Dike/Levee	10,420	10,420	10,420	10,420	10,420	10,420			
	Totals	10,420	10,420	10,597	10,597	10,597	10,597			
Other Off Channe	I									
	Floodplain Dike/Levee	0	1,744	1,744	1,744	1,744	1,744			
	Floodplain Dike/Levee	671	671	671	671	671	671			
	Totals	671	2,415	2,415	2,415	2,415	2,415			
Stream Stabilizati	on									
	Rock RipRap	3,808	10,376	10,937	11,983	12,206	12,206			
	Flow Deflector	0	262	283	283	283	283			
	Totals	3,808	10,638	11,219	12,266	12,489	12,489			
Transportation En	croachment									
	Railroad	23,386	23,386	23,386	23,386	23,386	23,386			
Thursday, March 3,	2016									

Reach AII

Interstate	0	5,091	5,091	5,091	5,091	5,091
County Road	10,422	10,422	10,422	10,422	10,422	10,422
Bridge Approach	3,345	5,638	5,638	5,638	5,638	5,638
Totals	37,153	44,536	44,536	44,536	44,536	44,536

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)			Bankfull		
(,	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Braiding Parameter		% Change in Braiding
1950	36,794	31,217	1.85	1950 to 1976:	-10.45%
1976	36,443	23,878	1.66	1976 to 1995:	-2.84%
1995	37,100	22,564	1.61	1995 to 2001:	1.16%
2001	36,818	23,078	1.63	1950 to 2001:	-11.99%
Change 1950 - 2001	24	-8,139	-0.22		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	6,747		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	39	5.4%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	678		752		
Total Floodplain Area (Ac)	717		802		
Total Isolated (Ac)	39	5.4%	50	21.3%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	1	0	0	1

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 342	Erosion Buffer (ft) 684	Tot CM Acre 1 4	tal IZ age 11	Restricted CMZ Acreage 256	% Restrict Migration Area 18%	ed To n AH Acre	tal IZ age	Restricted AHZ Acreage	% Restricted Avulsion Area		
0044 D.			·,-		200	Note that the	that these data reflect the observed conditions i					
2011 Res	stricted wigr	ation Al	rea Sun	nmar	У	2011 aerial n	hotography	(NAIP f	or Park and	Sweet Grass		
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	Counties, CC	DE for the re	est of the	river).			
Road/Railro	oad Prism											
	Railroad		34	2.	.3%							
	Interstate		8	0.	.5%							
	Canal		8	0.	.6%							
RipRap												
	Railroad		81	5.	.4%							
	Other Infrastr	ucture	66	4.	4%							
	Interstate		15	1.	.0%							
	Canal		24	1.	.7%							
		Totals	236	15	5.9%							
Land Us	es within the	e CMZ (A	Acres)	F Irri	flood igation 153.0	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urb ExU 9	oan/ T rban po .0	Frans- ortation 48.7		

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	35	34	35	35	1.0%	1.0%	1.0%	1.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	14	25	47	73	0.4%	0.7%	1.3%	2.0%
	Totals	49	59	82	108	1.4%	1.7%	2.3%	3.0%
Agricultural Lan	d								
	Non-Irrigated	2,521	2,099	2,003	1,826	70.4%	58.6%	55.9%	51.0%
	Irrigated	351	515	468	531	9.8%	14.4%	13.1%	14.8%
	Totals	2,872	2,614	2,470	2,357	80.2%	73.0%	69.0%	65.8%
Channel									
	Channel	564	615	681	718	15.8%	17.2%	19.0%	20.1%
	Totals	564	615	681	718	15.8%	17.2%	19.0%	20.1%
ExUrban									
	ExUrban Other	0	3	7	7	0.0%	0.1%	0.2%	0.2%
	ExUrban Undeveloped	0	0	10	18	0.0%	0.0%	0.3%	0.5%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	14	45	0.0%	0.0%	0.4%	1.3%
	Totals	0	3	31	71	0.0%	0.1%	0.9%	2.0%
Transportation									
	Public Road	56	41	69	79	1.6%	1.1%	1.9%	2.2%
	Interstate	0	208	208	208	0.0%	5.8%	5.8%	5.8%
	Railroad	39	39	39	39	1.1%	1.1%	1.1%	1.1%
	Totals	94	288	316	327	2.6%	8.1%	8.8%	9.1%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	meline - Tiers 3	and 4								Char	nge Betv	ween Y	ears
			Aci	res		%	of Rea	ch Area	a	(% 0	f Agricu	Itural L	and)
Feature ClassFeature Type195			1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	'01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	351	515	468	531	12.2%	19.7%	18.9%	22.5%	7.5%	-0.7%	3.6%	10.3%
	Totals	351	515	468	531	12.2%	19.7%	18.9%	22.5%	7.5%	-0.7%	3.6%	10.3%

Reach AII

Multi-Use	2,024	1,831	1,835	1,637	70.5%	70.1%	74.3%	69.5%	-0.4%	4.2%	-4.8%	-1.0%
Hay/Pasture	497	268	168	189	17.3%	10.3%	6.8%	8.0%	-7.1%	-3.5%	1.2%	-9.3%
Totals	2,521	2,099	2,003	1,826	87.8%	80.3%	81.1%	77.5%	-7.5%	0.7%	-3.6%	-10.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	9	Shrub (Acres	s)	Clos	ed Timber (A	(cres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.5	0.0	0.9	0.4	1.1	0.1	2.4	3.1	10.8	
Max	44.8	29.4	25.3	171.9	58.2	100.1	15.5	34.2	39.4	
Average	14.2	6.5	5.4	22.0	13.0	12.7	8.2	13.9	23.2	
Sum	170.4	137.5	81.6	396.8	194.3	229.1	65.3	97.3	93.0	
Riparian Turnover					Riparian t	to Channel (ad	cres)	162.2		
from ch	nannel to ripar	arian areas to c arian betweer	the 1950's		Channel to Riparian (acres) 97.0					
and 2001 data set.					iparian Encre	oachment (ac	cres)	-65.2		
Riparian Recruitment 1950s Channel Mapped as 2011 Ripa						arian (Ac)	0.0			
Creation of riparian areas 1950s Floodp				lain Mapped	as 2011 Cha	innel (Ac)	9.6			
between 1950s and 2001. Total				I Recruitment (1950s to 2011)(Ac) 9.6						

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	20.2	28.3	30.2	0.0	78.7
Acres/Valley Mile	3.2	4.6	4.9	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	2.28	0.14%	0.03	0.42	0.18	0.13

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	✓ ✓ Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	🗹 🗹 Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
	Black-billed Magpie	🖌 🖌 Downy Woodpecker	Osprey	✓ ✓ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	V Ovenbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	🖌 🖌 Eastern Kingbird	Plumbeous Vireo	Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	✓ ✓ Western Meadowlark
	Blue Jay	🖌 🖌 European Starling	✓ ✓ Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	☐ ✓ Field Sparrow	Red Crossbill	Vhite-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	Ring-necked Pheasant	☐ ✔ White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	U Wild Turkey
	Brown Creeper	✓ ✓ Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	✓ ✓ Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	✓ ✓ Yellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	Vellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Stillwater
Classification	PCB: Partially confined braided
General Location	To Stillwater confluence
General Comments	To Stillwater confluence

Upstream River Mile	423.3
Downstream River Mile	417.3
Length	6.00 mi (9.66 km)

Narrative Summary

Reach A12 is seven miles long and is located just upstream of the mouth of the Stillwater River. The reach is a Partially Confined Braided (PCB) reach type, indicating valley wall influences and relatively extensive open gravel bars and small islands. The valley wall consists of erosion-resistant sandstone cliffs of the Hell Creek Formation. The river is confined by the valley wall to the south and by transportation infrastructure to the north. The river has been extremely dynamic in this reach; in some places the banks have migrated over a thousand feet since 1950.

Similar to other reaches in Region A, the overall footprint of the river channel has increased in size since 1950. In 1950, the channel footprint was 434 acres but by 2001 it had expanded to 570 acres.

About 13 percent of the banks in Reach A12 are armored, with the majority of that armor being rock riprap. Between 2001 and 2011, there was a gain of about 1,182 feet of rock riprap and 560 feet of flow deflectors in the reach. At least one flow deflector has been flanked on the right bank just upstream of the Stillwater confluence at RM 418.5. About two miles of transportation encroachments were mapped in Reach A12.

On side channel that is almost four thousand feet long at RM 421 was physically blocked in Reach A12 since 1950. More recently, however, the river has migrated back into the side channel such that the majority of it is now active.

Land use in Reach A12 is predominantly agricultural, although there are several hundred acres of exurban development in the reach. Almost a thousand acres of land is under flood irrigation. A total of 293 acres of developed land are in the Channel Migration Zone. Almost all of that ground is in flood irrigation, although 14 acres are in exurban development and 16 acres are in transportation. About 6 percent of the CMZ is isolated by physical features.

Riparian mapping in Reach A12 shows a reduction in total acreage of open timber from 43 acres in 1950 to 23 acres in 2001.

Reach A12 was sampled as part of the avian study. The average species richness in Reach A12 was 7.6, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for all sites evaluated is 8. One bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC), the Dickscissel, was identified in the reach.

Since 1950, Reach A12 has lost all of its forest that would be considered at low risk of cowbird infestation due to its separation from agricultural infrastructure. In 1950, about 4 acres of forest per valley mile were identified as low risk and by 2001 that forest area had been reduced to zero.

Reach A12 has approximately 3 acres of mapped Russian olive, which is most concentrated on the north side of the river on the banks of the main channel, side channels, and sloughs.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 14,400 cfs to 13,600 cfs, a drop of about 6 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,080 cfs to 1,690 cfs with human development, a reduction of 19 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A12 include: •Recapture of previously blocked side channel •Flanking of barbs

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A12 include: •Bank armor removal at RM 418.5 •Russian olive removal (3 acres)

Reach AI2

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood Hi	story								Downstream	Upstream
Year	Dat	e Fl	ow on Date	Return Ir	Return Interval			Gage No	Gage 6214500	Gage 6192500
1971	Jun 2	23	29,200	10-25	10-25 yr			Location	Billings	Livingston
1902	Jun '	11	30,100	10-25	i yr		Period		1929-2015	1929-2015
1943	Jun 2	20	30,600	10-25	i yr				50.0	1020 2010
1974	Jun '	17	36,300	50-100) yr		Distance To (miles)		52.9	83.3
1996	Jun '	10	37,100	50-100) yr					
1997	Jun	6	38,000	50-100) yr					
2011	Jun (30	40,600	>100	-yr					
Dischar	je								7Q10	95% Sum.
		1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregu	lated	14,400	27,900	34,900	39,100	47,800	51,300	59,200	2,080	1,760
Regu	lated	13,600	27,000	34,100	38,300	47,200	50,800	58,900	1,690	1,680
% Cł	ange	-5.56%	-3.23%	-2.29%	-2.05%	-1.26%	-0.97%	-0.51%	-18.75%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	22-May-51	B/W	1:28,400	6192500	10600
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	9/2/96 - 9/10/96	B/W		6192500	2980
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2004	Merrick	14-May-04	Color	1:15,840	6192500	4520
2005	NAIP	07/27/2005	color	1-meter pixels	6192500	3540
2005	NAIP	07/15/2005	color	1-meter pixels	6192500	5000
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	USCOE	October 2012	color	1-ft pixel	6192500	2530
2011	NAIP	7/24/2011	Color	1-meter pixels	6192500	13100
2013	NAIP	06/28/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	6,133	9.5%	7,316	11.4%	1,182
	Flow Deflectors	125	0.2%	262	0.4%	137
	Between Flow Deflectors	173	0.3%	593	0.9%	419
	Feature Type Totals	6,431	10.0%	8,170	12.7%	1,739
Floodplain	Control					
	Transportation Encroachment	10,430	16.2%	10,430	16.2%	0
	Feature Type Totals	10,430	16.2%	10,430	16.2%	0
	Reach Totals	16,862	26.2%	18,601	28.9%	1,739

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FD	Ds	0	177	0	0	0	0	0	0
Rock RipRap		830	0	0	0	0	5,304	0	0
	Totals	830	177	0	0	0	5,304	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

		Sum of Feature Length (ft)						
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005	
Stream Stabilizati	on							
	Rock RipRap	5,040	5,865	7,945	8,103	8,103	8,103	
	Flow Deflector	0	1,697	1,697	1,734	2,093	2,093	
	Totals	5,040	7,561	9,642	9,837	10,196	10,196	
Transportation Er	ncroachment							
	Railroad	8,100	8,100	8,100	8,100	8,100	8,100	
	County Road	2,487	2,487	2,487	2,487	2,487	2,487	
	Totals	10,587	10,587	10,587	10,587	10,587	10,587	

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan.	Anab. Ch.	Bankfull Braiding Baramator		% Change in
	Length (ft)	Length (ft)	Farameter		Braiding
1950	31,599	26,114	1.83	1950 to 1976:	-0.65%
1976	31,053	25,294	1.81	1976 to 1995:	-14.17%
1995	31,950	17,810	1.56	1995 to 2001:	14.15%
2001	32,166	25,017	1.78	1950 to 2001:	-2.66%
Change 1950 - 2001	566	-1,096	-0.05		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	3,771		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	487		656		
Total Floodplain Area (Ac)	487		670		
Total Isolated (Ac)	0	0.0%	14	14.0%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	19	0	0	19

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal Restri MZ CN eage Acre	icted MZ age	% Restrict Migration Area	ed To n A Acr	otal HZ eage	Restricted AHZ Acreage	% Restricted Avulsion Area
	382	763	1,4	17 9	3	7%	1	1	0	0%
2011 Res	stricted Mig	ration A	rea Sun	nmary	Ν	lote that the	se data re	flect the o	observed con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	2	Counties, COE for the rest of the river).				
RipRap										
	Railroad		61	4.2%						
	Irrigated		16	1.1%						
Flow Deflee	ctors									
	Irrigated		15	1.0%						
		Totals	91	6.4%						
Land Us	es within th	ie CMZ (Acres)	Flood Irrigation 263.8	S Ir	prinkler rigation 0.0	Pivot Irrigation 0.0	Url n ExU 1	ban/ ⁻ Irban po 3.5	Trans- ortation 15.5

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	60	71	74	79	1.5%	1.8%	1.8%	2.0%	
	Totals	61	71	74	79	1.5%	1.8%	1.8%	2.0%	
Agricultural Lan	d									
	Non-Irrigated	2,130	2,158	2,039	1,991	53.1%	53.8%	50.8%	49.6%	
	Irrigated	1,201	1,087	1,035	999	29.9%	27.1%	25.8%	24.9%	
	Totals	3,331	3,245	3,073	2,990	83.0%	80.9%	76.6%	74.5%	
Channel										
	Channel	543	575	668	703	13.5%	14.3%	16.6%	17.5%	
	Totals	543	575	668	703	13.5%	14.3%	16.6%	17.5%	
ExUrban										
	ExUrban Other	6	9	32	40	0.2%	0.2%	0.8%	1.0%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	16	68	103	0.0%	0.4%	1.7%	2.6%	
	Totals	6	25	100	143	0.2%	0.6%	2.5%	3.6%	
Transportation										
	Public Road	39	39	39	39	1.0%	1.0%	1.0%	1.0%	
	Interstate	0	26	26	26	0.0%	0.6%	0.6%	0.6%	
	Railroad	31	31	31	31	0.8%	0.8%	0.8%	0.8%	
	Totals	70	96	96	96	1.7%	2.4%	2.4%	2.4%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	neline - Tiers 3 ar	nd 4								Char	ige Betv	veen Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	1,201	1,087	1,035	980	36.1%	33.5%	33.7%	33.0%	-2.6%	0.2%	-0.7%	-3.1%
	Totals	1,201	1,087	1,035	981	36.1%	33.5%	33.7%	33.0%	-2.6%	0.2%	-0.7%	-3.1%

Reach AI2

Non-	Irrigated

Multi-Use	1,774	1,858	1,903	1,821	53.3%	57.3%	61.9%	61.3%	4.0%	4.7%	-0.7%	8.0%
Hay/Pasture	356	300	136	170	10.7%	9.3%	4.4%	5.7%	-1.4%	-4.8%	1.3%	-5.0%
Totals	2,130	2,158	2,039	1,991	63.9%	66.5%	66.3%	67.0%	2.6%	-0.2%	0.7%	3.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (A			s)	Clos	ed Timber (A	Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.6	0.4	0.6	2.1	0.2	0.9	3.0	5.5	3.1
Max	11.1	18.1	21.3	55.6	58.1	58.9	15.6	10.5	7.9
Average	4.7	4.1	4.9	12.7	10.2	9.7	8.6	7.2	5.8
Sum	89.9	86.6	63.5	202.5	203.3	223.8	42.8	21.6	23.0
Riparian	Turnove	er			Riparian 1	to Channel (a	cres)	117.2	
from ch	rsion of ripar nannel to rip	rian areas to arian betwee	channel, or n the 1950's		Channel to Riparian (acres) 104.4				
and 20	01 data set.			Riparian Encroachment (acres) -12.7					
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	0.0		
Creation of	f riparian are	eas	1950s Floodp	lain Mapped	as 2011 Cha	nnel (Ac)	0.1		
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	0.1		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	5.7	55.5	69.1	0.0	130.4
Acres/Valley Mile	1.0	9.9	12.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	2.89	0.23%	1.24	0.02	1.30	0.55

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	☐ ✓ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	Ovenbird	V Warbling Vireo
	Black-and-white Warbler	Eastern Kingbird	Plumbeous Vireo	Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	🗌 🗹 Western Meadowlark
	Blue Jay	🗌 🗹 European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	Field Sparrow	Red Crossbill	White-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	Ring-necked Pheasant	☐ ✔ White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	☐ ✔ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Vellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	✓ ✓ Yellow Warbler
CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

Reach A13

Stillwater	
on PCA: Partially confined anabranching	
cation Columbus	
mments Example of an impacted valley bottom	n crossover area
mments Example of an impacted valley bottom	n crossover

Upstream River Mile	417.3
Downstream River Mile	413.7
Length	3.60 mi (5.79 km)

Narrative Summary

Reach A13 is 3.6 miles long and is located at Columbus. The reach is a Partially Confined Anabranching (PCA) reach type, indicating some valley wall influence and relatively extensive forested islands. Reach A13 marks an abrupt widening in the river valley as the erosion resistant sandstone cliffs of the Hell Creek Formation transition downstream into the more erodible Bearpaw Shale. The reach is urbanized with most development concentrated on the north side of the river. Migration rates since 1950 have been moderate in this reach largely due to extensive bank armoring.

Similar to other reaches in Region A, the overall footprint of the river channel has increased in size since 1950. In 1950, the channel footprint was 258 acres but by 2001 it had expanded to 327 acres. This was accompanied by a net loss of about 40 acres of riparian area to channel during that same timeframe.

About 28 percent of the banks in Reach A13 are armored, with the majority of that armor being rock riprap. Reach A13 has almost 3,000 feet of concrete riprap, reflecting an abrupt increase in the use of concrete as armor relative to upstream. The concrete is on the north bank of the river just upstream of the Columbus Bridge. Between 2001 and 2011, there was a gain of about 2,800 feet of rock riprap in the reach; most of this was on the north side of the river adjacent to town.

Land use in Reach A13 is predominantly agricultural, although there are over 600 acres of exurban/exurban development within the mapping footprint. Approximately one half of the agricultural land is in flood irrigation (600 acres). No other types of irrigation were mapped in the reach. A total of 133 acres of developed land are in the Channel Migration Zone, and about half of that is in urban/exurban development. About 13 percent of the CMZ is isolated by physical features, most of which is armor protecting the railroad in Columbus.

About 18 percent of the historic 100-year floodplain has become isolated from the river due primarily to the downstream shadow caused by the Columbus Bridge embankment on the north side of the river.

There is one pipeline crossing in Reach A13, a natural gas crossing called the Lake Basin-Absarokee Line owned by NW energy. The pipeline crosses the river at RM 417.

One ice jam has been recorded in this reach. On February 6, 1996, an ice jam break-up was reported to cause local flooding.

There are corrals that are part of an animal handling facility in the reach, north of the river at RM 414.

Riparian mapping in Reach A13 shows a reduction of about 50 acres of closed timber in the reach since 1950.

Reach A13 has approximately 5 acres of mapped Russian olive, which is spread out both within the riparian corridor and through the town of Columbus. There are also over 100 acres of mapped wetland in the each, most of which is emergent marshes and wet meadows.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 14,400 cfs to 13,600 cfs, a drop of about 6 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,270 cfs to 1,760 cfs with human development, a reduction of 22 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A13 include: •A jump in the use of concrete armor relative to upstream •Armoring associated with urbanization •Urban/Exurban development in CMZ

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A13 include:

•CMZ management at Columbus due to high level of encroachment

•Nutrient management at corrals at RM 414

•Bank Stabilization Recommended Practices due to extent of armoring in reach (28 percent)

•Russian olive removal (5 acres)

•Pipeline management (natural gas) for main river crossing at RM 417

•Wetland restoration/management due to extent of mapped wetland (110 acres)

Reach AI3

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Flo	ow on Date	Return Ir	nterval			Gage No	6214500	6192500
	1971	Jun 2	3	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun 1	1	30,100	10-25 yr			Perior	l of Record	1929-2015	1929-2015
	1943	Jun 2	:0	30,600	10-25	5 yr		Distance		1020 2010	1020 2010
	1974	Jun 1	7	36,300	50-10	0 yr		Distance	e To (miles)	49.3	89.3
	1996	Jun 1	0	37,100	50-10	0 yr					
	1997	Jun 6	6	38,000	50-10	0 yr					
	2011	Jun 3	0	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	16,200	31,000	38,600	43,300	52,700	56,600	65,200	2,270	1,760
	Regul	ated	15,100	29,800	37,500	42,300	51,900	55,900	64,800	1,760	1,680
	% Cha	ange	-6.79%	-3.87%	-2.85%	-2.31%	-1.52%	-1.24%	-0.61%	-22.47%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	22-May-51	B/W	1:28,400	6192500	10600
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	9/10/96 - 8/28/97	B/W		6192500	4430
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2004	Merrick	14-May-04	Color	1:15,840	6192500	4520
2005	NAIP	07/15/2005	color	1-meter pixels	6192500	5000
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	USCOE	October 2012	color	1-ft pixel	6192500	2530
2011	NAIP	7/24/2011	Color	1-meter pixels	6192500	13100
2013	NAIP	06/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization	0 ()		0 ()		0
	Rock RipRap	5,092	13.4%	7,875	20.7%	2,783
	Concrete RipRap	2,837	7.5%	2,837	7.5%	0
	Feature Type Totals	7,929	20.9%	10,712	28.2%	2,783
	Reach Totals	7,929	20.9%	10,712	28.2%	2,783

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap		0	0	0	1,571	0	0	0	1,269
Rock RipRap		0	285	0	1,998	0	1,476	0	544
	Totals	0	285	0	3,569	0	1,476	0	1,814

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

		Sum of Feature Length (ft)					
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005
Other							
	Floodplain Dike/Levee	0	2,395	4,675	4,675	4,675	4,675
	Totals	0	2,395	4,675	4,675	4,675	4,675
Other Off Channe	91						
	Floodplain Dike/Levee	0	666	666	666	666	666
	Totals	0	666	666	666	666	666
Stream Stabilizati	on						
	Rock RipRap	3,406	4,993	6,634	8,187	8,187	8,187
	Concrete RipRap	0	0	2,822	2,822	2,822	2,822
	Totals	3,406	4,993	9,457	11,010	11,010	11,010
Transportation Er	ncroachment						
	Railroad	6,127	6,127	6,127	6,127	6,127	6,127
	County Road	7,931	5,756	5,756	5,756	5,756	5,756
	Bridge Approach	2,975	1,749	1,749	1,749	1,749	1,749
	Totals	17,032	13,632	13,632	13,632	13,632	13,632

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

2/6/1996

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	19,288	17,765	1.92	1950 to 1976:	4.32%
1976	18,865	18,941	2.00	1976 to 1995:	3.73%
1995	18,891	20,378	2.08	1995 to 2001:	-3.21%
2001	18,980	19,208	2.01	1950 to 2001:	4.74%
Change 1950 - 2001	-308	1,443	0.09		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-`	/ear
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%		
Agriculture (generally relates to field boundaries)	0	0.0%		
Agriculture (isloated by canal or large ditch)	0	0.0%		
Levee/Riprap (protecting agricultural lands)	0	0.0%		
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%		
Railroad	0	0.0%		
Abandoned Railroad	0	0.0%		
Transportation (Interstate and other roads)	72	18.3%		
Total Not Isolated (Ac)	321		403	
Total Floodplain Area (Ac)	393		414	
Total Isolated (Ac)	72	18.3%	11	12.7%

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	1	0	0	1

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 172	Erosion Buffer (ft) 343	To CM Acre 65	tal //Z eage i4	Restricted CMZ Acreage 108	% Restric Migratio Area 17%	ted To n Al Acre	tal 1Z eage)6	Restricted AHZ Acreage 0	% Restricted Avulsion Area 0%
2011 Res	stricted Mig	ration A	ea Sun	nmar	'V	Note that the	ese data ref	lect the c	observed con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	2011 aerial (Counties, Co	photography OE for the r	/ (NAIP f est of the	for Park and S e river).	Sweet Grass
Road/Railro	ad Prism									
	Urban Other		19	2.	5%					
RipRap										
	Urban Comm	ercial	20	2.	7%					
	Railroad		44	5.	8%					
	Non-Irrigated		7	0.	9%					
	Irrigated		10	1.	3%					
		Totals	101	13	.3%					
Land Use	es within the	e CMZ (A	Acres)	F Irri	lood gation 56.1	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Url ExU 6	ban/ 1 Irban po 1.9	Trans- ortation 14.6

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Acı	res		%	of Rea	ch Area	a I
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	44	92	82	79	1.8%	3.7%	3.3%	3.2%
	Totals	44	92	82	79	1.8%	3.7%	3.3%	3.2%
Agricultural Lan	d								
	Non-Irrigated	1,092	1,117	763	733	43.7%	44.7%	30.5%	29.3%
	Irrigated	686	520	581	599	27.5%	20.8%	23.2%	24.0%
	Totals	1,778	1,637	1,344	1,332	71.2%	65.5%	53.8%	53.3%
Channel									
	Channel	325	353	380	390	13.0%	14.1%	15.2%	15.6%
	Totals	325	353	380	390	13.0%	14.1%	15.2%	15.6%
ExUrban									
	ExUrban Other	1	19	19	128	0.1%	0.8%	0.8%	5.1%
	ExUrban Undeveloped	12	17	41	14	0.5%	0.7%	1.6%	0.6%
	ExUrban Industrial	0	0	9	58	0.0%	0.0%	0.4%	2.3%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	17	42	46	0.0%	0.7%	1.7%	1.8%
	Totals	13	53	110	246	0.5%	2.1%	4.4%	9.8%
Transportation									
	Public Road	50	48	48	48	2.0%	1.9%	1.9%	1.9%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	18	18	18	18	0.7%	0.7%	0.7%	0.7%
	Totals	68	66	66	67	2.7%	2.6%	2.6%	2.7%
Urban									
	Urban Other	10	9	107	9	0.4%	0.4%	4.3%	0.4%
	Urban Residential	103	113	138	153	4.1%	4.5%	5.5%	6.1%
	Urban Commercial	59	58	57	57	2.4%	2.3%	2.3%	2.3%
	Urban Undeveloped	9	4	16	4	0.4%	0.1%	0.6%	0.1%
	Urban Industrial	89	114	198	161	3.6%	4.6%	7.9%	6.5%
	Totals	271	298	516	385	10.8%	11.9%	20.7%	15.4%

Land Use Tir	meline - Tiers 3 a	nd 4								Char	ige Beti	ween Y	ears
			Aci	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	41	41	0	0.0%	2.5%	3.0%	0.0%	2.5%	0.5%	-3.0%	0.0%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	686	479	540	599	38.6%	29.3%	40.2%	45.0%	-9.3%	10.9%	4.8%	6.4%
	Totals	686	520	581	599	38.6%	31.8%	43.2%	45.0%	-6.8%	11.4%	1.8%	6.4%

Reach AI3

Non-Irrigated													
	Multi-Use	804	710	621	578	45.2%	43.3%	46.2%	43.4%	-1.9%	2.9%	-2.9%	-1.9%
	Hay/Pasture	288	407	142	155	16.2%	24.9%	10.6%	11.7%	8.7%	-14.3%	1.1%	-4.5%
	Totals	1,092	1,117	763	733	61.4%	68.2%	56.8%	55.0%	6.8%	-11.4%	-1.8%	-6.4%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	;	Shrub (Acres	5)	Clos	ed Timber (A	(cres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.7	1.6	2.6	0.0	2.6	5.9	2.5	6.2	4.7	
Max	22.3	9.7	15.1	85.9	100.0	102.3	20.6	34.0	4.7	
Average	14.4	5.6	8.9	24.2	28.4	31.2	10.3	20.1	4.7	
Sum	71.8	22.5	44.6	290.9	256.0	249.8	31.0	40.2	4.7	
Riparian	Turnove	r			Riparian 1	o Channel (a	cres)	83.2		

Conversion of riparian areas to channel, or from channel to riparian between the 1950's and 2001 data set.

Riparian Encroachment (acres)	-38.6
Channel to Riparian (acres)	44.6
Riparian to Channel (acres)	83.2

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	18.1	75.8	16.2	0.0	110.1
Acres/Valley Mile	5.7	23.8	5.1	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	4.96	1.09%	8.78	0.30	0.90	0.41

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Stillwater
Classification	PCA: Partially confined anabranching
General Location	Below Columbus
General Comments	Valley bottom crossover

Upstream River Mile	413.7
Downstream River Mile	405.9
Length	7.80 mi (12.55 km)

Narrative Summary

Reach A14 is located in Stillwater County, just downstream of Columbus. The reach is a Partially Confined Anabranching (PCA) reach type, reflecting some valley while influence coupled with relatively extensive forested islands. The reach is 7.8 miles long, extending from RM 405.9 to RM 413.7. The partial geologic confinement within Reach A14 is created by interbedded sandstone and shale of the Cretaceous-age Judith River Formation that intermittently forms the active channel margin on either its right or left bank. The Parkman Sandstone, a massive cliff-forming unit within the Judith River Formation, forms cliffs against the channel that are commonly over 150 feet high.

Similar to other reaches in Region A, the overall footprint of the river channel has increased in size since 1950. In 1950, the channel footprint was 637 acres but by 2001 it had expanded to 728 acres. This was accompanied by a net loss of about 32 acres of riparian area to channel during that same timeframe.

Approximately 16 percent of the bankline in Reach A14 is armored, and the armor is almost entirely rock riprap, with a very short section of flow deflectors. The armor is located almost entirely on the northern corridor margin, where transportation infrastructure (mainly railroad) follows the edge of the valley.

Over three miles of side channels have been blocked in Reach A14, with about half of the blockages occurring prior to 1950 and half after. The losses occurred on two distinct channels, one at RM 410 on the south side of the corridor and one at RM 407 on the north side.

Land use in Reach A14 is almost entirely agricultural, with almost 260 acres mapped as agricultural infrastructure. This in part reflects corrals that are part of an animal handling facility on the north side of the river at RM 409. There are 1,300 acres under flood irrigation in the reach, and 144 acres in pivot. A total of 227 acres of developed land are in the Channel Migration Zone, most of that is in flood irrigation (215 acres). Less than 2 percent of the CMZ is isolated by physical features, all of which is behind the armored rail line on the north side of the river.

There is one major diversion in Reach A14; Cove Ditch diverts water from the north bank at RM 410.

Reach A14 was sampled as part of the avian study. The average species richness in Reach A14 was 7.9, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for all sites evaluated is 8. Riparian mapping in Reach A14 shows a reduction of about 100 acres of closed timber in the reach since 1950. Since 1950, Reach A14 has lost most of its forest that would be considered at low risk of cowbird infestation due to its separation from agricultural infrastructure. In 1950, about 10.5 acres of forest per valley mile were identified as low risk and by 2001 that forest area had been reduced to 0.5 acres per valley mile.

Reach A14 has approximately 2.5 acres of mapped Russian olive, which is concentrated along ditches and low riparian/wetland areas north of the river. There are also over 250 acres of mapped wetland in the each, most of which is emergent marshes and wet meadows. About 27 acres of emergent wetland have been isolated from the river corridor by the rail line at RM 413.5.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 16,200 cfs to 15,100 cfs, a drop of about 7 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,280 cfs to 1,770 cfs with human development, a reduction of 22 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A14 include:

·Isolation of large wetland area by rail line

•Over 3 miles of side channel blockages

•Large corrals that are part of an animal handling facility within 1,000 feet of the riverbank

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A14 include: •Side channel restoration at RM 410 and RM 407

•Russian olive removal (2.5 acres)

•Nutrient management at corrals that are part of an animal handling facility at RM 409

•Irrigation diversion structure management at Cove Ditch Diversion

•Wetland management/restoration at large complex isolated from river by rail line at RM 413.5

PHYSICAL FEATURES MAP (2011)

Reach AI4

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood H	istory	1							Downstream	Upstream
Year	Da	te F	low on Date	Return Ir	nterval		Gage No		Gage 6214500	Gage 6192500
1971	Jun	23	29,200	10-25	5 yr			Location	Billings	Livingston
1902	Jun	11	30,100	10-25	5 yr		Period	of Record	1929-2015	1929-2015
1943	Jun	20	30,600	10-25	5 yr		T eniou		1020 2010	1020 2010
1974	Jun	17	36,300	50-100	0 yr		Distance	lo (miles)	41.5	92.9
1996	Jun	10	37,100	50-100	0 yr					
1997	Jun	6	38,000	50-100	0 yr					
2011	Jun	30	40,600	>100	-yr					
Dischar	ge								7Q10	95% Sum.
		1.01 Y	r 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unreg	ulated	16,200	0 31,000	38,600	43,300	52,700	56,600	65,200	2,280	1,760
Reg	ulated	15,100	29,800	37,500	42,300	51,900	55,900	64,800	1,770	1,680
% C	hange	-6.79%	6 -3.87%	-2.85%	-2.31%	-1.52%	-1.24%	-0.61%	-22.37%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	22-May-51	B/W	1:28,400	6192500	10600
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	8/28/97 - 8/26/96 - 7/27/96	B/W		6192500	6960
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2004	Merrick	14-May-04	Color	1:15,840	6192500	4520
2005	NAIP	07/15/2005	color	1-meter pixels	6192500	5000
2005	NAIP	07/12/2005	color	1-meter pixels	6192500	5960
2009	NAIP	7/22/2009	Color	1-meter pixels	6192500	6990
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2009	NAIP	6/29/2009	Color	1-meter pixels	6192500	13900
2011	USCOE	October 2012	color	1-ft pixel	6192500	2530
2011	NAIP	7/24/2011	Color	1-meter pixels	6192500	13100
2013	NAIP	06/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	11,650	14.2%	13,458	16.4%	1,807
	Flow Deflectors	64	0.1%	64	0.1%	0
	Feature Type Totals	11,714	14.3%	13,521	16.5%	1,807
Other In C	Channel					
Bedrock Control		676	0.8%	676	0.8%	0
	Feature Type Totals	676	0.8%	676	0.8%	0
Floodplain	n Control					
	Transportation Encroachment	1,605	2.0%	1,605	2.0%	0
	Floodplain Dike/Levee	230	0.3%	225	0.3%	-5
	Feature Type Totals	1,835	2.2%	1,831	2.2%	-5
	Reach Totals	14,225	17.3%	16,028	19.5%	1,803

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FI	Ds	62	0	0	0	0	0	0	0
Rock RipRap		249	0	0	0	0	11,398	0	0
	Totals	312	0	0	0	0	11,398	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

		gth (ft)				
Feature Type	1950	1976	1995	2001	2004	2005
In Channel Diversion	0	207	207	207	207	207
Floodplain Dike/Levee	6,820	6,820	6,820	6,820	6,820	6,820
Totals	6,820	7,027	7,027	7,027	7,027	7,027
1						
Floodplain Dike/Levee	0	258	258	471	471	471
Floodplain Dike/Levee	2,576	2,576	2,576	2,866	2,866	2,866
Totals	2,576	2,834	2,834	3,337	3,337	3,337
on						
Rock RipRap	13,555	13,555	14,157	14,157	14,157	14,157
Flow Deflector	0	185	185	185	400	400
	Feature Type In Channel Diversion Floodplain Dike/Levee Totals Floodplain Dike/Levee Floodplain Dike/Levee Totals on Rock RipRap Flow Deflector	Feature Type1950In Channel Diversion0Floodplain Dike/Levee6,820Totals6,820IIFloodplain Dike/Levee0Floodplain Dike/Levee2,576Totals2,576On2,575Rock RipRap13,555Flow Deflector0	Feature Type Sum In Channel Diversion 0 207 Floodplain Dike/Levee 6,820 6,820 Totals 6,820 7,027 I Floodplain Dike/Levee 0 258 Floodplain Dike/Levee 2,576 2,576 Totals 2,576 2,834 on Rock RipRap 13,555 13,555 Flow Deflector 0 185	Feature Type 1950 1976 1995 In Channel Diversion 0 207 207 Floodplain Dike/Levee 6,820 6,820 6,820 Totals 6,820 7,027 7,027 I Floodplain Dike/Levee 0 258 258 Floodplain Dike/Levee 2,576 2,576 2,576 Totals 2,576 2,834 2,834 on 13,555 13,555 14,157 Flow Deflector 0 185 185	Sum of Feature Leng Feature Type 1950 1976 1995 2001 In Channel Diversion 0 207 207 207 Floodplain Dike/Levee 6,820 6,820 6,820 6,820 Totals 6,820 7,027 7,027 7,027 Floodplain Dike/Levee 0 258 258 471 Floodplain Dike/Levee 2,576 2,576 2,576 2,866 Totals 2,576 2,834 2,834 3,337 on 13,555 13,555 14,157 14,157 Flow Deflector 0 185 185 185	Sum of Feature Length (ft) Feature Type 1950 1976 1995 2001 2004 In Channel Diversion 0 207 207 207 207 Floodplain Dike/Levee 6,820 6,820 6,820 6,820 6,820 6,820 Totals 6,820 7,027 7,027 7,027 7,027 7,027 I Floodplain Dike/Levee 0 258 258 471 471 Floodplain Dike/Levee 2,576 2,576 2,576 2,866 2,866 Totals 2,576 2,834 2,834 3,337 3,337 on 13,555 13,555 14,157 14,157 14,157 Flow Deflector 0 185 185 400

Totals	13,555	13,740	14,341	14,341	14,557	14,557
Transportation Encroachment						
Railroad	10,381	10,381	10,381	10,381	10,381	10,381
Other	10,900	10,900	10,900	10,900	10,900	10,900
County Road	1,729	1,729	1,729	1,729	1,729	1,729
Totals	23,010	23,010	23,010	23,010	23,010	23,010

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)			Bankfull		
	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Braiding Parameter		% Change in Braiding
1950	42,099	56,155	2.33	1950 to 1976:	-3.61%
1976	40,060	50,059	2.25	1976 to 1995:	-15.02%
1995	41,418	37,765	1.91	1995 to 2001:	1.51%
2001	41,087	38,652	1.94	1950 to 2001:	-16.84%
Change 1950 - 2001	-1,012	-17,502	-0.39		
Lenath of Side		Pre-1950s (ft)	9,672		
Channels Blocked		Post-1950s (ft)	9,176		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	838		997		
Total Floodplain Area (Ac)	838		1037		
Total Isolated (Ac)	0	0.0%	41	13.1%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	12	0	0	12

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal Restricte MZ CMZ eage Acreage	d % Restric Migratio Area	ted Tota on AHZ Acrea	l Restr AF ge Acre	icted % Restrict IZ Avulsion age Area	ted n
	293	587	1,6	71 27	2%	181	0	0%	
2011 Res	stricted Mig	gration A	rea Sun	nmary	Note that the	ese data reflec	t the observe	ed conditions in the	e
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, C	OE for the res	t of the river).		•
RipRap									
	Railroad		26	1.4%					
		Totals	26	1.4%					
Land Us	es within tl	ne CMZ (/	Acres)	Flood Irrigation 215.4	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 0.0	Trans- portation 11.4	

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		% of Reach Area						
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	74	112	249	259	1.3%	1.9%	4.3%	4.4%
	Totals	74	112	249	259	1.3%	1.9%	4.3%	4.4%
Agricultural Lan	d								
	Non-Irrigated	3,052	2,969	3,002	2,980	52.2%	50.7%	51.3%	50.9%
	Irrigated	1,664	1,644	1,467	1,464	28.4%	28.1%	25.1%	25.0%
	Totals	4,716	4,613	4,470	4,444	80.6%	78.8%	76.4%	75.9%
Channel									
	Channel	973	929	934	962	16.6%	15.9%	16.0%	16.4%
	Totals	973	929	934	962	16.6%	15.9%	16.0%	16.4%
ExUrban									
	ExUrban Other	0	12	12	0	0.0%	0.2%	0.2%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	12	12	0	0.0%	0.2%	0.2%	0.0%
Transportation									
	Public Road	53	55	55	55	0.9%	0.9%	0.9%	0.9%
	Interstate	0	96	96	96	0.0%	1.6%	1.6%	1.6%
	Railroad	37	37	37	37	0.6%	0.6%	0.6%	0.6%
	Totals	90	188	189	189	1.5%	3.2%	3.2%	3.2%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	meline - Tiers 3 a	and 4								Char	nge Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	a la	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	144	0.0%	0.0%	0.0%	3.2%	0.0%	0.0%	3.2%	3.2%
	Flood	1,664	1,644	1,467	1,320	35.3%	35.6%	32.8%	29.7%	0.4%	-2.8%	-3.1%	-5.6%
	Totals	1,664	1,644	1,467	1,464	35.3%	35.6%	32.8%	32.9%	0.4%	-2.8%	0.1%	-2.3%

Reach AI4

Non-Irrigated

Multi-Use	2,649	2,532	2,599	2,532	56.2%	54.9%	58.1%	57.0%	-1.3%	3.3%	-1.2%	0.8%
Hay/Pasture	403	436	403	448	8.6%	9.5%	9.0%	10.1%	0.9%	-0.4%	1.1%	1.5%
Totals	3,052	2,969	3,002	2,980	64.7%	64.4%	67.2%	67.1%	-0.4%	2.8%	-0.1%	2.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (Acres)		5)	Clos	ed Timber (A	Acres)	Open Timber (Acres			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	1.2	0.2	1.3	1.3	0.5	0.9	0.4	1.6	0.7
Max	4.8	10.0	20.9	146.2	107.9	137.3	33.2	114.5	35.7
Average	3.0	2.4	4.9	22.1	15.6	20.3	11.8	25.9	15.9
Sum	6.0	24.3	44.2	729.0	563.0	629.8	106.2	181.0	111.0
Riparian	Turnove	er			Riparian t	to Channel (a	cres)	182.5	
from ch	rsion of ripar	arian areas to a	channel, or n the 1950's		Channel t	o Riparian (a	cres)	150.7	
and 20	01 data set.			R	iparian Encre	oachment (a	cres)	-31.8	
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	0.0		
Creation of	f riparian are	as	1950s Floodp	lain Mapped	as 2011 Cha	innel (Ac)	2.5		
between 1	950s and 20	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	2.5		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	14.4	211.3	57.6	0.0	283.3
Acres/Valley Mile	2.0	29.3	8.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	2.55	0.12%	1.00	0.00	0.25	0.10

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	🗆 🗹 Mountain Bluebird	Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	Ovenbird	Varbling Vireo
	Black-and-white Warbler	✓ ✓ Eastern Kingbird	Plumbeous Vireo	Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	🗌 🗹 Western Meadowlark
	Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	Ring-necked Pheasant	✓ ✓ White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	✓ ✓ Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	☐ ✔ Yellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	✓ ✓ Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Stillwater
Classification	PCB: Partially confined braided
General Location	Follows Stillwater/Carbon County line
General Comments	Follows Stillwater/Carbon County line

Upstream River Mile	405.9
Downstream River Mile	400
Length	5.90 mi (9.50 km)

Narrative Summary

Reach A15 is located in Stillwater County between Columbus and Park City. The reach is a Partially Confined Braided (PCB) reach type, reflecting some valley wall influence coupled with relatively extensive open gravel bars and low flow channels. The reach is 5.9 miles long. The partial geologic confinement within Reach A15 is created by interbedded sandstone and shale of the Cretaceous-age Judith River Formation that intermittently forms the active channel margin on its right bank. The Parkman Sandstone, a massive cliff-forming unit within the Judith River Formation, forms cliffs against the channel that are commonly over 150 feet high.

Approximately 8 percent of the bankline in Reach A15 is armored, and the armor is almost entirely rock riprap, with a very short section of concrete armor. The armor is entirely located on the north bank of the river, across from the bluffs to the south.

Although no side channels have been mapped as blocked in the reach, the total anabranching channel length has dropped from 6.2 miles in 1950 to 4.2 miles in 2001.

Land use in Reach A15 is almost entirely agricultural, with over 200 acres mapped as agricultural infrastructure. This includes a large corral complex that is part of an animal handling facility on the north side of the river at RM 404. The corrals are behind a canal, but within a few hundred feet of the riverbank. There are 528 acres under flood irrigation in the reach, and 81 acres in pivot. A total of 119 acres of developed land are in the Channel Migration Zone, and all of that land is in flood irrigation. About 9 percent of the CMZ is isolated by physical features, all of which is behind armored canals associated with the Big Ditch Diversion, which diverts water from the north bank at RM 405.3. The Big Ditch Diversion structure fully spans a side channel of the river that is about 275 feet wide.

Riparian mapping in Reach A15 shows a reduction of about 60 acres of closed timber in the reach since 1950. Riparian recruitment rates have been relatively high; between 1950 and 2001 there were 200 acres of areas that recruited new riparian vegetation, and most of that was in old 1950s channels that were abandoned and became colonized. These abandoned channels also have high concentrations of Russian olive. Since 1950, Reach A15 has lost almost all of its forest that would be considered at low risk of cowbird infestation due to its separation from agricultural infrastructure. In 1950, about 20 acres of forest per valley mile were identified as low risk and by 2001 that forest area had been reduced to 1.

There are also over 150 acres of mapped wetland in the each, most of which is emergent marshes and wet meadows. Large expanses of emergent wetlands have developed in side channels that have been passively lost since 1950 ("passively" meaning not blocked but abandoned).

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 16,200 cfs to 15,100 cfs, a drop of about 7 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,286 cfs to 1,770 cfs with human development, a reduction of 23 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A15 include:

- •Passive loss of 2 miles of side channel
- •Russian olive colonization in abandoned side channels
- •Emergent wetland development in abandoned side channels
- •Large corrals that are part of an animal handling facility within 300 feet of the riverbank

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A15 include:

- •Side channel restoration to reactivate 2 miles of passively lost channels
- •Russian olive removal (1.2 acres)
- •Nutrient management at corrals that are part of an animal handling facility at RM 404
- •Consideration of watercraft passage at Big Ditch Diversion Structure
- •Consideration of fish passage limitations at Big Ditch Diversion Structure
- •Wetland management/restoration due to extent of mapped wetland (150 acres)

PHYSICAL FEATURES MAP (2011)

ocato 0 С U 0 N B 2 Floodplain Dike/Levee Flow Deflector Rock RipRap Concrete RipRap Flow Deflectors Physical Features Other iterstate Highway JS or State Route econdary Road 7z Reach Breaks **River Miles** Counties egend

Reach AI5

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

Flood H	istory								Downstream	Upstream	
Year	Dat	e Flow on Date		Return Ir	Return Interval			Gage No	Gage 6214500	Gage 6192500	
1971	Jun	23	29,200	10-25	10-25 yr		5 yr		Location	Billings	Livingston
1902	Jun	11	30,100	10-25	i yr		Period	of Record	1929-2015	1929-2015	
1943	Jun	20	30,600	10-25	i yr		Distance		1020 2010	1020 2010	
1974	Jun	17	36,300	50-100) yr		Distance	lo (miles)	35.6	100.7	
1996	Jun	10	37,100	50-100) yr						
1997	Jun	6	38,000	50-100) yr						
2011	011 Jun 30 40,600 >100-yr		-yr								
Dischar	ge								7Q10	95% Sum.	
		1.01 Y	r 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration	
Unreg	ulated	16,200	0 31,000	38,600	43,300	52,700	56,600	65,200	2,286	1,760	
Reg	ulated	15,100	29,800	37,500	42,300	51,900	55,900	64,800	1,770	1,680	
% C	hange -6.7		nange -6.79% -3.87%		-2.85% -2.31%		-1.52%	-1.24%	-0.61%	-22.59%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	17-May-51	B/W	1:28,400	6192500	7430
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	27-Jul-96	B/W		6192500	6960
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2004	Merrick	14-May-04	Color	1:15,840	6192500	4520
2005	NAIP	07/12/2005	color	1-meter pixels	6192500	5960
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2009	NAIP	6/29/2009	Color	1-meter pixels	6192500	13900
2011	USCOE	October 2012	color	1-ft pixel	6192500	2530
2011	NAIP	7/24/2011	Color	1-meter pixels	6192500	13100
2013	NAIP	06/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization	Longin (it)	Baritanio	Longth (it)	Barnanio	onange
	Rock RipRap	4,633	7.5%	4,667	7.5%	35
	Concrete RipRap	483	0.8%	483	0.8%	0
	Feature Type Totals	5,116	8.2%	5,151	8.3%	35
Other In C	Channel					,
	Bedrock Control	219	0.4%	219	0.4%	0
	Feature Type Totals	219	0.4%	219	0.4%	0
Floodplair	n Control					
	Floodplain Dike/Levee	1,552	2.5%	1,384	2.2%	-168
	Feature Type Totals	1,552	2.5%	1,384	2.2%	-168
	Reach Totals	6,887	11.1%	6,754	10.9%	-134

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap		0	0	492	0	0	0	0	0
Rock RipRap		564	0	3,090	0	0	0	0	0
	Totals	564	0	3,582	0	0	0	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

	Sum of Feature Leng						
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005
Irrigation							
	In Channel Diversion	473	473	473	642	642	642
	Floodplain Dike/Levee	5,561	6,313	6,313	6,313	6,313	6,313
	Totals	6,035	6,786	6,786	6,955	6,955	6,955
Other Off Chann	nel						
	Floodplain Dike/Levee	1,287	1,833	1,833	1,833	1,833	1,833
	Floodplain Dike/Levee	0	3,926	3,926	3,926	3,926	3,926
	Totals	1,287	5,759	5,759	5,759	5,759	5,759
Stream Stabiliza	tion						
	Rock RipRap	2,363	5,630	6,605	6,605	7,003	7,003
	Concrete RipRap	449	449	449	449	449	449
	Totals	2,812	6,079	7,054	7,054	7,452	7,452

Reach AI5

Transportation Encroachment

Railroad	1,031	1,031	1,031	1,031	1,031	1,031
Totals	1,031	1,031	1,031	1,031	1,031	1,031
ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	29,740	32,759	2.10	1950 to 1976:	-18.33%
1976	30,410	21,783	1.72	1976 to 1995:	9.98%
1995	30,548	27,113	1.89	1995 to 2001:	-9.20%
2001	31,077	22,185	1.71	1950 to 2001:	-18.45%
Change 1950 - 2001	1,337	-10,573	-0.39		
Length of Side		Pre-1950s (ft)	1,617		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	507		595		
Total Floodplain Area (Ac)	507		622		
Total Isolated (Ac)	0	0.0%	27	24.5%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	1	0	0	1

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tot CN Acre	tal IZ age	Restricted CMZ Acreage	% Restric Migratic Area	ited Ton Ac	Total AHZ creage	Restricted AHZ Acreage	% Restricted Avulsion Area
	343	686	1,37	71	122	9%		97	0	0%
2011 Res	stricted Mig	ration A	rea Sun	nmai	ſy	Note that the	ese data r	eflect the	observed cou	nditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	Counties, COE for the rest of the river).				
RipRap										
	Other Infrast	ructure	7	0	.5%					
	Irrigated		11	0	.7%					
	Canal		75	5	.1%					
Dike/Levee										
	Irrigated		30	2	.0%					
		Totals	122	8	.3%					
Land Use	es within th	e CMZ (A	Acres)	F Irri	Flood igation 118.7	Sprinkler Irrigation 0.0	Pivot Irrigati 0.0	t U on Ex	rban/ Urban p 0.0	Trans- ortation 0.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3		Aci	res		%	of Rea	ch Area	1
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	62	57	57	57	1.7%	1.6%	1.6%	1.6%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	35	132	154	156	1.0%	3.6%	4.2%	4.3%
	Totals	97	189	211	213	2.6%	5.1%	5.8%	5.8%
Agricultural Lan	d								
	Non-Irrigated	1,814	1,891	1,917	1,925	49.4%	51.5%	52.2%	52.5%
	Irrigated	925	696	639	608	25.2%	19.0%	17.4%	16.6%
	Totals	2,739	2,587	2,556	2,534	74.6%	70.5%	69.6%	69.0%
Channel									
	Channel	776	752	757	777	21.1%	20.5%	20.6%	21.2%
	Totals	776	752	757	777	21.1%	20.5%	20.6%	21.2%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	2	2	0.0%	0.0%	0.1%	0.1%
	Totals	0	0	2	2	0.0%	0.0%	0.1%	0.1%
Transportation									
	Public Road	29	35	37	37	0.8%	1.0%	1.0%	1.0%
	Interstate	0	78	78	78	0.0%	2.1%	2.1%	2.1%
	Railroad	30	30	30	30	0.8%	0.8%	0.8%	0.8%
	Totals	59	143	145	145	1.6%	3.9%	3.9%	3.9%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 ar	nd 4								Char	nge Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	I	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	1	81	0.0%	0.0%	0.0%	3.2%	0.0%	0.0%	3.1%	3.2%
	Flood	925	696	638	528	33.8%	26.9%	25.0%	20.8%	-6.9%	-2.0%	-4.1%	-12.9%
	Totals	925	696	639	608	33.8%	26.9%	25.0%	24.0%	-6.9%	-1.9%	-1.0%	-9.8%

Reach AI5

Multi-Use	1,664	1,744	1,809	1,788	60.7%	67.4%	70.8%	70.6%	6.7%	3.3%	-0.2%	9.8%
Hay/Pasture	150	146	108	137	5.5%	5.7%	4.2%	5.4%	0.2%	-1.4%	1.2%	-0.1%
Totals	1,814	1,891	1,917	1,925	66.2%	73.1%	75.0%	76.0%	6.9%	1.9%	1.0%	9.8%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	5	Shrub (Acres	5)	Closed Timber (Acres)			Open Timber (Acres			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.0	0.3	0.4	1.0	1.3	1.6	2.1	13.1	9.8	
Max	80.3	32.2	65.3	105.0	137.7	170.7	12.2	50.0	73.0	
Average	10.0	5.5	11.1	23.2	29.9	53.5	7.0	25.1	36.1	
Sum	110.2	49.2	88.8	487.8	358.9	427.9	21.1	100.5	108.2	
Riparian	Turnove	to Channel (a	cres)	115.8						
Conver from ch	sion of ripar nannel to ripa	ian areas to o arian betwee	channel, or n the 1950's		Channel t	to Riparian (a	(acres) 120.5			
and 20	01 data set.			R	iparian Encr	oachment (a	cres)	4.7		
Riparian Recruitment 1950s Channel Mapped as 2011 Riparian (Ac)						123.2				
Creation of	f riparian are	as	1950s Floodp	olain Mapped	as 2011 Cha	nnel (Ac)	76.0			
between 1950s and 2001. Total Recruitment (1950s to 2011)(Ac)					2011)(Ac)	199.2				

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	10.4	131.1	27.4	0.0	168.9
Acres/Valley Mile	2.0	25.4	5.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	1.24	0.09%	0.16	0.04	0.48	0.14

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	107.7	57.2	7.6%
Rip Rap Bottom	25.0	24.6	3.3%
Bluff Pool	99.0	83.6	11.0%
Secondary Channel	78.4	57.8	7.6%
Secondary Channel (Seasonal)	67.2	32.3	4.3%
Channel Crossover	129.6	96.2	12.7%
Point Bar		43.5	5.7%
Side Bar		24.9	3.3%
Mid-channel Bar		23.9	3.2%
Island	249.9	250.7	33.1%
Dry Channel		62.1	8.2%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

Reach AI6

County	Stillwater	Upstream River Mile	400
Classification	PCA: Partially confined anabranching	Downstream River Mile	392.4
General Location	Park City	Length	7.60 mi (12.23 km)
General Comments	Near Park City, Reach A16 provides an example of a reach th appear to have a minimal effect on the stream corridor	at supports numerous irriga	ation point features that

Narrative Summary

Reach A16 is 7.6 miles long and is located just south of Park City. The reach is a Partially Confined Anabranching reach type, indicating some valley wall influences as well as relatively extensive forested islands. The partial geologic confinement within Reach A16 is created by interbedded sandstone and shale. In addition, both low and high alluvial terraces intermittently form the active river corridor margin.

Approximately 9 percent of the bankline in Reach A16 is armored, and the armor is almost entirely rock riprap, some short sections of concrete armor and flow deflectors. The armor is located almost entirely on the northern corridor margin, against terrace margins. Its use is split evenly between protecting agricultural and exurban residential land uses. On the upstream end of the reach, rock armor protects the Italian Ditch Diversion and Canal, which divert water on the north bank of the river at RM 400. Over four miles of floodplain dikes have been mapped in the reach, most of which follow ditches on the north floodplain.

Although there is no evidence that side channels have been intentionally blocked off in Reach A16, there has still been a net loss of over a mile of side channel since 1950. Similar to most reaches in Region A, the loss of side channels has been accompanied by an overall increase in the total channel footprint; since 1950, the bankfull channel area of Reach A16 has increased by 40 acres.

Land use in Reach A16 is almost entirely agricultural, although there are almost 300 acres of urban/exurban development in the mapping footprint. There are corrals that are part of an animal handling facility within 1,000 feet of an abandoned river swale at RM 395. Over a thousand acres under of ground in Reach A16 are under flood irrigation, and about 11 are in pivot. About 150 acres of developed land are in the Channel Migration Zone, and almost 40 acres of that is in urban/exurban development. About 6 percent of the total CMZ is restricted by bank armor and dikes.

There is one pipeline crossing in Reach A16. It crosses under the river at RM 396.7 and consists of a 24 inch crude oil pipeline that is owned by Kinder Morgan Pipelines. This pipeline was horizontally drilled during its installation.

Reach A16 was sampled as part of the avian study. The average species richness in Reach A16 was 8.5, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for all sites evaluated is 8. An average of one cowbird was observed during the field sampling visits. Reach A16 has lost about one half of its riparian forest considered at low risk of cowbird parasitism since 1950. At that time, there were about 12 acres of forest per valley mile considered to be isolated enough from agricultural infrastructure and urban/exurban development to be considered at low risk. By 2011, about 6.6 acres considered low risk remained.

There are over 250 acres of mapped wetland in the reach, with most of that emergent marshes wand wet meadows. Many of these wetland areas occupy old river swales on the floodplain north of the river, or abandoned channels in the active corridor.

The reach has extensive Russian olive, with almost 30 acres of mapped footprint in the reach.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 16,900 cfs to 15,500 cfs, a drop of about 8 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,310 cfs to 1,780 cfs with human development, a reduction of 23 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

- CEA-Related observations in Reach A16 include:
- •Passive loss of over a mile of side channel
- •Russian olive colonization in abandoned side channels
- •Emergent wetland development in abandoned side channels

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A16 include:

- •Diversion structure management at Italian Ditch Diversion RM 400
- •Nutrient management at corrals that are part of an animal handling facility at RM 395.
- •Russian olive removal (29 acres)

•Wetland management/restoration due to extent of mapped emergent wetland (214 acres emergent, 270 acres total wetland)

Reach AI6

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Flo	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	6192500
	1971	Jun 2	3	29,200	10-25	5 yr			Location	Billings	Livingston
	1902	Jun 1	1	30,100	10-25	10-25 yr		Period of Record		1929-2015	1929-2015
	1943	Jun 2	0	30,600	10-25	5 yr		Disc		1020 2010	1020 2010
	1974	Jun 1	7	36,300	50-10	0 yr		Distance	lo (miles)	28.0	106.6
	1996	Jun 1	0	37,100	50-10	0 yr					
	1997	Jun 6	6	38,000	50-10	0 yr					
	2011	Jun 3	0	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	16,900	32,200	40,100	44,900	54,600	58,600	67,500	2,310	1,760
	Regul	ated	15,500	30,600	38,600	43,500	53,500	57,600	66,900	1,780	1,680
	% Cha	ange	-8.28%	-4.97%	-3.74%	-3.12%	-2.01%	-1.71%	-0.89%	-22.94%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	5/16/51 - 5/17/1951	B/W	1:28,400	6192500	6000
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	24-Aug-96	B/W		6192500	3540
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2004	Merrick	14-May-04	Color	1:15,840	6192500	4520
2005	NAIP	07/12/2005	color	1-meter pixels	6192500	5960
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2009	NAIP	6/29/2009	Color	1-meter pixels	6192500	13900
2011	USCOE	October 2012	color	1-ft pixel	6192500	2530
2011	NAIP	7/24/2011	Color	1-meter pixels	6192500	13100
2013	NAIP	06/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	4,439	5.5%	6,790	8.4%	2,351
	Flow Deflectors	0	0.0%	90	0.1%	90
	Concrete RipRap	167	0.2%	9	0.0%	-158
	Car Bodies	117	0.1%	117	0.1%	0
	Between Flow Deflectors	0	0.0%	38	0.0%	38
	Feature Type Totals	4,723	5.8%	7,043	8.7%	2,321
	Reach Totals	4,723	5.8%	7,043	8.7%	2,321

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Car Bodies		0	0	79	0	0	0	0	36
Concrete RipRap		0	157	0	0	0	0	0	0
Rock RipRap		0	977	1,988	0	0	0	0	2,450
	Totals	0	1,135	2,066	0	0	0	0	2,486

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

			Sum	of Featu	ure Leng	gth (ft)	
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005
Irrigation							
	Floodplain Dike/Levee	22,187	22,187	22,187	22,187	22,187	22,187
	Totals	22,187	22,187	22,187	22,187	22,187	22,187
Stream Stabilizati	on						
	Rock RipRap	1,441	1,441	1,976	5,043	5,949	5,949
	Concrete RipRap	0	0	262	262	262	262
	Car Bodies	79	79	112	112	112	112
	Totals	1,521	1,521	2,350	5,418	6,324	6,324
Transportation Er	ncroachment						
	Railroad	4,239	4,239	4,239	4,239	4,239	4,239
	Other	1,669	1,669	1,669	1,669	1,669	1,669
	Totals	5,908	5,908	5,908	5,908	5,908	5,908

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	39,915	59,568	2.49	1950 to 1976:	6.26%
1976	39,509	65,125	2.65	1976 to 1995:	-12.30%
1995	40,855	54,038	2.32	1995 to 2001:	0.11%
2001	40,532	53,715	2.33	1950 to 2001:	-6.71%
Change 1950 - 2001	618	-5,854	-0.17		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-Year			
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain		
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%				
Agriculture (generally relates to field boundaries)	0	0.0%				
Agriculture (isloated by canal or large ditch)	0	0.0%				
Levee/Riprap (protecting agricultural lands)	0	0.0%				
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%				
Railroad	0	0.0%				
Abandoned Railroad	0	0.0%				
Transportation (Interstate and other roads)	0	0.0%				
Total Not Isolated (Ac)	815		1108			
Total Floodplain Area (Ac)	815		1151			
Total Isolated (Ac)	0	0.0%	42	12.5%		

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	5	0	0	5

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal Res MZ (eage Ac	stricted CMZ creage	% Restric Migratio Area	ted Tota n AH2 Acrea	al Re Z age A	estricted AHZ creage	% Restricted Avulsion Area
	335	671	1,8	94	61	3%	88		0	0%
2011 Res	stricted Mig	ration A	rea Sur	nmary		Note that the	ese data refle	ect the obse	erved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent c CMZ	of	Counties, C	OE for the re	st of the riv	er).	
RipRap										
	Irrigated		44	2.2%						
	Exurban Res	sidential	15	0.8%						
	Canal		46	2.3%						
		Totals	104	5.2%						
Land Us	es within th	e CMZ (/	Acres)	Flood Irrigatio 110.1	i on	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban ExUrba 38.9	n po	Trans- ortation 0.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	25	25	25	25	0.5%	0.5%	0.5%	0.5%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	46	66	118	108	0.9%	1.2%	2.2%	2.0%
	Totals	71	91	142	133	1.3%	1.7%	2.6%	2.5%
Agricultural Lan	d								
	Non-Irrigated	2,421	2,331	2,519	2,427	44.9%	43.2%	46.7%	45.0%
	Irrigated	1,588	1,551	1,156	1,106	29.4%	28.7%	21.4%	20.5%
	Totals	4,009	3,883	3,674	3,533	74.3%	71.9%	68.1%	65.4%
Channel									
	Channel	1,297	1,349	1,252	1,391	24.0%	25.0%	23.2%	25.8%
	Totals			1,252	1,391	24.0%	25.0%	23.2%	25.8%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	80	7	0.0%	0.0%	1.5%	0.1%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	2	176	261	0.0%	0.0%	3.3%	4.8%
	Totals	0	2	256	268	0.0%	0.0%	4.7%	5.0%
Transportation									
	Public Road	11	11	11	11	0.2%	0.2%	0.2%	0.2%
	Interstate	0	52	52	52	0.0%	1.0%	1.0%	1.0%
	Railroad	11	11	11	11	0.2%	0.2%	0.2%	0.2%
	Totals	21	74	74	74	0.4%	1.4%	1.4%	1.4%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	meline - Tiers 3 an	d 4								Change Between Years			
			Acr	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	11	11	0.0%	0.0%	0.3%	0.3%	0.0%	0.3%	0.0%	0.3%
	Flood	1,588	1,551	1,145	1,095	39.6%	40.0%	31.2%	31.0%	0.3%	-8.8%	-0.2%	-8.6%
	Totals	1,588	1,551	1,156	1,106	39.6%	40.0%	31.5%	31.3%	0.3%	-8.5%	-0.2%	-8.3%

Reach AI6

Non-I	rrigated

Multi-Use	2,349	1,976	1,894	1,798	58.6%	50.9%	51.5%	50.9%	-7.7%	0.7%	-0.7%	-7.7%
Hay/Pasture	72	356	625	629	1.8%	9.2%	17.0%	17.8%	7.4%	7.8%	0.8%	16.0%
Totals	2,421	2,331	2,519	2,427	60.4%	60.0%	68.5%	68.7%	-0.3%	8.5%	0.2%	8.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (Ad			s)	Clos	ed Timber (A	(cres)	Оре	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.7	0.2	0.7	1.4	0.3	0.9	1.8	1.4	1.8	
Max	128.0	83.6	72.3	90.3	244.8	245.1	198.1	92.8	38.6	
Average	15.2	8.7	10.7	23.2	17.0	29.2	22.4	15.0	26.7	
Sum	273.5	182.0	171.6	440.6	610.9	672.2	291.8	149.8	133.4	
Riparian	Turnove	er			Riparian t	to Channel (a	cres)	225.6		
from cl	rsion of ripar hannel to ripa	ian areas to o arian betweei	thannel, or the 1950's		Channel to Riparian (acres) 220.7					
and 20	01 data set.			Riparian Encroachment (acres) -5.0						
Riparian	Recruitr	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	222.2			
Creation o	f riparian are	as	1950s Floodp	lain Mapped	as 2011 Cha	innel (Ac)	121.8			
between 1950s and 2001.		01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	344.0			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	10.7	214.0	43.3	0.0	268.0
Acres/Valley Mile	1.6	32.0	6.5	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	28.74	1.83%	19.92	0.17	10.47	9.07	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	g 2001 (Acres)					
Habitat Scour Pool	Bankfull 223.2	Low Flow 102.4	% of Low Flow 8.2%			
Rip Rap Bottom	34.8	16.6	1.3%			
Bluff Pool	63.2	47.7	3.8%			
Terrace Pool	18.5	9.8	0.8%			
Secondary Channel	62.0	74.5	6.0%			
Secondary Channel (Seasonal)	179.2	100.8	8.0%			
Channel Crossover	200.6	121.5	9.7%			
Point Bar		60.4	4.8%			
Side Bar		51.2	4.1%			
Mid-channel Bar		64.5	5.2%			
Island	470.6	473.6	37.8%			
Dry Channel		129.2	10.3%			

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
	American Robin	Chipping Sparrow	Killdeer	✓ ✓ Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	🗹 🗹 Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	□ ✓ Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	☐ ✓ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	Ovenbird	V Warbling Vireo
	Black-and-white Warbler	✓ ✓ Eastern Kingbird	Plumbeous Vireo	Vestern Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	🗌 🗹 Western Meadowlark
	Blue Jay	🖌 🖌 European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	✓ ✓ Field Sparrow	Red Crossbill	V White-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	Ring-necked Pheasant	☐ ✔ White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	U Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	✓ ✓ Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Vellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	Vellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Yellowstone
Classification	UA: Unconfined anabranching
General Location	To Laurel
General Comments	To Laurel; WAI Reach A

Upstream River Mile392.4Downstream River Mile386Length6.40 mi (10.30 km)

Narrative Summary

Reach A17 is 7.6 miles long and is located just above Laurel. The reach is classified as Unconfined Anabranching (UA), which is characteristically one of the most dynamic reach types on the river. The river is flowing in the alluvial valley with minimal influences of the valley wall and through numerous forested islands. There are sites in Reach A17 where the river has migrated almost 1,000 feet since 1950.

Approximately 13 percent of the bankline in Reach A17 is armored by rock riprap, concrete riprap and flow deflectors. Between 2001 and 2011 the total length of rock riprap increased by about a half of a mile. At RM 387, a ~750 foot long stretch of flow deflectors on the left bank have been flanked, and by fall 2011 the river had migrated about 120 feet behind the flanked armor. The deflectors are still visible in the channel. In some places such as at RM 389.8, bank armor on both sides of the river narrows the corridor to about one channel width, or 1,000 feet.

Over a mile of side channels in Reach A17 were blocked prior to 1950. Two major channels were blocked on the north side of the river, one at the Buffalo Mirage Fishing Access Site at RM 391.5, and the other at Rm 389.5. These channels, as well as other secondary channels that were passively loss, host fairly dense concentrations of Russian olive. Similar to most reaches in Region A, the loss of side channels has been accompanied by an increase in the total river footprint, indicating that flow concentration into the main river channel has caused it to enlarge. Between 1950 and 2001, the size of the channel increased from 560 acres to 645 acres.

Land use in Reach A17 is primarily agricultural, although there are almost 600 acres of urban/exurban development in the reach as the river approaches the City of Laurel. Since 1950, there has been a reduction in flood irrigated acres of about 550 acres, and an increase in pivot irrigation from 0 acres in 1950 to 284 acres in 2011. A total of 383 acres of developed ground are in the mapped Channel Migration Zone; and about 11 percent of the CMZ has been isolated by physical features protecting those land uses.

At RM 388.5, a headgate diverts water into an old side channel that has been converted to a canal on the north side of the river. About $\frac{1}{2}$ mile downstream, the canal is riprapped where it was recently threatened by rapid northward river migration. At this location, the river has migrated over 800 feet northward since 1950. The main channel of the river now flows along the riprapped canal embankment for about 750 feet.

There are corrals that are part of an animal handling facility within 600 feet of the north riverbank at RM 392.

Side channel loss and channel migration in Reach A17 has resulted in relatively high rates of riparian recruitment. Since 1950, there has been 330 acres of land that experience recruitment of new riparian vegetation. Most of that recruitment was in abandoned channels (200 acres) and about 27 acres of recruitment was direct result of channel migration.

Two ice jams have been recorded in Reach A17, in 1996 and 1997. Both occurred during the month of February, and were reported to have occurred at the Laurel Bridge.

There are over 200 acres of mapped wetland in the reach, with most of that emergent marshes and wet meadows. Many of these wetland areas occupy river swales on the floodplain north of the river, or abandoned channels in the active corridor.

Almost 22 acres of Russian olive has been mapped in the floodplain.

Reach A17 was sampled as part of the avian study. The average species richness in Reach A17 was 7.7, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for all sites evaluated is 8. An average of 0.9 Cowbirds (a bird that parasitizes other bird's nests) were observed in cottonwood habitats during the field sampling visits. Reach A17 has lost about two thirds of its riparian forest considered at low risk of cowbird parasitism since 1950. At that time, there were about 28 acres of forest per valley mile considered to be isolated enough from agricultural infrastructure and urban/exurban development to be considered at low risk. By 2011, about 10 acres per valley mile considered low risk remained.

A total of three Potential Species of Concern (PSOCs) were observed in Reach A17 during the avian study, including the Black and White Warbler, Chimney Swift, and Ovenbird. One Species of Concern (SOC), the Bobolink, was also observed in Reach A17.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 16,900 cfs to 15,500 cfs, a drop of about 8 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,320 cfs to 1,780 cfs with human development, a reduction of 23 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A17 include: •Flanking of flow deflectors and accelerated erosion behind flanked structures

•Physical blockage of over a mile of side channel

•Russian olive colonization in abandoned side channels

•Emergent wetland development in abandoned side channels

·Ice jamming potentially associated with the Laurel Bridge

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A17 include:

•Bank armor removal (flanked flow deflectors), RM 387

•Side channel restoration at RM 391.5 and RM 389.5

•Nutrient management associated with corrals that are part of an animal handling facility at RM 392.

•Russian olive removal (22 acres)

•Wetland management/restoration due to extent of mapped wetland (200 acres)

•Irrigation diversion structure management at headgate on side channel at RM 388.5

Reach AI7

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream	
	Year	Date	e Flo	ow on Date	Return Ir	nterval			Gage No		Gage 6192500	
	1971	Jun 2	23	29,200	10-25	5 yr			Location	Billings	Livingston	
	1902	Jun 1	1	30,100	10-25 yr			Period	of Record	1929-2015	1929-2015	
	1943	Jun 2	20	30,600	10-25	10-25 yr				04.0	111.0	
	1974	Jun 1	17	36,300	50-10	0 yr		Distance	To (miles)	21.0	114.2	
	1996	Jun 1	10	37,100	50-10	0 yr						
	1997	Jun	6	38,000	50-10	0 yr						
	2011	Jun 3	30	40,600	>100	-yr						
Di	scharg	е								7Q10	95% Sum.	
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration	
	Unregul	ated	16,900	32,200	40,100	44,900	54,600	58,600	67,500	2,320	1,760	
	Regul	ated	15,500	30,600	38,600	43,500	53,500	57,600	66,900	1,780	1,680	
	% Cha	ange	-8.28%	-4.97%	-3.74%	-3.12%	-2.01%	-1.71%	-0.89%	-23.28%	-4.55%	

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	5/14/51 - 6/9/51	B/W	1:28,400	6192500	6000
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	23-Aug-96	B/W		6192500	3730
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2004	Merrick	14-May-04	Color	1:15,840	6192500	4520
2005	NAIP	07/12/2005	color	1-meter pixels	6192500	5960
2005	NAIP	07/08/2005	color	1-meter pixels	6192500	6410
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	USCOE	October 2012	color	1-ft pixel	6192500	2530
2011	NAIP	7/24/2011	Color	1-meter pixels	6192500	13100
2013	NAIP	06/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	3,601	5.3%	6,185	9.1%	2,584
	Flow Deflectors	236	0.3%	230	0.3%	-6
	Concrete RipRap	2,205	3.2%	2,205	3.2%	0
	Between Flow Deflectors	612	0.9%	441	0.6%	-171
	Feature Type Totals	6,653	9.7%	9,061	13.3%	2,408
Floodplain	Control					
	Floodplain Dike/Levee	1,434	2.1%	1,434	2.1%	0
	Feature Type Totals	1,434	2.1%	1,434	2.1%	0
	Reach Totals	8,087	11.8%	10,495	15.4%	2,408

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type	Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap	1,227	0	659	0	0	0	0	0
Flow Deflectors/Between FDs	846	0	0	0	0	0	0	0
Rock RipRap	1,132	0	1,250	1,207	0	0	0	0
Tota	als 3,205	0	1,909	1,207	0	0	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

	ure Leng	gth (ft)					
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005
Irrigation							
	Floodplain Dike/Levee	32,154	32,838	32,838	33,205	33,965	33,965
	Totals	32,154	32,838	32,838	33,205	33,965	33,965
Other							
	Floodplain Dike/Levee	0	2,677	2,677	2,677	2,677	2,677
	0	2,677	2,677	2,677	2,677	2,677	
Other Off Channe	9						
	Other	2,200	2,200	2,200	2,200	2,200	2,200
	Floodplain Dike/Levee	0	0	0	412	412	412
	Floodplain Dike/Levee	361	576	576	576	576	576
	Totals	2,562	2,776	2,776	3,189	3,189	3,189
Stream Stabilizati	on						
	Rock RipRap	272	3,692	3,886	4,200	4,200	4,200
Thursday, March 3,	2016						

Reach	AI7	7
-------	-----	---

Flow Deflector	0	0	0	812	812	812
Concrete RipRap	366	988	988	3,055	3,645	3,645
Totals	638	4,681	4,875	8,066	8,656	8,656
Transportation Encroachment						
Floodplain Dike/Levee	5,461	5,461	5,461	5,461	5,461	5,461
Bridge Approach	3,994	3,994	3,994	3,994	3,994	3,994
Totals	9,455	9,455	9,455	9,455	9,455	9,455

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

2/6/1996

2/21/1997

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	34,729	37,999	2.09	1950 to 1976:	1.44%
1976	34,084	38,322	2.12	1976 to 1995:	-12.94%
1995	34,298	29,134	1.85	1995 to 2001:	3.76%
2001	34,137	31,373	1.92	1950 to 2001:	-8.36%
Change 1950 - 2001	-592	-6,626	-0.18		
Length of Side		Pre-1950s (ft)	7,639		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year			
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain		
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%				
Agriculture (generally relates to field boundaries)	0	0.0%				
Agriculture (isloated by canal or large ditch)	0	0.0%				
Levee/Riprap (protecting agricultural lands)	10	0.8%				
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%				
Railroad	0	0.0%				
Abandoned Railroad	0	0.0%				
Transportation (Interstate and other roads)	80	5.9%				
Total Not Isolated (Ac)	1253		1092			
Total Floodplain Area (Ac)	1343		1139			
Total Isolated (Ac)	90	6.7%	46	9.4%		

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	49	0	0	49

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion To Buffer Co (ft) Acr		Total Restricted CMZ CMZ Acreage Acreage		Total CMZ Acreage		% Restric Migratio Area	ted Tota n AHZ Acrea	l Res 2 A ge Ac	tricted AHZ reage	% Restricted Avulsion Area
	457	914	2,1	73	192	9%	78		0	0%		
2011 Res	stricted Migr	ation A	rea Sur	nmai	ry	Note that the	ese data refle	ct the obser	ved con	ditions in the		
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	Counties, Co	OE for the res	t of the rive	r).	Sweet Grass		
RipRap												
	Public Road		16	0	.7%							
	Non-Irrigated		45	2	.0%							
	Irrigated		114	5	.0%							
	Canal		23	1	.0%							
Flow Deflect	ctors											
	Irrigated		25	1	.1%							
Dike/Levee												
	Irrigated		23	1	.0%							
		Totals	246	10).9%							
Land Us	es within the	e CMZ (/	Acres)	F Irr	Flood igation 358.9	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 18.7	۲ pc	Frans- ortation 5.7		

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3		Acı	res		% of Reach Area			a I
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	15	15	15	15	0.3%	0.3%	0.3%	0.3%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	54	75	97	103	0.9%	1.3%	1.7%	1.8%
	Totals	69	90	112	118	1.2%	1.6%	1.9%	2.1%
Agricultural Lan	d								
	Non-Irrigated	2,603	2,243	2,491	2,442	45.2%	39.0%	43.3%	42.4%
	Irrigated	1,927	2,113	1,736	1,668	33.5%	36.7%	30.2%	29.0%
	Totals	4,530	4,356	4,227	4,110	78.7%	75.6%	73.4%	71.4%
Channel									
	Channel	954	984	934	983	16.6%	17.1%	16.2%	17.1%
	Totals	954	984	934	983	16.6%	17.1%	16.2%	17.1%
ExUrban									
	ExUrban Other	2	2	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	6	25	62	76	0.1%	0.4%	1.1%	1.3%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	51	52	168	216	0.9%	0.9%	2.9%	3.8%
	Totals	59	80	230	292	1.0%	1.4%	4.0%	5.1%
Transportation									
	Public Road	41	41	41	41	0.7%	0.7%	0.7%	0.7%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	10	10	10	10	0.2%	0.2%	0.2%	0.2%
	Totals	50	50	50	50	0.9%	0.9%	0.9%	0.9%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	21	21	21	0.0%	0.4%	0.4%	0.4%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	22	0	0	0	0.4%	0.0%	0.0%	0.0%
	Urban Industrial	74	177	182	182	1.3%	3.1%	3.2%	3.2%
	Totals	95	199	204	204	1.7%	3.5%	3.5%	3.5%

Land Use Ti	meline - Tiers 3	and 4								Char	ige Betv	veen Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	203	284	284	0.0%	4.7%	6.7%	6.9%	4.7%	2.1%	0.2%	6.9%
	Flood	1,927	1,910	1,452	1,384	42.5%	43.8%	34.4%	33.7%	1.3%	-9.5%	-0.7%	-8.9%
	Totals	1,927	2,113	1,736	1,668	42.5%	48.5%	41.1%	40.6%	6.0%	-7.4%	-0.5%	-2.0%

Reach AI7

Nc	n-l	Irrigate	d
			~

Multi-Use	1,484	1,093	1,201	1,182	32.8%	25.1%	28.4%	28.8%	-7.7%	3.3%	0.4%	-4.0%
Hay/Pasture	1,119	1,150	1,290	1,260	24.7%	26.4%	30.5%	30.7%	1.7%	4.1%	0.1%	6.0%
Totals	2,603	2,243	2,491	2,442	57.5%	51.5%	58.9%	59.4%	-6.0%	7.4%	0.5%	2.0%
RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acr			es) Closed Timbe		ber (Acres) O		pen Timber (Acres)	
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.2	0.5	0.0	0.3	0.0	1.0	2.4	1.3	0.4
Max	22.7	88.6	21.9	213.6	142.1	156.2	89.4	52.3	129.8
Average	5.5	16.6	5.6	36.2	22.2	32.2	19.9	21.3	22.1
Sum	83.1	182.6	78.5	723.3	777.5	677.1	258.8	191.6	331.4
Riparian	Turnove	er			Riparian t	o Channel (a	cres)	255.8	
Conversion of riparian areas to channel, or from channel to riparian between the 1950's					Channel to Riparian (acres)			236.0	
and 20	01 data set.			R	Riparian Encroachment (acres) -19.8				
Riparian	Recruit	ment	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	227.5		
Creation of	riparian are	eas	1950s Floodp	oodplain Mapped as 2011 Channel (Ac) 100.2			100.2		
between 1950s and 2001.			Total Recruitment (1950s to 2011)(Ac)				327.7		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	9.4	203.4	13.4	0.0	226.2
Acres/Valley Mile	1.6	35.6	2.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	21.84	6.68%	182.62	1.10	3.47	1.43

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	295.5	157.8	16.9%
Rip Rap Bottom	17.4	10.7	1.1%
Terrace Pool	16.4		
Secondary Channel	19.3	54.9	5.9%
Secondary Channel (Seasonal)	143.8	82.1	8.8%
Channel Crossover	147.2	72.5	7.8%
Point Bar		23.6	2.5%
Side Bar		54.9	5.9%
Mid-channel Bar		86.8	9.3%
Island	294.8	292.8	31.3%
Dry Channel		98.2	10.5%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
\checkmark	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
>	American Goldfinch	Cliff Swallow	Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
>	American Redstart	Common Merganser	✓ ✓ Least Flycatcher	🗌 🗹 Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	🗌 🗹 Mountain Bluebird	✓ ✓ Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
>	Black-billed Magpie	Downy Woodpecker	Osprey	☐ ✔ Violet-green Swallow
>	Black-capped Chickadee	Eastern Bluebird	V Ovenbird	✓ ✓ Warbling Vireo
\checkmark	Black-and-white Warbler	Eastern Kingbird	Plumbeous Vireo	V Western Kingbird
>	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	Vestern Meadowlark
	Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	Vestern Wood-pewee
>	Bobolink	☐ ✓ Field Sparrow	Red Crossbill	□ ✓ White-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	Ring-necked Pheasant	☐ ✔ White-throated Swift
>	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
>	Brown Thrasher	Great Blue Heron	✓ ✓ Red-winged Blackbird	Yellow-bellied Sapsucker
>	Bullock's Oriole	Great Horned Owl	✓ ✓ Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
\checkmark	Cedar Waxwing	House Finch	Say's Phoebe	Vellow-headed Blackbird
>	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	Vellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

Reach A18

County	Yellowstone	Upstream River Mile	386
Classification	UA: Unconfined anabranching	Downstream River Mile	383.5
General Location	To Clarks Fork	Length	2.50 mi (4.02 km)
General Comments	To Clark Fork; land use change to row crops; WAI Reach A		

Narrative Summary

Reach A18 is 2.5 miles long and extends from Laurel to the mouth of the Clarks Fork River. The reach is classified as Unconfined Anabranching (UA), which is characteristically one of the most dynamic reach types on the river. The reach has one large island and even though it is fairly intensively armored through Laurel, there has been over 1,100 feet of southward channel migration since 1950 at one location about $\frac{1}{2}$ mile downstream of the bridge.

Reach A18 is perhaps best known by the series of pipeline crossings below the Laurel Bridge. In 2011, floodwaters on the Yellowstone River peaked on July 2 at 70,600 cfs, which is an estimated 25-50 year flood event. On July 1, the day before the peak, a 12-inch diameter crude oil pipeline called the ExxonMobil Silvertip Pipeline, ruptured just downstream of the bridge in Reach A18. The pipeline was originally installed in a trench across the river that was 5-7 feet deep. The rupture spilled an estimated 50,000 gallons of oil into the Yellowstone River; the incident received national attention and millions of dollars were spent on cleanup. The Silvertip Pipeline and several others at this location have been replaced by HDD (Horizontal Directionally Drilled) lines.

The industrial land uses at Laurel uses coupled with the dynamic nature of the Yellowstone River in Reach A18 has resulted in the armoring of almost 40 percent of the river in this reach. That armor consists of rock riprap, concrete riprap, and flow deflectors. Almost all of the armor is located on the north bank where it protects the City of Laurel sewage treatment facility, as well as a canal that leaves the river at RM 385.7. There is one small section of concrete armor on the north bank, and it appears that the upper 300 feet of this armor has been flanked and now is visible in the middle of the river. Recent concerns over the main intake structure for the city's water supply sheds some light on the dynamics of the river, and potentially the influence of high density bank armor on channel stability. The 2011 flood evidently caused the river to downcut at the intake, perching the structure, such that there are current efforts in motion to relocate the intake several miles upstream. This downcutting may be related to the high density of armor between Laurel and Billings that effectively focuses flow into the main channel and can drive channel incision (downcutting). Reach conditions just downstream in Reach B1 support this hypothesis.

There are over three miles of mapped dikes in Reach A18. Dikes, levees, and transportation encroachment features have isolated about one half of the historic 100-year floodplain in the reach. Almost 17 percent of the 5-year floodplain has become isolated from the river. Most of the isolated 100-year floodplain area is south of the river, between the Yellowstone and Clarks Fork Rivers.

Land use in Reach A18 is primarily agricultural, although there are almost 380 acres of urban/exurban development in the reach as the river passes south of the City of Laurel. All of the irrigated land in Reach A18 is in flood irrigation. A total of 110 acres of developed ground are in the mapped Channel Migration Zone; and the over 90 percent of that is in urban/exurban land use. A total of 31 percent of the CMZ has become isolated by physical features.

Riparian mapping indicates that since 1950, about 67 acres in the reach were cleared to support irrigation and other land uses. There are about 18 acres of mapped Russian olive in the floodplain.

Since 1950, about 150 acres of land in Reach A18 was colonized by new riparian vegetation. There are over 140 acres of mapped emergent wetland in the reach, which consists primarily of emergent marshes and wet meadows.

Almost 18 acres of Russian olive has been mapped in the floodplain.

Reach A18 was sampled as part of the avian study. The average species richness in Reach A17 was 7.1, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for all sites evaluated is 8. On average, of 0.9 Cowbirds were observed in cottonwood habitats during the field sampling visits. Reach A18 has lost all of its riparian forest considered at low risk of cowbird parasitism since 1950. At that time, there were 3.4 acres of forest per valley mile considered to be isolated enough from agricultural infrastructure and urban/exurban development to be considered at low risk. By 2011, that had been reduced to zero.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been moderate in this reach. The mean annual flood is estimated to have dropped from 16,900 cfs to 15,500 cfs, a drop of about 8 percent. The biggest influence has been on low flows: severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,780 cfs to 1,950 cfs with human development, a reduction of 30 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 1,760 cfs under unregulated conditions to 1,680 cfs under regulated conditions at the Livingston gage, a reduction of 4.6 percent.

CEA-Related observations in Reach A18 include:

•Flanking of concrete armor

•Pipeline rupture in highly armored reach

•Water intake perching in highly armored reach

Russian olive colonization

•Emergent wetland development in abandoned side channels

•Floodplain isolation at confluence between Clarks Fork and Yellowstone River from transportation-related infrastructure •Extensive CMZ encroachment in urbanized reach

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach A18 include:

- •Irrigation diversion structure management at headgate on at a canal at RM 385.7
- •Flanked concrete armor removal RM 384
- •Russian olive removal (18 acres)
- •Floodplain restoration between lower Clarks Fork River and Yellowstone River
- •Pipeline Management for several crossings at Laurel.

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Livingston

FI	ood His	story								Downstream	Upstream
	Year	Date	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6214500	Gage 6192500
	1971	Jun 2	23	29,200	10-25 yr					Billings	Livingston
	1902	Jun 1	1	30,100	10-25 yr			Poriod of Pocord		1929-2015	1929-2015
	1943	Jun 2	20	30,600	10-25 yr					1020 2010	1020 2010
	1974	Jun 1	17	36,300	50-10	0 yr		Distance	To (miles)	19.1	120.6
	1996	Jun 1	10	37,100	50-10	0 yr					
	1997	Jun	6	38,000	50-10	0 yr					
	2011	Jun 3	30	40,600	>100	-yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	16,900	32,200	40,100	44,900	54,600	58,600	67,500	2,780	1,760
	Regul	ated	15,500	30,600	38,600	43,500	53,500	57,600	66,900	1,950	1,680
	% Cha	ange	-8.28%	-4.97%	-3.74%	-3.12%	-2.01%	-1.71%	-0.89%	-29.86%	-4.55%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	14-May-51	B/W	1:28,400	6192500	5520
1976	USCOE	28-Sep-76	B/W	1:24,000	6192500	2560
1995	USGS DOQQ	23-Aug-96	B/W		6192500	3730
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6192500	2000
2004	Merrick	14-May-04	Color	1:15,840	6192500	4520
2005	NAIP	07/12/2005	color	1-meter pixels	6192500	5960
2005	NAIP	07/08/2005	color	1-meter pixels	6192500	6410
2009	NAIP	7/7/2009	Color	1-meter pixels	6192500	11300
2011	USCOE	October 2012	color	1-ft pixel	6192500	2530
2011	NAIP	7/24/2011	Color	1-meter pixels	6192500	13100
2013	NAIP	06/15/2013	color	1-meter pixels	6192500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	3,665	14.7%	3,885	15.6%	220
	Flow Deflectors	570	2.3%	628	2.5%	58
	Concrete RipRap	4,519	18.2%	3,783	15.2%	-736
	Car Bodies	190	0.8%	190	0.8%	0
	Between Flow Deflectors	897	3.6%	897	3.6%	0
	Feature Type Totals	9,841	39.6%	9,382	37.7%	-459
	Reach Totals	9,841	39.6%	9,382	37.7%	-459

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type	Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Car Bodies	0	190	0	0	0	0	0	0
Concrete RipRap	1,968	754	538	262	0	0	0	1,640
Flow Deflectors/Between FDs	0	0	1,466	0	0	0	0	0
Rock RipRap	0	0	1,653	2,011	0	0	0	0
Tota	als 1,968	945	3,657	2,273	0	0	0	1,640

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

Feature Class Feature Type 1950 1976 1995 2001 2004 2005 Irrigation Floodplain Dike/Levee 18,079 19,411 20,171		Sum of Feature Length (ft)							
Irrigation Floodplain Dike/Levee 18,079 19,411 20,171 20,171 20,171 20,171 Totals 18,079 19,411 20,171 20,171 20,171 20,171 20,171 Stream Stabilization 121 2,374 2,374 3,576 3,576 3,576 Flow Deflector 0 0 1,467 1,467 1,467 Concrete RipRap 2,825 2,825 2,825 4,648 4,648 Car Bodies 0 0 569 569 569 Totals 2,946 5,199 5,769 10,260 10,260 Transportation Encroachment 912 912 912 912 912 Other 912 912 13,192 13,192 13,192 13,192 Bridge Approach 1,153 1,153 1,153 1,153 1,153 1,153	Feature Class	Feature Type	1950	1976	1995	2001	2004	2005	
Floodplain Dike/Levee18,07919,41120,17120,17120,17120,17120,171Totals18,07919,41120,17120,17120,17120,17120,17120,171Stream Stabilization1212,3742,3743,5763,5763,576Stream Stabilization1212,3742,3743,5763,5763,576Flow Deflector0001,4671,4671,467Concrete RipRap2,8252,8252,8254,6484,648Car Bodies00569569569Totals2,9465,1995,76910,26010,260Transportation Encroachment912912912912912Other91291291213,19213,19213,192Bridge Approach1,1531,1531,1531,1531,1531,153Totals13,37715,25715,25715,25715,257	Irrigation								
Totals 18,079 19,411 20,171 20,171 20,171 Stream Stabilization Rock RipRap 121 2,374 2,374 3,576 3,576 Flow Deflector 0 0 1,467 1,467 1,467 Concrete RipRap 2,825 2,825 2,825 4,648 4,648 Car Bodies 0 0 569 569 569 Totals 2,946 5,199 5,769 10,260 10,260 Transportation Encroachment 70 912 912 912 912 912 912 Other 912 912 912 13,192 13,192 13,192 13,192 13,192 Bridge Approach 1,153 1,153 1,153 1,153 1,153 1,153		Floodplain Dike/Levee	18,079	19,411	20,171	20,171	20,171	20,171	
Stream Stabilization 121 2,374 2,374 3,576 3,576 3,576 Rock RipRap 121 2,374 2,374 3,576 3,576 3,576 Flow Deflector 0 0 1,467 1,467 1,467 Concrete RipRap 2,825 2,825 2,825 4,648 4,648 Car Bodies 0 0 569 569 569 Totals 2,946 5,199 5,769 10,260 10,260 Transportation Encroachment 912 912 912 912 912 Other 912 912 912 13,192 13,192 13,192 Bridge Approach 1,153 1,153 1,153 1,153 1,153 1,153		Totals	18,079	19,411	20,171	20,171	20,171	20,171	
Rock RipRap 121 2,374 2,374 3,576 3,576 3,576 Flow Deflector 0 0 0 1,467 1,467 1,467 Concrete RipRap 2,825 2,825 2,825 4,648 4,648 4,648 Car Bodies 0 0 569 569 569 569 Totals 2,946 5,199 5,769 10,260 10,260 10,260 Transportation Encroachment 912 912 912 912 912 912 912 Other 912 912 912 13,192 13,192 13,192 13,192 Bridge Approach 1,153 1,153 1,153 1,153 1,153 1,153 Totals 13,377 15,257 15,257 15,257 15,257	Stream Stabilizat	ion							
Flow Deflector 0 0 1,467 1,467 Concrete RipRap 2,825 2,825 2,825 4,648 4,648 Car Bodies 0 0 569 569 569 Totals 2,946 5,199 5,769 10,260 10,260 Transportation Encroachment 912 912 912 912 912 Other 912 912 912 13,192 13,192 13,192 Bridge Approach 1,153 1,153 1,153 1,153 1,153 1,153 Totals 13,377 15,257 15,257 15,257 15,257 15,257		Rock RipRap	121	2,374	2,374	3,576	3,576	3,576	
Concrete RipRap 2,825 2,825 2,825 2,825 4,648 4,648 4,648 Car Bodies 0 0 569 569 569 569 Totals 2,946 5,199 5,769 10,260 10,260 10,260 Transportation Encroachment 912 912 912 912 912 912 912 County Road 11,313 13,192 13,192 13,192 13,192 13,192 13,192 13,192 Bridge Approach 1,153 1,153 1,153 1,153 1,153 1,153 Totals 13,377 15,257 15,257 15,257 15,257		Flow Deflector	0	0	0	1,467	1,467	1,467	
Car Bodies 0 569 569 569 Totals 2,946 5,199 5,769 10,260 10,260 10,260 Transportation Encroachment 912 912 912 912 912 912 912 912 912 13,193 1,153 1,153 1,153 1,153 1,153 1,153 1,153 1,153 1,153 1,153 1,153 1,557 15,257 15,257 15,257 15,257 15,257 15,257 15,257 15,257 15,257 15,257 15,257 15,257		Concrete RipRap	2,825	2,825	2,825	4,648	4,648	4,648	
Totals 2,946 5,199 5,769 10,260 10,260 10,260 Transportation Encroachment 912 912 912 912 912 912 912 912 912 912 912 912 13,192		Car Bodies	0	0	569	569	569	569	
Transportation Encroachment 912		Totals	2,946	5,199	5,769	10,260	10,260	10,260	
Other 912 913 913 913 913 913 913 913 914 915 915 915 915 915 915 915 915 </td <td>Transportation E</td> <td>ncroachment</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Transportation E	ncroachment							
County Road11,31313,192		Other	912	912	912	912	912	912	
Bridge Approach 1,153		County Road	11,313	13,192	13,192	13,192	13,192	13,192	
Totals 13,377 15,257 15,257 15,257 15,257 15,257		Bridge Approach	1,153	1,153	1,153	1,153	1,153	1,153	
		Totals	13,377	15,257	15,257	15,257	15,257	15,257	

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	13,798	13,021	1.94	1950 to 1976:	23.49%
1976	12,653	17,718	2.40	1976 to 1995:	-13.22%
1995	12,533	13,573	2.08	1995 to 2001:	5.22%
2001	12,433	14,814	2.19	1950 to 2001:	12.76%
Change 1950 - 2001	-1,366	1,794	0.25		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	34	6.1%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	269	47.9%			
Total Not Isolated (Ac)	258		354		
Total Floodplain Area (Ac)	562		369		
Total Isolated (Ac)	304	54.0%	15	17.0%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	1	0	0	1

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 379	Erosion Buffer (ft) 759	To CN Acre 88	tal //Z eage :4	Restricted CMZ Acreage 275	% Restrict Migration Area 31%	ed Tota n AHZ Acrea 0	d Re <u>'</u> ge Ad	stricted AHZ creage 0	% Restricted Avulsion Area 0%
2011 Res	stricted Mia	ration A	rea Sun	nmar	v	Note that the	se data refle	ct the obse	rved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	2011 aerial p Counties, CC	hotography ()E for the res	NAIP for P t of the rive	ark and S er).	Sweet Grass
Road/Railro	oad Prism									
	Public Road		13	1.	5%					
RipRap										
	Urban Indust	rial	37	4.	2%					
	Public Road		88	9.	9%					
	Canal		97	11	.0%					
Flow Deflect	ctors									
	Canal		39	4.	4%					
		Totals	275	31	.1%					
Land Us	es within th	e CMZ (/	Acres)	F Irri	lood gation 0.0	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrbar 100.9	ך ח ף כ	Frans- ortation 8.6

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	22	22	22	22	0.8%	0.8%	0.8%	0.8%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	25	40	28	25	0.9%	1.4%	1.0%	0.9%
	Totals	47	62	49	46	1.6%	2.2%	1.7%	1.6%
Agricultural Lan	d								
	Non-Irrigated	1,456	999	986	874	50.7%	34.8%	34.4%	30.5%
	Irrigated	946	904	861	894	33.0%	31.5%	30.0%	31.1%
	Totals	2,402	1,903	1,848	1,768	83.7%	66.3%	64.4%	61.6%
Channel									
	Channel	368	672	646	657	12.8%	23.4%	22.5%	22.9%
	Totals	368	672	646	657	12.8%	23.4%	22.5%	22.9%
ExUrban									
	ExUrban Other	0	6	6	0	0.0%	0.2%	0.2%	0.0%
	ExUrban Undeveloped	0	0	0	61	0.0%	0.0%	0.0%	2.1%
	ExUrban Industrial	0	27	35	35	0.0%	0.9%	1.2%	1.2%
	ExUrban Commercial	6	11	21	21	0.2%	0.4%	0.7%	0.7%
	ExUrban Residential	21	154	199	216	0.7%	5.4%	6.9%	7.5%
	Totals	27	198	260	332	0.9%	6.9%	9.1%	11.6%
Transportation									
	Public Road	23	23	23	23	0.8%	0.8%	0.8%	0.8%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	23	23	23	23	0.8%	0.8%	0.8%	0.8%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	1	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	2	11	43	43	0.1%	0.4%	1.5%	1.5%
	Totals	2	11	43	43	0.1%	0.4%	1.5%	1.5%

Land Use Ti	meline - Tiers 3 and	d 4								Char	ige Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	946	904	861	894	39.4%	47.5%	46.6%	50.5%	8.1%	-0.9%	3.9%	11.2%
	Totals	946	904	861	894	39.4%	47.5%	46.6%	50.5%	8.1%	-0.9%	3.9%	11.2%

Reach A18

Non-Irrigated													
	Multi-Use	1,143	749	875	749	47.6%	39.3%	47.4%	42.3%	-8.2%	8.0%	-5.0%	-5.2%
	Hay/Pasture	313	250	111	126	13.0%	13.1%	6.0%	7.1%	0.1%	-7.1%	1.1%	-5.9%
	Totals	1,456	999	986	874	60.6%	52.5%	53.4%	49.5%	-8.1%	0.9%	-3.9%	-11.2%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Clos	ed Timber (A	(cres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	1.3	0.2	1.1	0.0	0.0	1.2	0.3	11.2	2.2
Max	48.1	15.6	36.1	129.9	132.9	148.2	67.2	88.5	61.0
Average	16.7	7.4	14.0	22.2	16.3	20.0	16.5	26.7	23.0
Sum	234.4	103.2	125.9	355.0	341.4	319.6	115.3	160.1	206.9
Riparian	Turnove	er			Riparian t	o Channel (a	cres)	191.3	
Conver from ch	rsion of ripar nannel to ripa	ian areas to o arian betweer	channel, or h the 1950's		Channel t	cres)	134.1		
and 20	01 data set.			R	iparian Encre	oachment (a	cres)	-57.2	
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	66.2		
Creation of riparian areas			1950s Floodplain Mapped as 2011 Channel (Ac)			nnel (Ac)	83.4		
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	149.5		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	15.8	139.7	33.2	0.0	188.7
Acres/Valley Mile	7.7	68.2	16.2	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	17.94	2.68%	31.36	1.05	1.75	1.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat	Bankfull	Low Flow	% of Low Flow
Scoul Pool	50.2	40.0	10.1%
Rip Rap Bottom	47.0	4.0	0.9%
Secondary Channel	84.1	55.9	12.1%
Secondary Channel (Seasonal)	67.3	22.0	4.7%
Channel Crossover	24.3	28.1	6.1%
Point Bar		7.7	1.7%
Side Bar		16.7	3.6%
Mid-channel Bar		36.7	7.9%
Island	182.7	182.7	39.4%
Dry Channel		63.3	13.7%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
\checkmark	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
>	American Goldfinch	Cliff Swallow	Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
>	American Redstart	Common Merganser	✓ ✓ Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	🗌 🗹 Mountain Bluebird	Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
>	Black-billed Magpie	✓ ✓ Downy Woodpecker	Osprey	✓ Violet-green Swallow
>	Black-capped Chickadee	Eastern Bluebird	Ovenbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	🖌 🖌 Eastern Kingbird	Plumbeous Vireo	✓ Western Kingbird
>	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	✓ ✓ Western Meadowlark
	Blue Jay	🖌 🖌 European Starling	Red-naped Sapsucker	V Western Wood-pewee
	Bobolink	☐ ✓ Field Sparrow	Red Crossbill	☐ ✔ White-breasted Nuthatch
	Brewer's Blackbird	E Franklin's Gull	Ring-necked Pheasant	☐ ✔ White-throated Swift
>	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
	Brown Creeper	✓ ✓ Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	Red-winged Blackbird	Yellow-bellied Sapsucker
>	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
\checkmark	Cedar Waxwing	House Finch	Say's Phoebe	Vellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	Vellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region A

In the study segment, Laurel to Springdale, three themes emerge as dominant across the four interest groups. One theme focuses on the changing riverbank profile as more and more residential homes are built on the river's edge. The second theme focuses on the river as a powerful and dynamic physical entity. The third is about the changing social profiles of their communities and how those changes influence user practices.

County	Yellowstone
Classification	UB: Unconfined braided
General Location	Laurel to Billings
General Comments	Extensive armoring u/s Billings; WAI Reaches B,C,D

Upstream River Mile	383.5
Downstream River Mile	368.3
Length	15.20 mi (24.46 km)

Narrative Summary

Reach B1, located in Yellowstone County, extends from the mouth of the Clark Fork River to Billings. It is approximately 15.4 miles long, extending from RM 367.0 to 382.4. It is an Unconfined Braided (UB) reach type indicating minimal influence of the valley wall coupled by extensive open gravel bars and low flow channels. Human impacts in Reach B1 include early bridge construction and stream corridor narrowing, flow consolidation through diking and bank armoring, and loss of side channel due to physical blockages and apparent downcutting. Flow alterations in this reach have been substantial; the mean annual flood has dropped an estimated 17 percent due to human influences, and summer low flows have dropped by 42 percent.

In total there are 57,118 feet of bank armor in Reach B1, which equates to 10.82 miles of bank armor in a 15.4 mile long reach of river. Concrete riprap is the most prevalent type of armor, with about 5.5 miles present in 2011, even after the loss of 2,870 feet of concrete armor protection between 2001 and 2011. There are almost four miles of rock riprap, over 4,000 feet of which was constructed since 2001. There are also 7,616 feet of flow deflectors in the reach, and about 2,500 feet of those flow deflectors were built between 2001 and 2011. The most rapid expansion of armor occurred between 1950 and 1995, when the total length of bank protection expanded from 14,872 feet to 47,339 feet.

Numerous bank armor structures have been eroded out in Reach B1. Typically flanked, failed armor was identified at the following locations:

•RM 383L: 330 feet of flow deflectors totally lost

•RM 382.3R: lower 175 feet of concrete riprap flanked

•RM 281.5R: upper 400 feet of concrete riprap flanked: Idled crude oil pipeline is less than 200 feet behind this flanked armor

•RM 380.2R: lower 600 feet of concrete armor flanked

•RM 377.8: upper 540 feet of concrete armor flanked

•RM 373.8R: upper 300 feet and lower 270 feet of concrete armor flanked

The loss of side channel length through time has been extensive. Prior to 1950, almost a mile of side channels had been blocked on the south side of the river at RM 373.8 and at the South Billings Blvd Bridge at RM 371. Since 1950, another 14,800 feet have been blocked by dikes. One major blockage is located about 2 miles upstream of the Duck Creek Bridge at RM 381 and another near the gravel pit/trailer park complex at RM 373. Other side channels have been lost passively, without blockages. In total, Reach B1 has been characterized by a loss of seven miles of side channel length between 1950 and 2001, the majority of which occurred between 1976 and 1996.

A review of available data indicate that the loss of side channels in Reach B1 is both directly and indirectly related to bank stabilization within the reach. Between 1950 and 1976, a series of dikes were constructed upstream of South Billings Blvd to block the course of a primary channel, isolating several thousand feet of channel. Womack (2000) notes that "the greatest measureable change has occurred due to abandonment of secondary channels, primarily due to construction of dikes and secondarily due to channel armoring. A relatively short dike at the upstream end of a braided reach can have a disproportionate effect, because it may effectively eliminate miles of channel". These blockages are associated with some of the braiding parameter reduction in Reach B1. However, the most loss of side channels occurred after 1976, when the dikes above South Billings Blvd. were already in place. Some of these channels were abandoned due to blockage by dikes, and other locations of channel abandonment and braiding parameter reduction show no apparent direct relationship to physical features.

The side channels that were passively abandoned in Reach B1 are commonly perched above the main Yellowstone River channel. This perching indicates that abandonment may be related to downcutting of the main channel. Womack (2000) noted that width to depth ratios decreased in heavily armored reaches due to flow consolidation in a single channel. Womack suggests that channel confinement and consolidation into fewer channels has resulted in downcutting and reduction in width to depth ratio. Flow alterations have also likely contributed to side channel abandonment.

Several bridges were constructed in Reach B1 prior to 1950. These bridges all constrict the natural meander corridor of the river and have been associated with channel downcutting. Womack (2000) showed seven feet of degradation immediately upstream of the South Billings Blvd Bridge.

The primary land use in the reach is non-irrigated agriculture although several thousand acres of agricultural land has been developed since 1950. In 2011, there were about 3,000 acres of land under flood irrigation and 240 acres under pivot in Reach B1. Between 1950 and 2011, the extent of urban/exurban land use expanded from 310 acres to over 2,000 acres. The development has extended into the Channel Migration Zone (CMZ). A total of 810 acres of CMZ are developed, with 242 acres of ground developed for urban/exurban use and 84 acres in pivot irrigation. Another 470 acres of land in the CMZ are under flood irrigation. As a consequence of extensive development in the CMZ, about 25 percent of the total CMZ footprint has become restricted due to armoring and dike construction.

There is one animal handling facility within 300 feet of the north riverbank just downstream of the Duck Creek Bridge at RM 377.7.

A total of 610 acres of the historic 100-year floodplain has become isolated from the river, which is 14 percent of the total 100-year

floodplain footprint. Most of the 100-year floodplain isolation is due to transportation infrastructure. Similarly, about 13 percent of the 5year floodplain (270 acres) has been isolated by transportation infrastructure. There are 184 acres of flood irrigated land in the 5-year floodplain, and 73 acres in pivot. Whereas most of the isolated 100-year floodplain area is behind the I-90 corridor in the city of Billings, most of the isolated 5-year area is in the stream corridor, which supports the interpretation that some downcutting in the reach has perched historic channels and floodplain area.

There are several pipeline crossings in Reach B1. At RM 382, two pipelines cross under the river; one is a natural gas pipeline owned by NW Energy LLC, and the other is an idled crude oil pipeline owned by Conoco Phillips. The idled crude oil pipeline follows the river close to the bank at RM 281.5R where concrete armor has been flanked. There are four pipelines at South Billings Blvd; the one of these pipelines that was built to carry crude oil has been idled under nitrogen. The other pipelines are all natural gas.

Over 400 acres of wetland have been mapped in the reach, with most of that (270 acres) emergent wetland marsh that is located primarily in the active stream corridor and in abandoned channels. A total of 42 acres of Russian olive have been mapped in the reach, and these trees are dispersed throughout the corridor.

Reach B1 was sampled as part of the avian study. The average species richness in Reach B1 was 8.0, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for sites evaluated is 8. One bird Species of Concern (SOC), the Black-Billed Cuckoo, was identified in the reach. Three bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) were also found, including the Black and White Warbler, Chimney Swift, and Ovenbird. Since 1950, Reach B1 has lost all of its forest that would be considered at low risk of cowbird infestation due to its separation from agricultural infrastructure. In 1950, about 3.5 acres of forest per valley mile were identified as low risk and by 2001 that forest area had been reduced to zero.

Reach B1 was sampled as part of the fisheries study. A total of 31 fish species were sampled in the reach, and none of these species have been identified by the Montana Natural Heritage Program as Species of Concern (SOC).

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been substantial in this reach. The mean annual flood is estimated to have dropped from 22,800 cfs to 18,900 cfs, a drop of about 17 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,900 cfs to 2,000 cfs with human development, a reduction of 31 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 3,836 cfs under unregulated conditions to 2,227 cfs under regulated conditions at the Billings gage, a reduction of 42 percent.

CEA-Related observations in Reach B1 include:

•Blockage of miles of side channel

•Extensive armoring with CMZ encroachment

•Passive loss of major side channels due to downcutting and flow alterations

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach B1 include:

•Side channel restoration at RM 381 and RM 373

•Pipeline crossing management – natural gas pipeline at RM 382

•Flanked armor removal at RM 383, RM 382.3, RM 281.5, RM 380.2, RM 377.8, and RM 373.8

•CMZ management due to extent of current CMZ restriction (25 percent)

Russian olive removal

•Pipeline management at crossings and also where concrete armor has flanked where idled crude oil pipeline runs parallel to bank at RM 285.1R

•Nutrient management at corrals that are part of an animal handling facility within 300 feet of river at RM 377.7 just downstream of Duck Creek Bridge.

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Billings

Floo	d His	story								Downstream	Upstream
	Year	Dat	te F	low on Date	Return Ir	nterval			Gago No	Gage 6214500	6192500
	1943	Jun	21	61,200	10-25	5 yr				Billings	Livingston
	1996	Jun	12	61,900	10-25	i yr		Pariod of Pacard		1020 2015	1020 2015
	1944	Jun	27	64,800	10-25	5 yr		Penou	I OI RECOIU	1929-2015	1929-2015
	1967	Jun	16	66,100	10-25	5 yr		Distance	e To (miles)	3.9	123.1
	1975 Jul 7 67,600		10-25 yr								
	1974	Jun	19	69,500	25-50 yr						
2	2011	Jul	2	70,600	25-50) yr					
	1918	Jun	15	78,100	50-10	0 yr					
	1997	Jun	12	82,000	>100	yr					
Disc	harg	е								7010	95% Sum.
			1.01 Y	r 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
U	nregul	ated	22,800	42,700	52,800	58,900	71,200	76,200	87,400	2,900	3,846
	Regul	ated	18,900	38,500	48,900	55,200	68,300	73,700	85,900	2,000	2,227
	% Cha	ange	-17.119	% -9.84%	-7.39%	-6.28%	-4.07%	-3.28%	-1.72%	-31.03%	-42.10%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	5/14/51 - 5/15/51	B/W	1:28,400	6214500	12000
1976	USCOE	28-Sep-76	B/W	1:24,000	6214500	5940
1995	USGS DOQQ	23-Aug-96	B/W		6214500	4500
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6214500	1700
2004	Merrick	15-May-04	Color	1:15,840	6214500	5960
2005	NAIP	07/12/2005	color	1-meter pixels	6214500	12600
2005	NAIP	07/08/2005	color	1-meter pixels	6214500	11400
2009	NAIP	7/7/2009	Color	1-meter pixels	6214500	20900
2009	NAIP	7/5/2009	Color	1-meter pixels	6214500	23800
2011	USCOE	October 2012	color	1-ft pixel	6214500	3860
2011	NAIP	7/24/2011	Color	1-meter pixels	6214500	22800
2013	NAIP	06/15/2013	color	1-meter pixels	6214500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature	Feature	2001	% of	2011	% of	2001-2011
Class	Туре	Length (ft)	Bankline	Length (ft)	Bankline	Change
Stream Sta	abilization					
	Rock RipRap	16,336	10.1%	20,754	12.9%	4,418
	Flow Deflectors	1,228	0.8%	2,034	1.3%	806
	Concrete RipRap	31,621	19.6%	28,751	17.8%	-2,870
	Car Bodies	942	0.6%	718	0.4%	-225
	Between Flow Deflectors	3,835	2.4%	5,582	3.5%	1,748
	Feature Type Totals	53,961	33.5%	57,839	35.9%	3,877
Floodplain	Control					
	Transportation Encroachment	3,902	2.4%	3,902	2.4%	0
	Floodplain Dike/Levee	23,985	14.9%	23,985	14.9%	0
	Feature Type Totals	27,887	17.3%	27,887	17.3%	0
	Reach Totals	81,848	50.8%	85,726	53.2%	3,877

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type	Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Car Bodies	541	0	400	0	0	0	0	0
Concrete RipRap	7,964	9,719	3,582	951	0	0	0	9,394
Flow Deflectors/Between FDs	4,566	0	328	0	0	0	0	0
Rock RipRap	6,262	0	495	5,169	0	0	0	4,546
Totals	5 19,332	9,719	4,805	6,120	0	0	0	13,940

Current Frankright Langeth (ft)

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

			Sum	or reall	ne reué	jui (ii)	
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005
Irrigation							
	Floodplain Dike/Levee	103	1,954	1,954	1,954	2,284	2,284
	Totals	103	1,954	1,954	1,954	2,284	2,284
Other							
	Floodplain Dike/Levee	0	0	1,210	1,210	1,210	1,210
	Totals	0	0	1,210	1,210	1,210	1,210
Other Off Channe	l						
	Floodplain Dike/Levee	0	5,137	12,336	18,261	19,342	19,342
	Floodplain Dike/Levee	4,058	7,900	7,370	19,666	19,666	19,666

Totals	4,058	13,037	19,706	37,927	39,008	39,008
n						
Rock RipRap	7,373	18,198	19,335	19,832	22,285	22,285
Flow Deflector	1,589	914	914	6,024	6,024	6,024
Concrete RipRap	5,569	16,943	25,910	31,257	31,544	31,544
Car Bodies	341	1,039	1,180	1,180	1,180	1,180
Totals	14,872	37,094	47,339	58,293	61,033	61,033
roachment						
Other	11,368	14,402	15,081	15,295	15,295	15,295
Interstate	0	7,583	7,583	7,583	7,583	7,583
County Road	9,792	17,180	15,814	15,814	15,814	15,814
Bridge Approach	3,230	5,909	5,909	5,909	5,909	5,909
Totals	24,390	45,075	44,387	44,601	44,601	44,601
	Totals n Rock RipRap Flow Deflector Concrete RipRap Car Bodies Totals troachment Other Interstate County Road Bridge Approach Totals	Totals4,058nRock RipRap7,373Flow Deflector1,589Concrete RipRap5,569Car Bodies341Totals14,872croachment0Other11,368Interstate0County Road9,792Bridge Approach3,230Totals24,390	Totals 4,058 13,037 n Rock RipRap 7,373 18,198 Flow Deflector 1,589 914 Concrete RipRap 5,569 16,943 Car Bodies 341 1,039 Totals 14,872 37,094 croachment 0 7,583 Other 11,368 14,402 Interstate 0 7,583 County Road 9,792 17,180 Bridge Approach 3,230 5,909 Totals 24,390 45,075	Totals 4,058 13,037 19,706 n Rock RipRap 7,373 18,198 19,335 Flow Deflector 1,589 914 914 Concrete RipRap 5,569 16,943 25,910 Car Bodies 341 1,039 1,180 Totals 14,872 37,094 47,339 croachment 0 7,583 7,583 Other 11,368 14,402 15,081 Interstate 0 7,583 7,583 County Road 9,792 17,180 15,814 Bridge Approach 3,230 5,909 5,909 Totals 24,390 45,075 44,387	Totals 4,058 13,037 19,706 37,927 n Rock RipRap 7,373 18,198 19,335 19,832 Flow Deflector 1,589 914 914 6,024 Concrete RipRap 5,569 16,943 25,910 31,257 Car Bodies 341 1,039 1,180 1,180 Totals 14,872 37,994 47,339 58,293 croachment 0 7,583 7,583 7,583 Other 11,368 14,402 15,081 15,295 Interstate 0 7,583 7,583 7,583 County Road 9,792 17,180 15,814 15,814 Bridge Approach 3,230 5,909 5,909 5,909 Totals 24,390 45,075 44,387 44,601	Totals4,05813,03719,70637,92739,008nRock RipRap7,37318,19819,33519,83222,285Flow Deflector1,5899149146,0246,024Concrete RipRap5,56916,94325,91031,25731,544Car Bodies3411,0391,1801,1801,180Totals14,87237,09447,33958,29361,033croachment07,5837,5837,5837,583Other11,36814,40215,08115,29515,295Interstate07,5837,5837,5837,583County Road9,79217,18015,81415,81415,814Bridge Approach3,2305,9095,9095,9095,909Totals24,39045,07544,38744,601

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)			Bankfull		
	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Braiding Parameter		% Change in Braiding
1950	79,617	120,036	2.51	1950 to 1976:	-3.18%
1976	77,560	110,757	2.43	1976 to 1995:	-18.58%
1995	81,942	80,054	1.98	1995 to 2001:	2.88%
2001	80,555	83,280	2.03	1950 to 2001:	-18.90%
Change 1950 - 2001	938	-36,757	-0.47		
Lenath of Side		Pre-1950s (ft)	4,970		
Channels Blocked		Post-1950s (ft)	14,812		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year			5-Year			
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain					
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%							
Agriculture (generally relates to field boundaries)	0	0.0%							
Agriculture (isloated by canal or large ditch)	0	0.0%							
Levee/Riprap (protecting agricultural lands)	11	0.2%							
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%							
Railroad	0	0.0%							
Abandoned Railroad	0	0.0%							
Transportation (Interstate and other roads)	600	13.3%							
Total Not Isolated (Ac)	3899		3470						
Total Floodplain Area (Ac)	4509		3737						
Total Isolated (Ac)	611	13.5%	267	13.1%					

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	184	3	73	260

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal IZ age	Restricted CMZ Acreage	% Restric Migratic Area	ted Tota on AHZ Acrea	ll Re Z ge A	stricted AHZ creage	% Restricted Avulsion Area
	362	724	4,74	42	1,192	25%	355	i	91	26%
2011 Res	stricted Mig	ration A	rea Sun	nmar	У	Note that the	ese data refle	ct the obse	erved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	Counties, C	OE for the res	st of the rive	er).	sweet Grass
Road/Railro	oad Prism									
	Other Infrast	ructure	6	0.	1%					
	Non-Irrigated	k	28	0.	5%					
RipRap/Flo	w Deflectors									
	Irrigated		192	3.	8%					
RipRap										
	Public Road		178	3.	5%					
	Other Infrast	ructure	35	0.	7%					
	Non-Irrigated	k	227	4.	5%					
	Irrigated		142	2.	8%					
	Exurban Res	sidential	52	1.	0%					
	Canal		10	0.	2%					
Dike/Levee										
	Non-Irrigated	ł	416	8.	1%					
		Totals	1,285	25	.2%					
Land Us	es within th	e CMZ (/	Acres)	F Irri 4	lood gation 66.6	Sprinkler Irrigation 0.0	Pivot Irrigation 83.9	Urban/ ExUrba 241.9	n pc	irans- ortation 16.5

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Acı	res		%	of Rea	ch Area	a I
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	21	21	21	21	0.2%	0.2%	0.2%	0.2%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	200	222	294	333	1.5%	1.7%	2.3%	2.6%
	Totals	221	243	316	354	1.7%	1.9%	2.4%	2.7%
Agricultural Land	d								
	Non-Irrigated	6,549	5,213	4,985	4,742	50.3%	40.1%	38.3%	36.5%
	Irrigated	2,905	3,060	3,637	3,190	22.3%	23.5%	28.0%	24.5%
	Totals	9,454	8,273	8,623	7,931	72.7%	63.6%	66.3%	61.0%
Channel									
	Channel	2,913	3,120	2,221	2,318	22.4%	24.0%	17.1%	17.8%
	Totals	2,913	3,120	2,221	2,318	22.4%	24.0%	17.1%	17.8%
ExUrban									
	ExUrban Other	0	6	107	125	0.0%	0.0%	0.8%	1.0%
	ExUrban Undeveloped	10	17	27	22	0.1%	0.1%	0.2%	0.2%
	ExUrban Industrial	3	65	107	194	0.0%	0.5%	0.8%	1.5%
	ExUrban Commercial	0	0	0	7	0.0%	0.0%	0.0%	0.1%
	ExUrban Residential	129	240	302	362	1.0%	1.8%	2.3%	2.8%
	Totals	142	328	544	710	1.1%	2.5%	4.2%	5.5%
Transportation									
	Public Road	102	94	98	103	0.8%	0.7%	0.8%	0.8%
	Interstate	0	48	48	48	0.0%	0.4%	0.4%	0.4%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	102	141	145	151	0.8%	1.1%	1.1%	1.2%
Urban									-
	Urban Other	0	23	25	25	0.0%	0.2%	0.2%	0.2%
	Urban Residential	148	608	876	1,020	1.1%	4.7%	6.7%	7.8%
	Urban Commercial	0	14	16	19	0.0%	0.1%	0.1%	0.1%
	Urban Undeveloped	0	134	100	109	0.0%	1.0%	0.8%	0.8%
	Urban Industrial	27	123	142	369	0.2%	0.9%	1.1%	2.8%
	Totals	175	902	1,159	1,542	1.3%	6.9%	8.9%	11.9%

Land Use Tir	and Use Timeline - Tiers 3 and 4 Change Between Years												
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	26	26	0.0%	0.0%	0.3%	0.3%	0.0%	0.3%	0.0%	0.3%
	Pivot	0	0	192	241	0.0%	0.0%	2.2%	3.0%	0.0%	2.2%	0.8%	3.0%
	Flood	2,905	3,060	3,420	2,922	30.7%	37.0%	39.7%	36.8%	6.3%	2.7%	-2.8%	6.1%
	Totals	2,905	3,060	3,637	3,190	30.7%	37.0%	42.2%	40.2%	6.3%	5.2%	-2.0%	9.5%

Non-Irrigated

Multi-Use	3,762	3,367	4,503	4,089	39.8%	40.7%	52.2%	51.6%	0.9%	11.5%	-0.7%	11.8%
Hay/Pasture	2,787	1,846	482	653	29.5%	22.3%	5.6%	8.2%	-7.2%	-16.7%	2.6%	-21.2%
Totals	6,549	5,213	4,985	4,742	69.3%	63.0%	57.8%	59.8%	-6.3%	-5.2%	2.0%	-9.5%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	;	Shrub (Acres) Closed Timber (Acres)			Acres)	Open Timber (Acres)					
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001		
Min	0.9	0.4	0.5	0.4	0.2	0.8	1.9	1.1	0.0		
Max	44.3	211.9	49.8	97.4	139.8	253.9	132.1	43.4	168.8		
Average	11.5	12.8	12.8	27.4	20.1	34.6	25.3	15.1	17.8		
Sum	402.4	539.4	500.4	1,262.6	1,367.5	1,385.2	556.9	272.5	446.2		
Riparian	Turnove	er			Riparian t	to Channel (a	cres)	509.3			
Conversion of riparian areas to channel, or from channel to riparian between the 1950's Channel to Ripar						to Riparian (a	(acres) 718.4				
and 2001 data set. Riparian Encroachmen							cres)	209.1			
Riparian	Recruit	ment	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	763.3				
Creation of	f riparian are	eas	1950s Flood	olain Mapped	as 2011 Cha	innel (Ac)	185.9				
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	949.2				

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	81.4	269.3	70.9	0.0	421.6
Acres/Valley Mile	6.2	20.4	5.4	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	41.60	1.83%	90.90	8.05	10.44	3.48	

Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region Reach		Region	Region	Region
	Bigmouth buffalo	✓ ✓ Flathead chub	Northern redbelly dace	Stonecat
	Black bullhead	Freshwater drum	Pallid sturgeon	Sturgeon chub
 ✓ 	Black crappie	Goldeye	Pumpkinseed	Sucker species
	Blue sucker	Green sunfish	Rainbow trout	✓ ✓ Sunfish species
 	Bluegill	✓ ✓ Lake chub	River carpsucker	Walleye
	Brook stickleback	✓ ✓ Largemouth bass	Rock bass	Vestern silvery minnow
~	Brown trout	✓ ✓ Longnose dace	Sand shiner	White bass
~	Burbot	✓ ✓ Longnose sucker	Sauger	V White crappie
	Catfish species	Minnow species	Shorthead redhorse	V White sucker
	Channel catfish	Mottled sculpin	Shortnose gar	Yellow bullhead
~	Common carp	Mountain sucker	Shovelnose sturgeon	Vellow perch
	Creek chub	✓ ✓ Mountain whitefish	Sicklefin chub	
 ✓ 	Emerald shiner	Northern pike	Smallmouth bass	
v v	Fathead minnow	☐ ☐ Northern plains killifish	Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	256.7	146.5	6.6%
Rip Rap Bottom	319.3	143.7	6.5%
Rip Rap Margin	191.5	100.1	4.5%
Bluff Pool	15.4	5.2	0.2%
Terrace Pool	34.6	35.2	1.6%
Secondary Channel	149.0	64.9	2.9%
Secondary Channel (Seasonal)	436.3	259.2	11.7%
Channel Crossover	259.7	175.9	7.9%
Point Bar		131.6	5.9%
Side Bar		86.8	3.9%
Mid-channel Bar		153.1	6.9%
Island	558.6	562.1	25.3%
Dry Channel		356.9	16.1%
AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
V V	American Robin	Chipping Sparrow	Killdeer	✓ ✓ Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
>	American Goldfinch		Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	🗹 🗹 Lazuli Bunting	Sharp-shinned Hawk
>	American Redstart	Common Merganser	Least Flycatcher	🖌 🖌 Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
>	Barn Swallow	✓ ✓ Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
>	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
>	Black-billed Magpie	✓ ✓ Downy Woodpecker	✓ ✓ Osprey	Violet-green Swallow
>	Black-capped Chickadee	Eastern Bluebird	V Ovenbird	✓ ✓ Warbling Vireo
>	Black-and-white Warbler	✓ ✓ Eastern Kingbird	Plumbeous Vireo	Western Kingbird
>	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	🗌 ✔ Western Meadowlark
	Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	✓ ✓ Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
\checkmark	Brewer's Blackbird	Franklin's Gull	✓ ✓ Ring-necked Pheasant	☐ ✔ White-throated Swift
>	Brown-headed Cowbird	Grasshopper Sparrow	✓ ✓ Red-tailed hawk	Wild Turkey
	Brown Creeper	✓ ✓ Gray Catbird	Rock Dove	Vood Duck
	Brown Thrasher	Great Blue Heron	✓ ✓ Red-winged Blackbird	Yellow-bellied Sapsucker
\checkmark	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
\checkmark	Cedar Waxwing	✓ ✓ House Finch	Say's Phoebe	Vellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	Vellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region B

The study segment Big Horn to Laurel includes data from the people of one large county, Yellowstone County. Three themes dominate conversations with the four interest groups. One theme focuses on the evolving communities of Yellowstone County, most of which are influenced by the economic success and sheer growth of Billings. The second theme focuses on the evolving relationships that the people have with the river. While traditional agricultural activities continue in the county, many people discuss notions related to urban and residential experiences and how the river becomes an asset that improves one's quality of life as an urban dweller. The third theme involves a complex tangle of pressures and demands that require managerial strategies capable of dealing with a future that has arrived.

County	Yellowstone
Classification	PCB: Partially confined braided
General Location	Billings
General Comments	Billlings; WAI Reach E

Upstream River Mile	368.3
Downstream River Mile	362.2
Length	6.10 mi (9.82 km)

Narrative Summary

Reach B2 is 6.1 miles long and located in Billings. The reach extends from the rimrock bluffs south of town, under the I-90 Bridge, to the refinery area at Lockwood. It is a Partially Confined Braided (PCB) reach type indicating some influence of the bluff line on the river coupled by extensive open gravel bars and low flow channels. Reach B2 is extensively urbanized, with floodplain dikes, industrial and urban/exurban development, pipeline crossings, and bridges throughout the reach. Flow alterations in this reach have been substantial; the mean annual flood has dropped an estimated 17 percent due to human influences, and summer low flows have dropped by 42 percent.

In total there are 21,700 feet of bank armor in Reach B2, which equates to 4.1 miles of bank armor in a 6 mile long reach of river. Concrete riprap is the most prevalent type of armor, with about three miles present in 2011. There is almost a mile of rock riprap and a few flow deflectors. There are also over three miles of floodplain dikes mapped in the reach.

Since 1950, 6,566 feet of side channels have been blocked by dikes. These blocked side channels are in highly urbanized areas upstream of the I-90 Bridge and at the water treatment plant downstream.

The primary land use in the reach is urban/exurban development. A total of 620 acres of the historic 100-year floodplain has become isolated from the river, which is 41 percent of the total 100-year floodplain footprint. Most of the 100-year floodplain isolation is due to the Interstate Highway Embankment. Approximately 21 percent of the Channel Migration Zone has become restricted due to physical features, most of which are riprap installed to protect urban/industrial land uses.

A total of three ice jams have been recorded in Reach B2. One of these jams occurred in February of 1996, and the other two in January of 1997. They all resulted in flooding and the January 3 1997 jam caused some evacuations. The jams were reported as forming upstream of the I-90 Bridge.

There are numerous pipeline crossings in Reach B2. At RM 367 two pipelines cross under the river. One is a crude oil pipeline owned by Beartooth Pipeline that is HDD (Horizontal Directionally Drilled). The other is a petroleum product pipeline owned by Phillips 66 that as of Fall 2012 was trenched, and according to the addendum to the Yellowstone River Pipeline Risk Assessment, had 4 to 10 feet of cover. Further downstream, there are seven pipelines listed in the Pipeline Risk Assessment Report at RM 365. Several of these pipelines are trenched as a bundle, with a reported minimum of two feet of cover. About 25 acres of Russian olive have been mapped in Reach B2.

Reach B2 was sampled as part of the fisheries study. A total of 31 fish species were sampled in the reach and one of those species was Sauger, which has been identified by the Montana Natural Heritage Program as a Species of Concern (SOC).

Reach B2 was sampled as part of the avian study. The average species richness in Reach B2 was 7.0, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for sites evaluated is 8. Two bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) were also found, the Ovenbird and the Plumbeous Vireo.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been substantial in this reach. The mean annual flood is estimated to have dropped from 23,700 cfs to 19,700 cfs, a drop of about 17 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,910 cfs to 2,000 cfs with human development, a reduction of 31 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 3,836 cfs under unregulated conditions to 2,227 cfs under regulated conditions at the Billings gage, a reduction of 42 percent.

CEA-Related observations in Reach B2 include: •Extensive armoring with CMZ encroachment

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach B2 include: •Pipeline crossing management •Russian olive removal PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Billings

Flo	ood His	story								Downstream	Upstream
	Year	Dat	te F	low on Date	Return Ir	nterval			Gage No	Gage 6309000	6214500
	1943	Jun	21	61,200	10-25	i yr			Location	Miles City	Billings
	1996	Jun	12	61,900	10-25	i yr		Porior		1020-2015	1020-2015
	1944	Jun	27	64,800	10-25	i yr		Fenot		1323-2013	1525-2015
	1967	Jun	16	66,100	10-25	i yr		Distance	To (miles)	178.2	-3.9
	1975	Jul	7	67,600	10-25	yr					
	1974	Jun	19	69,500	25-50	yr					
	2011	Jul	2	70,600	25-50	yr					
	1918	Jun	15	78,100	50-100) yr					
	1997	Jun	12	82,000	>100	yr					
Di	scharg	е								7010	95% Sum.
	-		1.01 Y	r 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	23,700	44,200	54,500	60,800	73,500	78,600	90,100	2,910	3,846
	Regul	ated	19,700	39,800	50,400	57,000	70,500	76,000	88,500	2,000	2,227
	% Cha	ange	-16.88%	% -9.95%	-7.52%	-6.25%	-4.08%	-3.31%	-1.78%	-31.27%	-42.10%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	5/15/1951 - 5/14/51	B/W	1:28,400	6214500	12000
1976	USCOE	29-Sep-76	B/W	1:24,000	6214500	5630
1995	USGS DOQQ	23-Aug-96	B/W		6214500	4500
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6214500	1700
2004	Merrick	15-May-04	Color	1:15,840	6214500	5960
2005	NAIP	07/12/2005	color	1-meter pixels	6214500	12600
2005	NAIP	07/08/2005	color	1-meter pixels	6214500	11400
2009	NAIP	7/5/2009	Color	1-meter pixels	6214500	23800
2011	USCOE	October 2012	color	1-ft pixel	6214500	3860
2011	NAIP	7/24/2011	Color	1-meter pixels	6214500	22800
2013	NAIP	06/15/2013	color	1-meter pixels	6214500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature	Feature	2001	% of	2011	% of	2001-2011
Class	Туре	Length (ft)	Bankline	Length (ft)	Bankline	Change
Stream St	abilization					
	Steel Retaining Wall	192	0.3%	192	0.3%	0
	Rock RipRap	3,501	5.4%	4,329	6.7%	828
	Flow Deflectors	0	0.0%	67	0.1%	67
	Concrete RipRap	17,283	26.8%	17,283	26.8%	0
	Between Flow Deflectors	0	0.0%	24	0.0%	24
	Feature Type Totals	20,977	32.5%	21,895	34.0%	918
Other In C	Channel			I		
	Bedrock Outcrop	208	0.3%	208	0.3%	0
	Feature Type Totals	208	0.3%	208	0.3%	0
Floodplair	n Control			1		
	Floodplain Dike/Levee	7,037	10.9%	7,037	10.9%	0
	Feature Type Totals	7,037	10.9%	7,037	10.9%	0
	Reach Totals	28,223	43.8%	29,141	45.2%	918

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap		0	315	2,647	328	656	328	13,002	0
Rock RipRap		689	928	0	0	715	0	1,217	0
Steel Retaining Wall		0	0	0	0	0	0	194	0
	Totals	689	1,243	2,647	328	1,371	328	14,412	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

		Sum of Feature Length (ft) 1950 1976 1995 2001 2004					
Feature Class Irrigation	Feature Type	1950	1976	1995	2001	2004	2005
	Floodplain Dike/Levee	5,400	5,400	5,400	5,400	5,400	5,400
	Totals	5,400	5,400	5,400	5,400	5,400	5,400
Other							
	Floodplain Dike/Levee	12,435	17,523	17,523	17,523	17,523	17,523
	Totals	12,435	17,523	17,523	17,523	17,523	17,523
Other Off Channe	el						
	Floodplain Dike/Levee	0	3,468	3,468	3,468	3,468	3,468

Floodplain Dike/Levee	0	0	757	757	757	757
Totals	0	3,468	4,225	4,225	4,225	4,225
Stream Stabilization						
Steel Retaining Wall	275	275	275	275	275	275
Rock RipRap	1,100	2,973	3,758	3,758	3,758	3,758
Concrete RipRap	5,062	15,933	18,005	18,005	18,005	18,005
Totals	6,437	19,182	22,039	22,039	22,039	22,039
Transportation Encroachment						
Railroad	1,491	1,491	1,491	1,491	1,491	1,491
Other	3,322	3,960	1,861	1,861	1,861	1,861
Interstate	0	10,378	10,378	10,378	10,378	10,378
County Road	6,101	8,904	8,904	8,904	8,904	8,904
Totals	10,913	24,732	22,633	22,633	22,633	22,633

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

2/6/1996

1/3/1997

1/10/1997

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	31,111	29,288	1.94	1950 to 1976:	3.45%
1976	31,620	31,888	2.01	1976 to 1995:	-12.85%
1995	32,440	24,341	1.75	1995 to 2001:	1.21%
2001	32,233	24,867	1.77	1950 to 2001:	-8.75%
Change 1950 - 2001	1,123	-4,421	-0.17		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	6,566		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	50	3.3%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	570	37.9%			
Total Not Isolated (Ac)	884		852		
Total Floodplain Area (Ac)	1504		910		
Total Isolated (Ac)	620	41.2%	58	15.4%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	0	0	0

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal MZ eage	Restricted CMZ Acreage	% Restric Migratio Area	ted Tota n AH2 Acrea	nl Res Z ge Ad	stricted AHZ creage	% Restricted Avulsion Area
	245	490	1,1	18	251	22%	66		0	0%
2011 Res	stricted Mig	ration A	rea Sur	nmar	у	Note that the	ese data refle	ct the obse	rved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perce Cl	ent of MZ	Counties, COE for the rest of the river).		Sweet Glass		
RipRap										
	Urban Indus	trial	218	18	.2%					
Dike/Levee										
	Exurban Oth	er	38	3.	1%					
		Totals	256	21	.3%					
Land Us	es within th	e CMZ (/	Acres)	F Irrig	lood gation	Sprinkler Irrigation	Pivot Irrigation	Urban/ ExUrba	n po	Frans- ortation
					0.0	0.0	0.0	276.5		10.3

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	structure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	33	17	9	17	0.8%	0.4%	0.2%	0.4%
	Totals	33	17	9	17	0.8%	0.4%	0.2%	0.4%
Agricultural Land	t								
	Non-Irrigated	1,988	1,545	1,358	1,066	45.8%	35.6%	31.3%	24.6%
	Irrigated	469	25	5	5	10.8%	0.6%	0.1%	0.1%
	Totals	2,457	1,569	1,363	1,071	56.6%	36.2%	31.4%	24.7%
Channel									
	Channel	725	702	612	629	16.7%	16.2%	14.1%	14.5%
	Totals	725	702	612	629	16.7%	16.2%	14.1%	14.5%
ExUrban									
	ExUrban Other	138	0	0	0	3.2%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	5	0	0	0	0.1%	0.0%	0.0%	0.0%
	ExUrban Industrial	30	0	0	0	0.7%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	145	15	0	0	3.3%	0.3%	0.0%	0.0%
	Totals	318	15	0	0	7.3%	0.3%	0.0%	0.0%
Transportation									
	Public Road	29	32	32	32	0.7%	0.7%	0.7%	0.7%
	Interstate	0	79	80	80	0.0%	1.8%	1.8%	1.8%
	Railroad	17	17	17	17	0.4%	0.4%	0.4%	0.4%
	Totals	46	128	128	128	1.1%	2.9%	2.9%	2.9%
Urban									
	Urban Other	13	58	90	98	0.3%	1.3%	2.1%	2.3%
	Urban Residential	117	455	472	713	2.7%	10.5%	10.9%	16.4%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	111	91	54	0.0%	2.6%	2.1%	1.2%
	Urban Industrial	630	1,285	1,575	1,631	14.5%	29.6%	36.3%	37.6%
	Totals	760	1,910	2,228	2,495	17.5%	44.0%	51.3%	57.5%

Land Use Ti	meline - Tiers 3	and 4								Char	ige Bet	ween Y	'ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	'01-11	'50-11
Irrigated													
	Sprinkler	0	0	5	5	0.0%	0.0%	0.4%	0.5%	0.0%	0.4%	0.1%	0.5%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	469	25	0	0	19.1%	1.6%	0.0%	0.0%	-17.5%	-1.6%	0.0%	-19.1%
	Totals	469	25	5	5	19.1%	1.6%	0.4%	0.5%	-17.5%	-1.2%	0.1%	-18.6%

ALC STRUCTURES	
Non-Irridated	
Non inguteu	
-	

Multi-Use	1,157	427	1,138	939	47.1%	27.2%	83.5%	87.6%	-19.8%	56.3%	4.1%	40.5%
Hay/Pasture	832	1,117	219	127	33.8%	71.2%	16.1%	11.9%	37.4%	-55.1%	-4.2%	-22.0%
Totals	1,988	1,545	1,358	1,066	80.9%	98.4%	99.6%	99.5%	17.5%	1.2%	-0.1%	18.6%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Clos	ed Timber (A	Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	1.9	0.3	1.1	3.0	0.8	1.9	6.1	8.1	11.8
Max	87.6	41.0	40.7	59.3	90.7	125.5	87.3	58.1	43.3
Average	16.4	9.5	7.2	17.5	13.4	25.8	35.5	31.4	24.7
Sum	180.6	94.7	65.0	210.2	255.2	361.8	248.4	157.1	98.9
Riparian	Turnove	r		Riparian f	to Channel (a	icres)	129.1		
from ch	rsion of ripar nannel to ripa	ian areas to o arian betweei	n the 1950's		Channel t	to Riparian (a	icres)	91.8	
and 20	01 data set.			Riparian Encroachment (acres) -37.2					
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	105.2		
Creation of	f riparian are	as	1950s Floodp	lain Mapped	as 2011 Cha	nnel (Ac)	42.7		
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	147.9		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	44.5	19.6	11.6	0.0	75.7
Acres/Valley Mile	8.0	3.5	2.1	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	24.62	3.18%	40.06	2.32	5.89	3.52

Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region Reach		Region	Region	Region
	Bigmouth buffalo	✓ ✓ Flathead chub	Northern redbelly dace	Stonecat
< <	Black bullhead	Freshwater drum	Pallid sturgeon	Sturgeon chub
	Black crappie	Goldeye	Pumpkinseed	Sucker species
	Blue sucker	Green sunfish	Rainbow trout	Sunfish species
	Bluegill	Lake chub	River carpsucker	Walleye
< <	Brook stickleback	✓ ✓ Largemouth bass	Rock bass	Vestern silvery minnow
	Brown trout	✓ ✓ Longnose dace	Sand shiner	White bass
	Burbot	✓ ✓ Longnose sucker	✓ ✓ Sauger	✓ ✓ White crappie
	Catfish species	Minnow species	Shorthead redhorse	✓ ✓ White sucker
< <	Channel catfish	Mottled sculpin	Shortnose gar	Yellow bullhead
< <	Common carp	Mountain sucker	Shovelnose sturgeon	Vellow perch
	Creek chub	✓ ✓ Mountain whitefish	Sicklefin chub	
	Emerald shiner	Northern pike	Smallmouth bass	
 	Fathead minnow	Northern plains killifish	Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	59.0	20.9	3.4%
Rip Rap Bottom	92.6	67.5	11.0%
Rip Rap Margin	19.4	11.8	1.9%
Bluff Pool	104.4	86.8	14.2%
Secondary Channel	10.3	16.5	2.7%
Secondary Channel (Seasonal)	132.4	90.6	14.8%
Channel Crossover	112.2	69.6	11.4%
Point Bar		15.4	2.5%
Side Bar		27.5	4.5%
Mid-channel Bar		27.3	4.5%
Island	81.5	81.5	13.3%
Dry Channel		96.2	15.7%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	🗹 🗹 Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	□ ✓ Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	☐ ✓ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	V Ovenbird	Warbling Vireo
	Black-and-white Warbler	✓ ✓ Eastern Kingbird	✓ ✓ Plumbeous Vireo	🗌 🗹 Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	🗌 🗹 Western Meadowlark
	Blue Jay	🖌 🖌 European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	Field Sparrow	Red Crossbill	☐ ✓ White-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	Ring-necked Pheasant	☐ ✔ White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	🗌 🗌 Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	✓ ✓ Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	✓ ✓ Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	Vellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region B

The study segment Big Horn to Laurel includes data from the people of one large county, Yellowstone County. Three themes dominate conversations with the four interest groups. One theme focuses on the evolving communities of Yellowstone County, most of which are influenced by the economic success and sheer growth of Billings. The second theme focuses on the evolving relationships that the people have with the river. While traditional agricultural activities continue in the county, many people discuss notions related to urban and residential experiences and how the river becomes an asset that improves one's quality of life as an urban dweller. The third theme involves a complex tangle of pressures and demands that require managerial strategies capable of dealing with a future that has arrived.

County	Yellowstone
Classification	UB: Unconfined braided
General Location	East Billings
General Comments	Wide corridor d/s Billings; WAI Reach F

Upstream River Mile	362.2
Downstream River Mile	357.9
Length	4.30 mi (6.92 km)

Reach B3

Narrative Summary

Reach B3 is 4.3 miles long and located in east Billings. The reach is characterized by the loss of several miles of side channel, extensive Russian olive infestation, and substantial flow alterations due to human influences.

In total there are about 13,500 feet of bank armor in Reach B3, which covers almost 30 percent of the bankline. Most of the armor is rock riprap, although there are over 3,000 feet of flow deflectors mapped in the reach, as well as over a mile of floodplain dikes.

Prior to 1950, 11,000 feet of side channels had been blocked in the reach, and since that time another 14,000 feet have been similarly blocked by small dikes. These ~4 miles of blocked channel are about equivalent in length to that of the main river. That said, as of 2001 there were still about 35,000 feet of active side channel in Reach B3.

Solid waste dumps were mapped on old side channels on the east floodplain areas at RM 361.5 and RM 360.6. There is one major headgate on the left bank of the river that feeds a heavily armored canal at RM 359.9.

Flow alterations and channel blockages have promoted the encroachment of riparian vegetation into old channel areas. Since 1950, almost 200 acres of riparian vegetation colonized previously un-vegetated side channels. Floodplain turnover rates have gone down since 1976 by about 2 acres per year, indicating slower rates of erosion.

Since 1950, predominantly agricultural land uses in Reach B3 have been converted to a mix of agriculture and urban/exurban development. About 1,000 acres of urban/exurban development has taken place since 1950. About 470 acres of ground continues to be flood irrigated in this area of east Billings. Approximately 16 percent of the Channel Migration Zone has become restricted due to physical features, all of which are bank armor installations designed to protect urban/industrial and agricultural land uses.

About 50 acres of Russian olive have been mapped in Reach B3. There are also fairly extensive mapped wetlands, with about 230 acres of total wetland area mapped, 95 acres of which are emergent wet meadows and marsh areas.

Reach B3 was sampled as part of the fisheries study. A total of 29 fish species were sampled in the reach, and none of those species have been identified by the Montana Natural Heritage Program as a Species of Concern (SOC).

Reach B3 was sampled as part of the avian study. The average species richness in this reach was 7.5, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for sites evaluated is 8. One bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) was also found, the Plumbeous Vireo.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been substantial in this reach. The mean annual flood is estimated to have dropped from 23,900 cfs to 19,800 cfs, a drop of about 17 percent. The 2-year flood, which strongly influences overall channel form, has dropped from 44,500 cfs to 40,100 cfs, which is a reduction of 10 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,920 cfs to 2,010 cfs with human development, a reduction of 31 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 3,836 cfs under unregulated conditions to 2,227 cfs under regulated conditions at the Billings gage, a reduction of 42 percent.

CEA-Related observations in Reach B3 include: •Riparian encroachment with flow alterations Extensive armoring with CMZ encroachment

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach B3 include: •Side channel reactivation at RM 362.0, 360.5, 359.8 and RM 359.0

•Russian olive removal

•Solid waste dump removal RM 361.5 and RM 360.6

•Irrigation diversion structure management at RM 359.9.

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Billings

Floc	od His	story	,							Downstream	Upstream
	Year	Da	te F	low on Date	Return Ir	nterval			Gage No	Gage	Gage 6214500
	1943	Jun	21	61,200	10-25	5 yr			Location	Miles City	Billings
	1996	Jun	12	61,900	10-25	5 yr		Perior	l of Record	1929-2015	1929-2015
	1944	Jun	27	64,800	10-25	5 yr		T enoc		1323 2010	1020 2010
	1967	Jun	16	66,100	10-25	5 yr		Distance	e lo (miles)	173.9	2.2
	1975	975 Jul 7 67,600		10-25	i yr						
	1974	Jun	19	69,500	25-50	25-50 yr					
	2011	Jul	2	70,600	25-50) yr					
	1918	Jun	15	78,100	50-10	0 yr					
	1997	Jun	12	82,000	>100 yr						
Disc	charg	е								7Q10	95% Sum.
			1.01 Y	r 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
U	Inregul	ated	23,900	44,500	55,000	61,300	74,000	79,200	90,700	2,920	3,846
	Regul	ated	19,800	40,100	50,900	57,500	71,000	76,600	89,100	2,010	2,227
	% Cha	ange	-17.159	% -9.89%	-7.45%	-6.20%	-4.05%	-3.28%	-1.76%	-31.16%	-42.10%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	14-May-51	B/W	1:28,400	6214500	13200
1976	USCOE	29-Sep-76	B/W	1:24,000	6214500	5630
1995	USGS DOQQ	23-Aug-96	B/W		6214500	4500
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6214500	1700
2004	Merrick	15-May-04	Color	1:15,840	6214500	5960
2005	NAIP	07/08/2005	color	1-meter pixels	6214500	11400
2009	NAIP	7/5/2009	Color	1-meter pixels	6214500	23800
2011	USCOE	October 2012	color	1-ft pixel	6214500	3860
2011	NAIP	7/24/2011	Color	1-meter pixels	6214500	22800
2013	NAIP	06/15/2013	color	1-meter pixels	6214500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature	Feature	2001	% of	2011	% of	2001-2011
Class	Туре	Length (ft)	Bankline	Length (ft)	Bankline	Change
Stream St	abilization					
	Rock RipRap	10,299	22.3%	10,047	21.7%	-252
	Flow Deflectors	731	1.6%	772	1.7%	41
	Concrete RipRap	592	1.3%	592	1.3%	0
	Between Flow Deflectors		5.1%	2,340	5.1%	1
	Feature Type Totals	13,960	30.2%	13,751	29.7%	-209
Floodplain	Control					
	Transportation Encroachment	5,175	11.2%	5,175	11.2%	0
	Floodplain Dike/Levee	5,766	12.5%	5,766	12.5%	0
	Feature Type Totals	10,941	23.7%	10,941	23.7%	0
	Reach Totals	24,901	53.8%	24,692	53.4%	-209

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type	Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap	0	98	0	0	0	0	0	886
Flow Deflectors/Between FDs	1,351	0	0	0	0	0	1,535	1,492
Rock RipRap	0	0	0	0	0	0	3,123	0
Tota	ls 1,351	98	0	0	0	0	4,658	2,378

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

		Sum of Feature Length (ft)							
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005		
Irrigation									
	Floodplain Dike/Levee	6,788	7,002	7,002	7,002	7,002	7,002		
	Totals	6,788	7,002	7,002	7,002	7,002	7,002		
Other									
	Floodplain Dike/Levee	7,446	7,446	7,446	7,446	7,446	7,446		
	Totals	7,446	7,446	7,446	7,446	7,446	7,446		
Other Off Chann	nel								
	Floodplain Dike/Levee	0	2,866	6,494	6,494	6,494	6,494		
	Floodplain Dike/Levee	155	7,025	9,010	9,010	9,010	9,010		
	Totals	155	9,891	15,504	15,504	15,504	15,504		

Stream Stabilization

Rock RipRap	1,755	6,280	10,177	10,177	10,177	10,177
Flow Deflector	0	3,244	3,244	3,244	3,244	3,244
Concrete RipRa	p 0	0	592	592	592	592
Totals	1,755	9,524	14,012	14,012	14,012	14,012
Transportation Encroachment						
Railroad	5,149	5,149	5,149	5,149	5,149	5,149
Other	303	303	303	3,060	5,072	5,072
County Road	5,505	5,505	5,505	5,505	5,505	5,505
Totals	10,957	10,957	10,957	13,714	15,726	15,726

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)			Bankfull	Bankfull Braiding % Change in Parameter Braiding	
	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Braiding Parameter		% Change in Braiding
1950	22,668	41,147	2.82	1950 to 1976:	-21.52%
1976	23,157	28,007	2.21	1976 to 1995:	11.22%
1995	22,999	33,516	2.46	1995 to 2001:	2.60%
2001	23,124	35,173	2.52	1950 to 2001:	-10.45%
Change 1950 - 2001	456	-5,974	-0.29		
Length of Side		Pre-1950s (ft)	11,002		
Channels Blocked		Post-1950s (ft)	13,693		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	1640		1489		
Total Floodplain Area (Ac)	1640		1644		
Total Isolated (Ac)	0	0.0%	155	14.1%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	76	0	0	76

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal Restric IZ CMZ age Acrea	ted % Restri 2 Migrati ge Area	cted Tota ion AHZ Acreag	I Restric AHZ ge Acrea	ted % Restricted Avulsion ge Area
	415	830	1,50	60 201	13%	64	64	100%
2011 Res	stricted Mig	ration A	rea Sun	nmary	Note that t	hese data reflec	ct the observed	conditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, (COE for the res	t of the river).	ing Sweet Glass
RipRap/Flo	w Deflectors							
	Urban Indus	trial	105	6.4%				
	Irrigated		129	7.9%				
RipRap								
	Railroad		32	2.0%				
		Totals	266	16.3%				
Land Us	es within th	e CMZ (Acres)	Flood Irrigation 60.5	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 216.9	Trans- portation 5.5

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Aci	res		%	of Rea	ich Area	a j
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	50	67	71	51	1.3%	1.8%	1.9%	1.4%
	Totals	50	67	71	51	1.3%	1.8%	1.9%	1.4%
Agricultural Lan	d								
	Non-Irrigated	2,297	1,703	1,387	1,297	60.5%	44.9%	36.5%	34.2%
	Irrigated	420	703	637	473	11.1%	18.5%	16.8%	12.4%
	Totals	2,717	2,406	2,025	1,770	71.6%	63.4%	53.3%	46.6%
Channel						•			
	Channel	870	906	837	853	22.9%	23.9%	22.1%	22.5%
	Totals	870	906	837	853	22.9%	23.9%	22.1%	22.5%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	18	18	332	559	0.5%	0.5%	8.7%	14.7%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	3	14	39	57	0.1%	0.4%	1.0%	1.5%
	Totals	21	32	371	616	0.6%	0.8%	9.8%	16.2%
Transportation									
	Public Road	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	21	21	20	20	0.6%	0.6%	0.5%	0.5%
	Totals	21	21	20	20	0.6%	0.6%	0.5%	0.5%
Urban									
	Urban Other	0	0	40	27	0.0%	0.0%	1.1%	0.7%
	Urban Residential	0	96	171	182	0.0%	2.5%	4.5%	4.8%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	12	0	13	0.0%	0.3%	0.0%	0.4%
	Urban Industrial	116	256	261	263	3.1%	6.8%	6.9%	6.9%
	Totals	116	365	473	485	3.1%	9.6%	12.5%	12.8%

Land Use Ti	meline - Tiers 3 ar	nd 4								Char	ige Betv	ween Y	ears
			Acr	res		%	of Rea	ch Area	a	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	420	703	637	473	15.5%	29.2%	31.5%	26.7%	13.7%	2.3%	-4.8%	11.2%
	Totals	420	703	637	473	15.5%	29.2%	31.5%	26.7%	13.7%	2.3%	-4.8%	11.2%

Non-	Irrigated	
	0	

Multi-Use	1,401	1,252	1,137	1,023	51.5%	52.0%	56.2%	57.8%	0.5%	4.1%	1.7%	6.3%
Hay/Pasture	896	451	250	274	33.0%	18.8%	12.4%	15.5%	-14.2%	-6.4%	3.1%	-17.5%
Totals	2,297	1,703	1,387	1,297	84.5%	70.8%	68.5%	73.3%	-13.7%	-2.3%	4.8%	-11.2%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Clos	ed Timber (A	Acres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	4.4	0.5	1.0	1.6	1.4	1.2	0.7	2.6	1.7	
Max	74.7	195.9	173.6	147.6	90.2	152.0	91.3	42.9	89.2	
Average	29.4	13.8	22.3	29.9	20.3	32.7	20.9	17.8	36.0	
Sum	205.9	385.2	356.1	448.2	507.7	523.3	292.9	106.5	179.9	
Riparian	Turnove	er			Riparian t	to Channel (a	cres)	156.7		
Conver from ch	rsion of ripar nannel to ripa	ian areas to o arian betwee	channel, or n the 1950's		Channel t	cres)	214.1			
and 20	01 data set.			Riparian Encroachment (acres) 57.3						
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	216.9			
Creation of	f riparian are	as	1950s Floodplain Mapped as 2011 Channel (Ac)				138.0			
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	355.0			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	95.8	94.9	40.5	0.0	231.2
Acres/Valley Mile	25.3	25.0	10.7	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	49.76	4.14%	45.71	7.40	11.57	5.58	

Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region Reach		Region	Region	Region Reach
	Bigmouth buffalo	✓ ✓ Flathead chub	Northern redbelly dace	Stonecat
	Black bullhead	Freshwater drum	Pallid sturgeon	Sturgeon chub
 	Black crappie	Goldeye	Pumpkinseed	Sucker species
	Blue sucker	✓ ✓ Green sunfish	Rainbow trout	Sunfish species
 	Bluegill	✓ ✓ Lake chub	River carpsucker	Walleye
~	Brook stickleback	✓ ✓ Largemouth bass	Rock bass	Vestern silvery minnow
~	Brown trout	✓ ✓ Longnose dace	Sand shiner	White bass
	Burbot	✓ ✓ Longnose sucker	Sauger	✓ ✓ White crappie
	Catfish species	Minnow species	Shorthead redhorse	✓ ✓ White sucker
	Channel catfish	✓ ✓ Mottled sculpin	Shortnose gar	Yellow bullhead
~	Common carp	✓ ✓ Mountain sucker	Shovelnose sturgeon	✓ ✓ Yellow perch
	Creek chub	✓ ✓ Mountain whitefish	Sicklefin chub	
~	Emerald shiner	Northern pike	Smallmouth bass	
	Fathead minnow	Northern plains killifish	Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat Scour Pool	Bankfull 48.5	Low Flow 45.2	% of Low Flow 5.4%
Rip Rap Bottom	95.6	52.8	6.3%
Rip Rap Margin	28.3	13.1	1.6%
Secondary Channel	40.8	15.5	1.8%
Secondary Channel (Seasonal)	211.2	126.3	15.1%
Channel Crossover	116.1	47.6	5.7%
Point Bar		27.0	3.2%
Side Bar		44.3	5.3%
Mid-channel Bar		8.4	1.0%
Island	296.7	296.7	35.4%
Dry Channel		160.1	19.1%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	in Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
>	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
>	American Goldfinch	Cliff Swallow	Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
>	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
\checkmark	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
\checkmark	Black-billed Magpie	Downy Woodpecker	Osprey	Violet-green Swallow
\checkmark	Black-capped Chickadee	Eastern Bluebird	Ovenbird	Varbling Vireo
	Black-and-white Warbler	Eastern Kingbird	✓ ✓ Plumbeous Vireo	Vestern Kingbird
>	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	🗌 🗹 Western Meadowlark
>	Blue Jay	🖌 🖌 European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	✓ ✓ Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	Ring-necked Pheasant	✓ ✓ White-throated Swift
>	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	✓ ✓ Red-winged Blackbird	Yellow-bellied Sapsucker
>	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
\checkmark	Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	✓ ✓ Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region B

The study segment Big Horn to Laurel includes data from the people of one large county, Yellowstone County. Three themes dominate conversations with the four interest groups. One theme focuses on the evolving communities of Yellowstone County, most of which are influenced by the economic success and sheer growth of Billings. The second theme focuses on the evolving relationships that the people have with the river. While traditional agricultural activities continue in the county, many people discuss notions related to urban and residential experiences and how the river becomes an asset that improves one's quality of life as an urban dweller. The third theme involves a complex tangle of pressures and demands that require managerial strategies capable of dealing with a future that has arrived.

County	Yellowstone	Upstream River Mile	357.9
Classification	PCS: Partially confined straight	Downstream River Mile	354
General Location	Upstream of Huntley	Length	3.90 mi (6.28 km)
General Comments	Channel closely follows right valey wall; extensive bank armor		

Narrative Summary

Reach B4 is 3.9 miles long and located upstream of Huntley. It is classified as a Partially Confined Straight (PCS) reach type because within this area the river flows straight along the south valley wall with minimal meandering. The reach is characterized by the most extensive bank armoring of any reach on the river.

In total there are about 29,000 feet of bank protection in Reach B4, such that 74 percent of the bankline is armored. Most of the armor is rock riprap, although there are over 8,000 feet of concrete riprap mapped in the reach, as well as over 9,000 feet of floodplain dikes. Between 2001 and 2011, 500 feet of concrete riprap and 1,050 feet of flow deflectors were eroded out in the reach. The failed flow deflectors and concrete riprap have been largely replaced by rock riprap, although at the upstream end of the reach at RM 357.8, about 300 feet of flanked flow deflectors are in the river about 75 feet off of the left (north) bank.

The predominant land use in the reach is agriculture, with about 1,200 acres of land in flood irrigation in 2011. A total of 204 acres of developed land uses have encroached into the Channel Migration Zone (CMZ), including 193 acres of flood irrigation and 11 acres of transportation corridor. In order to protect these land uses, bank armor installations have isolated about one half of the river's CMZ.

Huntley Diversion Dam is located at RM 355.8. The structure diverts flow into the Huntley Main Canal, which follows the southern margin of the Yellowstone River floodplain. The diversion capacity of Huntley Dam is 600 cfs, and the project has the capacity to provide irrigation water to 30,000 acres of farm land. The crest length of the structure is 325 feet, and its structural height is 10.5 feet (http://www.usbr.gov/dataweb/dams/yellowstone_river_diversion.htm). The Huntley diversion structure was originally constructed as a temporary earthfill dam in 1931. In 1934, the temporary structure was modified to a concrete weir. In 1959, the dam underwent considerable rehabilitation due to undermining caused by settling and cracking of the concrete structure. As part of repairs required after recent flooding on the river, a fish passage channel was constructed around the north end of the dam. The structure is located at a point of split flow on the river, and blocks only the main channel. However, 2001 color infrared air photos of the site show that at low flows, the unblocked secondary channels are essentially dry and therefore incapable of passing fish.

Land has been developed in commonly flooded areas. About 280 acres of flood irrigated land is within the 5-year floodplain area.

There are corrals that are part of an animal handling facility adjacent to the north bank of the river at RM 355.

About 2.3 acres of Russian olive have been mapped in Reach B4.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been substantial in this reach. The mean annual flood is estimated to have dropped from 24,000 cfs to 19,900 cfs, a drop of about 17 percent. The 2-year flood, which strongly influences overall channel form, has dropped from 44,700 cfs to 40,300 cfs, which is a reduction of 10 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 2,940 cfs to 2,010 cfs with human development, a reduction of 32 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 3,846 cfs under unregulated conditions to 2,227 cfs under regulated conditions at the Billings gage, a reduction of 42 percent.

CEA-Related observations in Reach B4 include: •Flanking of flow deflectors

•Repair of damaged flow deflectors with riprap

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach B4 include:

•Flanked flow deflector removal at RM 357.8

- •Nutrient management at corrals associated with animal handling facility at RM 355.
- •Fish passage at Huntley Diversion Dam
- •Watercraft passage at Huntley Diversion Dam
- •Irrigation Diversion structure management at Huntley Diversion Dam

Reach B4

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Billings

Flood Hi	story								Downstream	Upstream
Year	Dat	e Flo	ow on Date	Return Ir	nterval			Gage No	Gage	Gage 6214500
1943	Jun 2	21	61,200	10-25	i yr			Location	Miles City	Billings
1996	Jun '	12	61,900	10-25	i yr		Porior		1020-2015	1020-2015
1944	Jun 2	27	64,800	10-25	10-25 yr				1929-2013	1929-2015
1967	Jun '	16	66,100	10-25	i yr		Distance	e To (miles)	170.0	6.5
1975	Jul	7	67,600	10-25	yr					
1974	Jun '	19	69,500	25-50	yr					
2011	Jul	2	70,600	25-50	yr					
1918	Jun '	15	78,100	50-100) yr					
1997	Jun '	12	82,000	>100	yr					
Discharg	je								7Q10	95% Sum.
		1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregu	lated	24,000	44,700	55,100	61,400	74,300	79,400	91,000	2,940	3,846
Regu	lated	19,900	40,300	51,000	57,500	71,300	76,800	89,400	2,010	2,227
% Ch	ange	-17.08%	-9.84%	-7.44%	-6.35%	-4.04%	-3.27%	-1.76%	-31.63%	-42.10%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	14-May-51	B/W	1:28,400	6214500	13200
1976	USCOE	29-Sep-76	B/W	1:24,000	6214500	5630
1995	USGS DOQQ	23-Aug-96	B/W		6214500	4500
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6214500	1700
2004	Merrick	15-May-04	Color	1:15,840	6214500	5960
2005	NAIP	07/14/2005	color	1-meter pixels	6214500	9730
2005	NAIP	07/08/2005	color	1-meter pixels	6214500	11400
2009	NAIP	7/5/2009	Color	1-meter pixels	6214500	23800
2011	USCOE	October 2012	color	1-ft pixel	6214500	3860
2011	NAIP	7/24/2011	Color	1-meter pixels	6214500	22800
2013	NAIP	06/15/2013	color	1-meter pixels	6214500	
PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature	Feature	2001	% of	2011	% of	2001-2011
Class	туре	Length (It)	Dalikiile	Length (It)	Dalikiile	Change
Stream St	abilization					
	Rock RipRap	19,525	49.1%	20,730	52.1%	1,205
	Flow Deflectors	338	0.8%	258	0.6%	-80
	Concrete RipRap	8,833	22.2%	8,332	20.9%	-502
	Between Flow Deflectors	976	2.5%	0	0.0%	-976
	Feature Type Totals	29,672	74.6%	29,319	73.7%	-353
Floodplain	Control					
	Transportation Encroachment	4,465	11.2%	4,465	11.2%	0
	Floodplain Dike/Levee	8,976	22.6%	8,976	22.6%	0
	Feature Type Totals	13,441	33.8%	13,441	33.8%	0
	Reach Totals	43.113	108.3%	42.760	107.5%	-353

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap		5,550	0	3,280	0	0	0	0	0
Rock RipRap		3,004	0	462	0	0	23,705	0	0
	Totals	8,554	0	3,742	0	0	23,705	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

		Sum of Feature Length								
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005			
Irrigation										
	In Channel Diversion	237	474	237	237	237	237			
	Floodplain Dike/Levee	13,375	13,375	13,375	13,375	13,375	13,375			
	Totals	13,612	13,849	13,612	13,612	13,612	13,612			
Other Off Channe	l									
	Floodplain Dike/Levee	0	4,705	4,705	4,705	4,705	4,705			
	Floodplain Dike/Levee	0	4,300	4,300	4,300	4,300	4,300			
	Totals	0	9,005	9,005	9,005	9,005	9,005			
Stream Stabilizati	on									
	Rock RipRap	18,166	18,166	18,166	18,406	18,406	18,406			
	Flow Deflector	0	3,241	3,241	3,241	3,241	3,241			
	Concrete RipRap	0	6,452	6,452	6,960	6,960	6,960			

	Totals	18,166	27,859	27,859	28,607	28,607	28,607
Transportation Encroachm	ent						
Railroad	k	13,543	13,543	13,543	13,543	13,543	13,543
Other		619	619	619	619	619	619
	Totals	14,162	14,162	14,162	14,162	14,162	14,162

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)			Bankfull		
3(1)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Braiding Parameter		% Change in Braiding
1950	19,950	9,303	1.47	1950 to 1976:	-2.55%
1976	20,116	8,627	1.43	1976 to 1995:	-3.42%
1995	20,165	7,663	1.38	1995 to 2001:	14.31%
2001	19,897	11,490	1.58	1950 to 2001:	7.58%
Change 1950 - 2001	-53	2,188	0.11		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	29	2.2%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	1262		1159		
Total Floodplain Area (Ac)	1291		1290		
Total Isolated (Ac)	29	2.2%	132	14.1%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	279	0	0	279

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal //Z eage	Restricted CMZ Acreage	% Restrict Migration Area	ted Tota n AHZ Acrea	ll Res ' / ge Ac	stricted AHZ sreage	% Restricted Avulsion Area
	332	663	83	51	236	28%	266		249	93%
2011 Res	stricted Mig	ration A	ea Sun	nmary	y	Note that the	ese data refle	ct the obser	ved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perce CN	ent of MZ	Counties, CO	DE for the res	st of the rive	er).	Sweet Glass
RipRap/Flo	w Deflectors									
	Irrigated		26	2.3	3%					
RipRap										
	Railroad		63	5.7	7%					
	Irrigated		396	35.	8%					
		Totals	484	43.	8%					
Land Us	es within th	ie CMZ (A	Acres)	FI Irriç 19	ood gation 93.1	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 0.0	ך pc ו	Frans- ortation 10.8

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	6	6	6	6	0.2%	0.2%	0.2%	0.2%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	70	128	157	162	2.1%	3.9%	4.8%	5.0%
	Totals	76	134	163	168	2.3%	4.1%	5.0%	5.1%
Agricultural Lan	d								
	Non-Irrigated	2,048	1,520	1,338	1,391	62.8%	46.6%	41.0%	42.7%
	Irrigated	728	1,167	1,261	1,161	22.3%	35.8%	38.7%	35.6%
	Totals	2,775	2,686	2,599	2,552	85.1%	82.4%	79.7%	78.3%
Channel									
	Channel	388	380	423	440	11.9%	11.7%	13.0%	13.5%
	Totals	388	380	423	440	11.9%	11.7%	13.0%	13.5%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	5	0.0%	0.0%	0.0%	0.1%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	17	36	0.0%	0.0%	0.5%	1.1%
	Totals	0	0	17	41	0.0%	0.0%	0.5%	1.3%
Transportation									
	Public Road	8	8	8	8	0.2%	0.2%	0.2%	0.2%
	Interstate	0	30	30	30	0.0%	0.9%	0.9%	0.9%
	Railroad	14	22	22	22	0.4%	0.7%	0.7%	0.7%
	Totals	22	60	59	59	0.7%	1.8%	1.8%	1.8%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	meline - Tiers 3 and	d 4								Char	ige Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	728	1,167	1,261	1,161	26.2%	43.4%	48.5%	45.5%	17.2%	5.1%	-3.0%	19.3%
	Totals	728	1,167	1,261	1,161	26.2%	43.4%	48.5%	45.5%	17.2%	5.1%	-3.0%	19.3%

Non-Irrigated

Multi-Use	1,394	1,284	1,333	1,271	50.2%	47.8%	51.3%	49.8%	-2.4%	3.5%	-1.5%	-0.4%
Hay/Pasture	654	235	4	120	23.6%	8.8%	0.2%	4.7%	-14.8%	-8.6%	4.5%	-18.9%
Totals	2,048	1,520	1,338	1,391	73.8%	56.6%	51.5%	54.5%	-17.2%	-5.1%	3.0%	-19.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	5	Shrub (Acres)			ed Timber (A	Acres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	7.6	1.2	1.8	2.5	2.4	1.2	4.0	2.9	1.9	
Max	29.2	7.6	34.1	111.8	129.6	136.5	26.2	34.4	40.6	
Average	17.1	4.9	14.2	35.4	40.3	23.2	17.8	17.7	13.1	
Sum	102.5	24.6	85.3	283.4	282.0	208.4	53.3	53.1	117.6	
Riparian	Turnove	r			Riparian f	to Channel (a	cres)	82.4		
Conve from cl	Conversion of riparian areas to channel, or from channel to riparian between the 1950's					Channel to Riparian (acres) 68.2				
and 20	01 data set.			R	Riparian Encroachment (acres) -14.2					
Riparian	Recruitr	nent	1950s Cha	nnel Mapped	nel Mapped as 2011 Riparian (Ac) 68.0					
Creation of riparian areas 1950s Floodpl			olain Mapped	as 2011 Cha	16.4					
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	84.4				

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	17.0	34.3	8.1	0.0	59.5
Acres/Valley Mile	4.6	9.2	2.2	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	2.29	1.08%	16.12	0.49	0.70	0.08

Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region Reach		Region	Region	Region
	Bigmouth buffalo	✓ ✓ Flathead chub	Northern redbelly dace	Stonecat
~ ~	Black bullhead	Freshwater drum	Pallid sturgeon	Sturgeon chub
	Black crappie	Goldeye	Pumpkinseed	Sucker species
	Blue sucker	Green sunfish	Rainbow trout	Sunfish species
~ ~	Bluegill	Lake chub	River carpsucker	Walleye
~ ~	Brook stickleback	✓ ✓ Largemouth bass	Rock bass	Vestern silvery minnow
~ ~	Brown trout	✓ ✓ Longnose dace	Sand shiner	White bass
	Burbot	✓ ✓ Longnose sucker	Sauger	White crappie
	Catfish species	Minnow species	Shorthead redhorse	✓ ✓ White sucker
~ ~	Channel catfish	Mottled sculpin	Shortnose gar	Yellow bullhead
~ ~	Common carp	✓ ✓ Mountain sucker	Shovelnose sturgeon	✓ ✓ Yellow perch
	Creek chub	✓ ✓ Mountain whitefish	Sicklefin chub	
~ ~	Emerald shiner	Northern pike	Smallmouth bass	
~ ~	Fathead minnow	Northern plains killifish	Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat Rip Rap Bottom	Bankfull 48.1	Low Flow 23.2	% of Low Flow 5.5%
Rip Rap Margin	96.3	56.3	13.3%
Secondary Channel	0.7	0.6	0.1%
Secondary Channel (Seasonal)	78.7	53.2	12.6%
Channel Crossover	58.6	28.9	6.8%
Point Bar		11.4	2.7%
Side Bar		23.2	5.5%
Mid-channel Bar		18.0	4.2%
Island	80.9	80.9	19.1%
Dry Channel		77.8	18.4%
Dam Influenced	59.4	49.2	11.6%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region B

The study segment Big Horn to Laurel includes data from the people of one large county, Yellowstone County. Three themes dominate conversations with the four interest groups. One theme focuses on the evolving communities of Yellowstone County, most of which are influenced by the economic success and sheer growth of Billings. The second theme focuses on the evolving relationships that the people have with the river. While traditional agricultural activities continue in the county, many people discuss notions related to urban and residential experiences and how the river becomes an asset that improves one's quality of life as an urban dweller. The third theme involves a complex tangle of pressures and demands that require managerial strategies capable of dealing with a future that has arrived.

Reach B5

County	Yellowstone	Upstream River Mile	354
Classification	UA: Unconfined anabranching	Downstream River Mile	346.7
General Location	Huntley: includes Spraklin Island	Length	7.30 mi (11.75 km)
General Comments	Just downstream of Huntley, Reach B5 provides a good exampotentially exacerbated by hydrologic alterations.	ple of floodplain isolation b	y structures, which is

Narrative Summary

Reach B5 is 7.4 miles long and is located near Huntley and Spraklin Island. The reach is an Unconfined Anabranching (UA) reach type, which indicates little influence by the valley wall coupled with relatively extensive forested islands and side channels. These reach types tend to be the most dynamic within the river corridor. Reach B5 flows northward though a wide valley section where the relatively erodible Bearpaw shale has retreated over geologic time, leaving an unusually broad river corridor. In Reach B5 the river crosses the valley from south to north, further contributing to the lack of confinement and allowance for channel migration.

About 12 percent of the bankline in Reach B5 is armored. In 2011, there was about a mile of concrete riprap, a half mile of rock riprap, and 1,500 feet of flow deflectors in the reach. Over the decade prior to that, however, 1,200 feet of concrete riprap and 1,150 feet of flow deflectors had eroded out, and 2,000 feet of rock riprap built, indicating a tendency for concrete and flow deflectors to fail coupled by an overall shift towards rock riprap bank protection between 2001 and 2011.

One of the most spectacular examples of barb failures on the Yellowstone River is in Reach B5, where about 1,300 feet of barbs on the left bank just downstream of the Huntley Bridge were flanked between 2001 and 2005. The river then migrated about 200 feet behind the barbs and the bank has since been armored with rock riprap. The flanked barbs remain visible in the middle of the river in 2011 imagery. Another barb was flanked on the left bank at RM 350, and is prominently exposed 65 feet off of the bank. In the lowermost end of the reach at RM 347, about 900 feet of concrete armor was flanked on the right bank, and the river is now up to 200 feet behind the armor, migrating rapidly to the east. This area has seen over 800 feet of river migration since 1950.

Prior to 1950, about 11,400 feet of side channels were blocked in the reach by small dikes. These channels are on both sides of the river just downstream of the Huntley Bridge at RM 352.5. Further downstream at RM 348 there are numerous older swales south of the river that are also blocked.

Land uses in the reach are primarily agricultural, with about 1,300 acres of flood irrigated land mapped as of 2011. There are also almost 600 acres of urban/exurban development. The Channel Migration Zone (CMZ) has been developed for multiple land uses; as of 2011, there were 389 acres of flood irrigation, 24 acres of urban/exurban land, and 10 acres of transportation infrastructure within the CMZ. About 14 percent of the total CMZ footprint has become restricted by bank armor and road prisms.

Trash dumps have been mapped on the left stream bank at RM 351.2, and up on the north bluff at RM 347.1. One large animal handling facility was mapped about 800 feet south of the river at RM 347.8.

About 55 acres of Russian olive have been mapped in Reach B5. The reach also hosts over 200 acres of mapped wetland areas, about 170 acres of which are emergent marshes and wet meadows.

Riparian recruitment in the reach has exceeded 500 acres since 1950; about half of that recruitment occurred in areas that were 1950s channel and the other half in areas that were eroded between 1950 and 2001.

Reach B5 was sampled as part of the avian study. The average species richness in this reach was 8.4, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for sites evaluated is 8. Two bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) were also found, the Plumbeous Vireo and the Ovenbird.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been substantial in this reach. The mean annual flood is estimated to have dropped from 25,600 cfs to 21,200 cfs, a drop of about 17 percent. The 2-year flood, which strongly influences overall channel form, has dropped from 47,400 cfs to 42,600 cfs, which is a reduction of 10 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 3,000 cfs to 2,050 cfs with human development, a reduction of 32 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 3,846 cfs under unregulated conditions to 2,227 cfs under regulated conditions at the Billings gage, a reduction of 42 percent.

Because of the flow alterations, about 22 percent of the 5-year floodplain has become isolated in Reach B5.

CEA-Related observations in Reach B5 include:

•Flanking of flow deflectors and concrete riprap

•Blockage of over two miles of side channel pre-1950

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach B5 include: •Side channel restoration at RM 352.5

•Flanked flow deflector removal at RM 352.5 and 350.0

•CMZ management due to development within CMZ footprint

Russian olive removal

Thursday, March 3, 2016

•Nutrient management at animal handling facility at RM 347.8. •Solid waste removal at RM 351.2L and 347.1L

PHYSICAL FEATURES MAP (2011)

Var ocator 94 2 5 0 ш 2 0 S 0 352 <u>shepher</u> Floodplain Dike/Levee Flow Deflector Rock RipRap Concrete RipRap Flow Deflectors 44 14 Physical Features Other I nterstate Highway US or State Route Secondary Road 7z Reach Breaks **River Miles** Counties Legend

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Billings

Flo	ood His	story								Downstream	Upstream
	Year	Da	te F	low on Date	Return Ir	nterval			Gage No	Gage 6309000	6214500
	1943	Jun	21	61,200	10-25	i yr			Location	Miles City	Billings
	1996	Jun	12	61,900	10-25	i yr		Location		1020-2015	1020-2015
	1944	Jun	27	64,800	10-25	yr		Penou	I OI RECOIU	1929-2013	1929-2015
	1967	Jun	16	66,100	10-25	i yr		Distance To (miles)		162.7	10.4
	1975	Jul	7	67,600	10-25	yr					
	1974	Jun	19	69,500	25-50	yr					
	2011	Jul	2	70,600	25-50	yr					
	1918	Jun	15	78,100	50-10) yr					
	1997	Jun	12	82,000	>100	yr					
Di	scharg	е								7010	95% Sum.
	-		1.01 Y	r 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	25,600	47,400	58,400	65,100	78,600	84,000	96,100	3,000	3,846
	Regul	ated	21,200	42,600	54,000	61,000	75,400	81,200	94,400	2,050	2,227
	% Cha	ange	-17.199	% -10.13%	-7.53%	-6.30%	-4.07%	-3.33%	-1.77%	-31.67%	-42.10%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	14-May-51	B/W	1:28,400	6214500	13200
1976	USCOE	29-Sep-76	B/W	1:24,000	6214500	5630
1995	USGS DOQQ	8/23/96 - 8/10/96	B/W		6214500	4500
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6214500	1700
2004	Merrick	15-May-04	Color	1:15,840	6214500	5960
2005	NAIP	07/14/2005	color	1-meter pixels	6214500	9730
2009	NAIP	7/5/2009	Color	1-meter pixels	6214500	23800
2011	USCOE	October 2012	color	1-ft pixel	6214500	3860
2011	NAIP	7/24/2011	Color	1-meter pixels	6214500	22800
2013	NAIP	06/15/2013	color	1-meter pixels	6214500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					-
	Rock RipRap	552	0.7%	2,399	3.1%	1,847
	Flow Deflectors	587	0.7%	736	0.9%	150
	Concrete RipRap	6,579	8.4%	5,361	6.8%	-1,218
	Between Flow Deflectors	2,116	2.7%	813	1.0%	-1,303
	Feature Type Totals	9,833	12.5%	9,310	11.9%	-523
Floodplain	Control					
	Transportation Encroachment	2,694	3.4%	2,694	3.4%	0
	Floodplain Dike/Levee	2,055	2.6%	1,936	2.5%	-119
	Feature Type Totals	4,749	6.1%	4,630	5.9%	-119
	Reach Totals	14,582	18.6%	13,940	17.8%	-643

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap		3,172	1,082	1,099	1,223	0	0	0	0
Flow Deflectors/Between FD	s	0	1,617	610	0	0	0	0	476
Rock RipRap		171	0	0	0	0	0	0	0
	Totals	3,342	2,699	1,709	1,223	0	0	0	476

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

	Sum of Feature Length (ft)							
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005	
Irrigation								
	Floodplain Dike/Levee	1,736	1,736	1,736	1,736	1,736	1,736	
	Totals	1,736	1,736	1,736	1,736	1,736	1,736	
Other Off Chann	nel							
	Floodplain Dike/Levee	0	2,444	2,444	2,444	2,444	2,444	
	Floodplain Dike/Levee	449	449	449	449	449	449	
	Totals	449	2,893	2,893	2,893	2,893	2,893	
Stream Stabiliza	ition							
	Rock RipRap	2,422	2,594	2,594	2,594	2,594	2,594	
	Flow Deflector	0	645	645	2,736	1,391	1,391	
	Concrete RipRap	2,429	5,218	8,316	9,344	9,344	9,344	

Totals	4,851	8,457	11,555	14,674	13,328	13,328
Transportation Encroachment						
Railroad	1,238	1,238	1,238	1,238	1,238	1,238
Other	114	114	209	209	318	318
County Road	2,565	2,565	2,565	2,565	2,565	2,565
Bridge Approach	2,496	2,496	2,496	2,496	2,496	2,496
Totals	6,412	6,412	6,507	6,507	6,617	6,617

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan.	Anab. Ch.	Bankfull Braiding Parameter		% Change in Braiding
1950	39,051	58,430	2.50	1950 to 1976:	-2.39%
1976	39,578	56,859	2.44	1976 to 1995:	-3.13%
1995	39,826	54,179	2.36	1995 to 2001:	13.93%
2001	39,214	66,239	2.69	1950 to 2001:	7.73%
Change 1950 - 2001	163	7,809	0.19		
Length of Side		Pre-1950s (ft)	11,393		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	12	0.5%			
Total Not Isolated (Ac)	2320		1956		
Total Floodplain Area (Ac)	2332		2209		
Total Isolated (Ac)	12	0.5%	253	21.5%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	106	0	0	106

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal IZ age	Restricted CMZ Acreage	% Restrict Migration Area	ed Tota n AHZ Acrea	l Res ' A ge Ac	tricted AHZ reage	% Restricted Avulsion Area
	430	860	2,70	04	322	12%	91		55	60%
2011 Res	stricted Mig	ration A	rea Sun	nmai	у	Note that the	se data refle	ct the obser	ved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	Counties, CC	DE for the res	t of the river	rk and S r).	Sweet Grass
Road/Railro	oad Prism									
	Railroad		66	2	.3%					
	Public Road		69	2	.4%					
RipRap/Flo	w Deflectors									
	Irrigated		109	3	.9%					
RipRap										
	Public Road		126	4	.5%					
	Irrigated		27	0	.9%					
		Totals	396	14	.0%					
Land Us	es within th	e CMZ (/	Acres)	F Irri	Flood igation 305.1	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 50.4	٦ pc	rans- ortation 12.5

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Acı	es		% of Reach Area		a	
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	12	12	12	12	0.2%	0.2%	0.2%	0.2%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	81	99	130	147	1.5%	1.8%	2.4%	2.7%
	Totals	93	111	142	159	1.7%	2.0%	2.6%	2.9%
Agricultural Lan	d								
	Non-Irrigated	2,810	2,108	1,514	1,770	51.5%	38.6%	27.8%	32.5%
	Irrigated	921	1,476	1,644	1,271	16.9%	27.1%	30.2%	23.3%
	Totals	3,731	3,584	3,158	3,041	68.4%	65.7%	57.9%	55.8%
Channel									
	Channel	1,522	1,428	1,601	1,637	27.9%	26.2%	29.4%	30.0%
	Totals	1,522	1,428	1,601	1,637	27.9%	26.2%	29.4%	30.0%
ExUrban									
	ExUrban Other	0	7	0	0	0.0%	0.1%	0.0%	0.0%
	ExUrban Undeveloped	20	40	4	4	0.4%	0.7%	0.1%	0.1%
	ExUrban Industrial	0	0	12	12	0.0%	0.0%	0.2%	0.2%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	43	234	488	552	0.8%	4.3%	8.9%	10.1%
	Totals	63	281	503	567	1.2%	5.1%	9.2%	10.4%
Transportation									
	Public Road	40	39	39	39	0.7%	0.7%	0.7%	0.7%
	Interstate	0	2	2	2	0.0%	0.0%	0.0%	0.0%
	Railroad	5	7	7	7	0.1%	0.1%	0.1%	0.1%
	Totals	45	49	49	49	0.8%	0.9%	0.9%	0.9%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	1	1	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	1	1	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 and	4								Char	ige Betv	ween Y	ears
			Acr	res		%	of Rea	ch Area	1	(% 0	f Agricul	Itural La	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	921	1,476	1,644	1,271	24.7%	41.2%	52.1%	41.8%	16.5%	10.9%	-10.3%	17.1%
	Totals	921	1,476	1,644	1,271	24.7%	41.2%	52.1%	41.8%	16.5%	10.9%	-10.3%	17.1%

Non-Irrigated

Multi-Use	1,525	1,448	1,192	1,368	40.9%	40.4%	37.7%	45.0%	-0.5%	-2.7%	7.2%	4.1%
Hay/Pasture	1,286	660	321	402	34.5%	18.4%	10.2%	13.2%	-16.0%	-8.2%	3.0%	-21.2%
Totals	2,810	2,108	1,514	1,770	75.3%	58.8%	47.9%	58.2%	-16.5%	-10.9%	10.3%	-17.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Rin	arian	Man	nina
INP	anan	wap	ping

	5	Shrub (Acres	5)	Clos	ed Timber (A	(cres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.1	0.4	0.1	0.0	0.8	0.6	2.7	1.7	0.2
Max	28.5	67.0	24.9	153.1	171.3	127.2	59.8	31.3	71.5
Average	12.2	10.2	7.3	33.5	31.4	25.1	23.2	17.0	19.1
Sum	268.2	286.5	174.3	636.7	784.5	678.9	370.4	220.5	420.8
Riparian Turnover Riparian to Channel								339.8	
Conver from ch	sion of ripar nannel to ripa	ian areas to c arian betweer	the 1950's		Channel t	283.6			
and 20	01 data set.		R	iparian Encro	-56.2				
Riparian Recruitment 1950s Channel Mapped as 2011						arian (Ac)	285.2		
Creation of	f riparian are	as	1950s Floodp	lain Mapped	as 2011 Cha	nnel (Ac)	239.5		
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	524.7		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	17.7	169.8	52.3	0.0	239.8
Acres/Valley Mile	2.8	27.1	8.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	54.53	3.21%	53.49	5.19	15.73	8.16

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	140.7	68.5	4.2%
Rip Rap Bottom	87.3	46.8	2.9%
Bluff Pool	84.7	60.5	3.7%
Secondary Channel	299.1	117.7	7.2%
Secondary Channel (Seasonal)	252.4	162.3	9.9%
Channel Crossover	150.3	72.0	4.4%
Point Bar		93.1	5.7%
Side Bar		97.2	6.0%
Mid-channel Bar		56.8	3.5%
Island	617.4	617.4	37.8%
Dry Channel		239.5	14.7%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	in Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
\checkmark	American Robin	Chipping Sparrow	Killdeer	✓ ✓ Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
>	American Goldfinch	Cliff Swallow	✓ ✓ Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	🗹 🗹 Lazuli Bunting	Sharp-shinned Hawk
>	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	☐ ✓ Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	☐ ✔ Violet-green Swallow
\checkmark	Black-capped Chickadee	Eastern Bluebird	Venbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	Z Eastern Kingbird	✓ ✓ Plumbeous Vireo	🗌 🗹 Western Kingbird
>	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	✓ ✓ Western Meadowlark
	Blue Jay	🖌 🖌 European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	Field Sparrow	Red Crossbill	V White-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	Ring-necked Pheasant	☐ ✔ White-throated Swift
>	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	U Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	✓ ✓ Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
\checkmark	Cedar Waxwing	House Finch	Say's Phoebe	Vellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	Vellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region B

The study segment Big Horn to Laurel includes data from the people of one large county, Yellowstone County. Three themes dominate conversations with the four interest groups. One theme focuses on the evolving communities of Yellowstone County, most of which are influenced by the economic success and sheer growth of Billings. The second theme focuses on the evolving relationships that the people have with the river. While traditional agricultural activities continue in the county, many people discuss notions related to urban and residential experiences and how the river becomes an asset that improves one's quality of life as an urban dweller. The third theme involves a complex tangle of pressures and demands that require managerial strategies capable of dealing with a future that has arrived.

Reach B6

County	Yellowstone
Classification	PCB: Partially confined braided
General Location	Ballantine
General Comments	Channel closely follows left valley wall

Upstream River Mile	346.7
Downstream River Mile	340.6
Length	6.10 mi (9.82 km)

Narrative Summary

Reach B6 is 6.1 miles long and is located Ballantine. The reach is a Partially Confined Braided (PCB) reach type, which indicates some valley wall influence coupled with relatively extensive unvegetated bars and low flow islands. Within Reach B6, the river flows closely along the north valley wall. The Gritty Stone fishing access site is located in the downstream end of the reach.

About 6.3 percent of the bankline in Reach B6 is armored, and the majority of that armor (2,300 feet) is concrete riprap. Since 2001, riprap has expanded by about 430 feet. Reach B6 also hosts almost 1,500 feet of car body riprap, which is fairly unusual in terms of extent on the Yellowstone River. The car bodies were put in place between 1950 and 1995, and their mapped location is at RM 341.7R, although they are difficult to see on the imagery.

Prior to 1950, a side channel that was about 1,350 feet long was blocked by a small dike at RM 343. Even though this side channel was blocked, there has been a net gain of over three miles of side channel since 1950.

Land uses in the reach are primarily agricultural, with about 1,862 acres of flood irrigated land mapped as of 2011. The Channel Migration Zone (CMZ) has been developed for primarily flood irrigation; as of 2011, there were 237 acres of flood irrigated land in the CMZ, and about 9 percent of the total CMZ footprint has become restricted by bank armor and road prisms. The modern 5-year floodplain contains over 200 acres of flood-irrigated ground.

There is one mapped animal handling facility in the reach at RM 345.5R. It is within 800 feet of the active river bank.

The 100-year floodplain has also been restricted; about 210 acres or 11.4 percent of the historic 100-year floodplain area has become isolated from the river by agricultural infrastructure.

Since 1950, there has been almost 250 acres of riparian recruitment in the reach, and most of that was in the 1950s channels that were abandoned.

One ice jam has been recorded in Reach B6. On January 3, 1997, an ice jam occurred at RM 345 that caused severe flooding and resulted in evacuations.

There are 49 acres of mapped Russian olive in the reach, and the mapping indicates that it has expanded on islands and in side channels. Riparian recruitment in the reach has exceeded 500 acres since 1950; about half of that recruitment occurred in areas that were 1950s channel and the other half in areas that were eroded between 1950 and 2001.

Reach B6 was sampled as part of the avian study. The average species richness in this reach was 8.25, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for sites evaluated is 8.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been substantial in this reach. The mean annual flood is estimated to have dropped from 26,000 cfs to 21,100 cfs, a drop of about 19 percent. The 2-year flood, which strongly influences overall channel form, has dropped from 48,300 cfs to 43,000 cfs, which is a reduction of 11 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 3,000 cfs to 2,050 cfs with human development, a reduction of 32 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 3,846 cfs under unregulated conditions to 2,227 cfs under regulated conditions at the Billings gage, a reduction of 42 percent.

Because of the flow alterations, about 25 percent of the 5-year floodplain has become isolated in Reach B6. Much of that 5-year floodplain isolation is within old swales on the south side of the river. The 5-year flood discharge has dropped by 8.25 percent in this reach due to human influences, primarily irrigation.

CEA-Related observations in Reach B6 include: •Gain in anabranching channel length •Ice jamming •Side channel blockage at RM 343.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach B6 include: •Russian olive removal

•Nutrient management at corrals associated with animal handling facility at RM 534.5R

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Billings

Flood	His	tory								Downstream	Upstream	
Ye	ear	Dat	te Fl	ow on Date	Return Ir	Return Interval		Gage No		Gage	Gage 6214500	
19	43	Jun	21	61,200	10-25	10-25 yr			Location	Miles City	Billings	
19	96	Jun	12	61,900	10-25	10-25 yr				1020-2015	1020 2015	
19	44	Jun	27	64,800	10-25	10-25 yr		Period of Record		1929-2013	1929-2013	
19	67	Jun	16	66,100	10-25	yr		Distance	e To (miles)	156.6	17.7	
19	75	Jul	7	67,600	10-25	yr						
19	74	Jun	19	69,500	25-50	yr						
20	11	Jul	2	70,600	25-50	yr						
19	18	Jun	15	78,100	50-10) yr						
19	97	Jun	12	82,000	>100	yr						
Discha	arg	е								7010	95% Sum.	
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration	
Unr	egula	ated	26,000	48,300	59,400	66,200	79,900	85,300	97,700	3,000	3,846	
R	egula	ated	21,100	43,000	54,500	61,700	76,300	82,200	95,800	2,050	2,227	
%	h Cha	inge	-18.85%	۶ -10.97%	-8.25%	-6.80%	-4.51%	-3.63%	-1.94%	-31.67%	-42.10%	

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	15-May-51	B/W	1:28,400	6214500	11500
1976	USCOE	29-Sep-76	B/W	1:24,000	6214500	5630
1995	USGS DOQQ	8/10/96 - 8/24/96	B/W		6214500	4500
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6214500	1700
2004	Merrick	15-May-04	Color	1:15,840	6214500	5960
2005	NAIP	07/14/2005	color	1-meter pixels	6214500	9730
2005	NAIP	07/12/2005	color	1-meter pixels	6214500	12600
2009	NAIP	7/5/2009	Color	1-meter pixels	6214500	23800
2011	USCOE	October 2012	color	1-ft pixel	6214500	3860
2011	NAIP	7/24/2011	Color	1-meter pixels	6214500	22800
2013	NAIP	06/15/2013	color	1-meter pixels	6214500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization	0 ()		0 (7		0
	Rock RipRap	0	0.0%	304	0.5%	304
	Flow Deflectors	0	0.0%	23	0.0%	23
	Concrete RipRap	2,169	3.3%	2,275	3.5%	106
	Car Bodies	1,465	2.3%	1,465	2.3%	0
	Feature Type Totals	3,634	5.6%	4,067	6.3%	433
	Reach Totals	3,634	5.6%	4,067	6.3%	433

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Car Bodies		984	0	482	0	0	0	0	0
Concrete RipRap		2,168	0	0	0	0	0	0	0
	Totals	3,152	0	482	0	0	0	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

			Sum	of Featu	ure Leng	yth (ft)	
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005
Irrigation							
	Floodplain Dike/Levee	11,978	12,535	12,865	12,865	12,865	12,865
	Totals	11,978	12,535	12,865	12,865	12,865	12,865
Stream Stabilizati	ion						
	Concrete RipRap	0	0	2,981	2,981	2,981	2,981
	Car Bodies	0	1,702	1,702	1,702	1,702	1,702
	Totals	0	1,702	4,683	4,683	4,683	4,683
Transportation Er	ncroachment						
	County Road	3,755	3,755	3,755	3,755	3,755	3,755
	Totals	3,755	3,755	3,755	3,755	3,755	3,755

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

1/3/1997

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	31,548	26,855	1.85	1950 to 1976:	14.45%
1976	32,976	36,892	2.12	1976 to 1995:	-5.93%
1995	32,692	32,470	1.99	1995 to 2001:	18.16%
2001	32,409	43,922	2.36	1950 to 2001:	27.22%
Change 1950 - 2001	861	17,067	0.50		
Length of Side		Pre-1950s (ft)	1,352		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	209	11.4%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	1621		1659		
Total Floodplain Area (Ac)	1830		2002		
Total Isolated (Ac)	209	11.4%	344	24.8%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	304	0	0	304

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To Cl Acre	tal Re MZ eage A	estricted CMZ creage	% Restric Migratio Area	ted Tota on AH2 Acrea	al Re Z Ige A	estricted AHZ Acreage	% Restricted Avulsion Area
	425	850	1,4	64	128	9%	123	3	0	0%
2011 Re	stricted Mig	gration A	rea Sur	nmary		Note that the	ese data refle	ect the observe	erved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent CMZ	of	2011 aerial photography (NAIP for Park and Swe Counties, COE for the rest of the river).		Sweet Grass		
RipRap/Flc	w Deflectors									
	Irrigated		0	0.0%						
RipRap										
	Irrigated		141	8.8%						
		Totals	142	8.8%						
Land Us	es within th	ne CMZ (Acres)	Floo Irrigati	d ion	Sprinkler Irrigation	Pivot Irrigation	Urban ExUrba	/ - in po	Frans- ortation
Land Us	es within th	Totals ne CMZ (142 Acres)	8.8% Floo Irrigati 236.8	d ion 8	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban ExUrba 0.0	/ - in po	Frans- ortation 3.6
LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								1.1
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	52	65	97	137	1.1%	1.4%	2.1%	3.0%
	Totals	52	65	97	137	1.1%	1.4%	2.1%	3.0%
Agricultural Lan	d								1.1
	Non-Irrigated	2,365	2,208	1,811	1,737	51.1%	47.7%	39.1%	37.5%
	Irrigated	1,318	1,458	1,946	1,958	28.5%	31.5%	42.0%	42.3%
	Totals	3,683	3,666	3,757	3,695	79.5%	79.2%	81.1%	79.8%
Channel									1.1
	Channel	879	882	760	778	19.0%	19.1%	16.4%	16.8%
	Totals	879	882	760	778	19.0%	19.1%	16.4%	16.8%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%
Transportation									
	Public Road	17	17	17	17	0.4%	0.4%	0.4%	0.4%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	17	17	17	17	0.4%	0.4%	0.4%	0.4%
Urban									-
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	4	0.0%	0.0%	0.0%	0.1%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	4	0.0%	0.0%	0.0%	0.1%

Land Use Tir	neline - Tiers 3 a	and 4								Char	ige Beti	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	96	96	0.0%	0.0%	2.6%	2.6%	0.0%	2.6%	0.0%	2.6%
	Flood	1,318	1,458	1,849	1,862	35.8%	39.8%	49.2%	50.4%	4.0%	9.5%	1.2%	14.6%
	Totals	1,318	1,458	1,946	1,958	35.8%	39.8%	51.8%	53.0%	4.0%	12.0%	1.2%	17.2%

Non-Irrigated

Multi-Use	1,683	1,584	1,725	1,675	45.7%	43.2%	45.9%	45.3%	-2.5%	2.7%	-0.6%	-0.4%
Hay/Pasture	682	624	87	61	18.5%	17.0%	2.3%	1.7%	-1.5%	-14.7%	-0.6%	-16.9%
Totals	2,365	2,208	1,811	1,737	64.2%	60.2%	48.2%	47.0%	-4.0%	-12.0%	-1.2%	-17.2%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)				ed Timber (A	Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	1.1	1.0	0.5	1.5	0.9	0.4	1.2	0.7	0.7
Max	81.4	33.0	110.7	96.3	139.5	147.3	28.0	98.0	22.3
Average	10.2	7.0	13.4	34.6	24.9	20.5	10.6	20.1	8.9
Sum	194.0	104.9	255.5	380.5	373.4	349.0	84.5	161.0	53.5
Riparian	Turnove	er			Riparian t	to Channel (a	cres)	179.5	
Conver from ch	rsion of ripar nannel to ripa	ian areas to arian betwee	channel, or n the 1950's		143.0				
and 20	01 data set.			R	iparian Encr	oachment (a	cres)	-36.5	
Riparian Recruitment 1950s Channel Mapped as 2011 Riparian (Ac)							156.8		
Creation of	f riparian are	eas	1950s Floodplain Mapped as 2011 Channel (Ac) 89.2						
between 1	950s and 20	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	246.0		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	2.9	71.5	38.0	0.0	112.4
Acres/Valley Mile	0.5	12.7	6.7	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	48.71	2.83%	15.00	0.55	10.97	11.24

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	214.4	115.9	15.3%
Rip Rap Bottom	5.8	5.5	0.7%
Bluff Pool	82.9	57.4	7.6%
Secondary Channel	69.6	21.4	2.8%
Secondary Channel (Seasonal)	137.6	104.6	13.8%
Channel Crossover	107.5	68.4	9.0%
Point Bar		44.5	5.9%
Side Bar		57.1	7.5%
Mid-channel Bar		40.7	5.4%
Island	141.8	144.3	19.0%
Dry Channel		99.8	13.1%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
>	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
>	American Goldfinch		Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	🗹 🗹 Lazuli Bunting	Sharp-shinned Hawk
>	American Redstart	Common Merganser	Least Flycatcher	✓ ✓ Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	☐ ✔ Violet-green Swallow
\checkmark	Black-capped Chickadee	Eastern Bluebird	Ovenbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	Eastern Kingbird	Plumbeous Vireo	Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	🗌 ✔ Western Meadowlark
	Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	✓ ✓ Field Sparrow	Red Crossbill	☐ ✔ White-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	Ring-necked Pheasant	☐ ✔ White-throated Swift
\checkmark	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	V Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region B

The study segment Big Horn to Laurel includes data from the people of one large county, Yellowstone County. Three themes dominate conversations with the four interest groups. One theme focuses on the evolving communities of Yellowstone County, most of which are influenced by the economic success and sheer growth of Billings. The second theme focuses on the evolving relationships that the people have with the river. While traditional agricultural activities continue in the county, many people discuss notions related to urban and residential experiences and how the river becomes an asset that improves one's quality of life as an urban dweller. The third theme involves a complex tangle of pressures and demands that require managerial strategies capable of dealing with a future that has arrived.

County	Yellowstone	Upstream River Mile	340.6
Classification	UB: Unconfined braided	Downstream River Mile	331.8
General Location	To Pompey's Pillar	Length	8.80 mi (14.16 km)
General Comments	Unconfined reach		

Narrative Summary

Reach B7 is located just upstream of Pompey's Pillar. The Reach is almost nine miles long and is currently largely unconfined with a primary channel thread and numerous mid-channel bars and point bars. In the 1950's, the main channel flowed more closely along the north valley wall; southward migration since that time has reduced the influence of the valley wall on stream geomorphology. The valley is wide in this area, which is typical where the bounding rock units are made up of the relatively erodible Cretaceous-age Bearpaw shale.

Only 290 feet of the streambank in Reach B7 is armored, and no side channels have been blocked.

Land uses in the reach are primarily agricultural, with about 1,340 acres of flood irrigated land mapped as of 2011. The Channel Migration Zone (CMZ) has been developed for primarily flood irrigation; as of 2011, there were 390 acres of flood irrigated land in the CMZ, and about 4 percent of the total CMZ footprint has become restricted by bank armor and road prisms. The modern 5-year floodplain contains over 275 acres of flood-irrigated ground.

Reach B7 shows major southward migration of the river since 1950, with one area experiencing over 1,600 feet of migration over the past 60 years. The river has gained length, and the valley wall influence has become much less prevalent, as virtually all migration in this and adjacent reaches has been to the south. Since 1950 this section of river has lost almost 20,000 feet of anabranching channel length, and there is no strong indication that this loss is directly associated with floodplain dikes. Rather, it appears that significant lengths of anabranching channels were passively abandoned, which may be the consequence of a 19 percent reduction in the mean annual flood due to human influences.

South of the river over 600 acres of historic 100-year floodplain have been isolated from the river by the railroad. This includes a very broad area between the railroad and Interstate that will likely remain isolated since it is over 3,000 feet from the modern river. This area represents 22 percent of the total historic 100-year floodplain area.

The mouth of Arrow Creek is in Reach B7, and the lower portion of the creek has been captured by the river, shortening the tributary and likely driving downcutting upstream.

Reach B7 has 56 mapped acres of Russian olive that can be found in dense stands, however the extensive lateral migration of the river has promoted extensive recruitment of new woody riparian habitat. Since the 1950s there has been about 640 acres of riparian recruitment in the reach. The acreage of recruitment has exceeded that of erosion of riparian areas by 131 acres. Additionally, there are 260 mapped wetlands in the reach, including 135 acres of wet meadows and marsh.

Reach B7 was sampled as part of the avian study. The average species richness in this reach was 8.8, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for sites evaluated is 8. One bird species identified by the Montana Natural Heritage Program as a Potential Species of Concern (PSOC) was identified, the Dickscissel. Another species identified as a Species of Concern (SOC) was identified, the Red-headed Woodpecker.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The mean annual flood is estimated to have dropped from 27,200 cfs to 22,100 cfs, a drop of about 19 percent. The 2-year flood, which strongly influences overall channel form, has dropped by 11 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 3,010 cfs to 2,060 cfs with human development, a reduction of 32 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 3,846 cfs under unregulated conditions to 2,227 cfs under regulated conditions at the Billings gage, a reduction of 42 percent.

Because of the flow alterations, about 28 percent of the 5-year floodplain has become isolated in Reach B7. Much of that 5-year floodplain isolation is within irrigated fields on the south side of the river.

CEA-Related observations in Reach B7 include:

- •Migration away from valley wall resulting in loss of bluff pool habitat.
- •Passive abandonment of anabranching channels likely associated with reduced mean annual flows.
- •Rapid channel migration through cleared, often flood irrigated fields.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach B7 include: •Russian olive removal

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Billings

Flo	ood His	story	,							Downstream	Upstream
	Year	Da	te F	low on Date	Return Ir	nterval			Gage No	Gage	Gage 6214500
	1943	Jun	21	61,200	10-25	i yr			Location	Miles City	Billings
	1996	Jun	12	61,900	10-25	i yr		Porior		1929-2015	1020-2015
	1944	Jun	27	64,800	10-25	i yr		Fenot		1929-2013	1929-2013
	1967	Jun	16	66,100	10-25	i yr		Distance	e To (miles)	147.8	23.8
	1975	Jul	7	67,600	10-25	yr					
	1974	Jun	19	69,500	25-50	yr					
	2011	Jul	2	70,600	25-50	yr					
	1918	Jun	15	78,100	50-10) yr					
	1997	Jun	12	82,000	>100	yr					
Di	scharg	е								7Q10	95% Sum.
			1.01 Y	r 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
	Unregul	ated	27,200	50,400	62,000	69,000	83,100	88,800	102,000	3,010	3,846
	Regul	ated	22,100	44,900	56,900	64,300	79,400	85,600	100,000	2,060	2,227
	% Cha	ange	-18.759	% -10.91%	-8.23%	-6.81%	-4.45%	-3.60%	-1.96%	-31.56%	-42.10%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	NARA	July 9-27, 1950	B/W		6214500	29500
1976	USCOE	29-Sep-76	B/W	1:24,000	6214500	5630
1995	USGS DOQQ	24-Aug-96	B/W		6214500	4350
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6214500	1700
2004	Merrick	15-May-04	Color	1:15,840	6214500	5960
2005	NAIP	07/14/2005	color	1-meter pixels	6214500	9730
2005	NAIP	07/12/2005	color	1-meter pixels	6214500	12600
2005	NAIP	07/09/2005	color	1-meter pixels	6214500	11100
2009	NAIP	7/5/2009	Color	1-meter pixels	6214500	23800
2009	NAIP	6/29/2009	Color	1-meter pixels	6214500	26200
2011	USCOE	October 2012	color	1-ft pixel	6214500	3860
2011	NAIP	7/24/2011	Color	1-meter pixels	6214500	22800
2011	NAIP	7/16/2011	Color	1-meter pixels	6214500	36000
2013	NAIP	06/15/2013	color	1-meter pixels	6214500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature	Feature	2001	% of	2011	% of	2001-2011
Class	Туре	Length (ft)	Bankline	Length (ft)	Bankline	Change
Stream St	abilization					
	Concrete RipRap	289	0.3%	289	0.3%	0
	Feature Type Totals	289	0.3%	289	0.3%	0
	Reach Totals	289	0.3%	289	0.3%	0

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap		0	0	289	0	0	0	0	0
	Totals	0	0	289	0	0	0	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

			Sum o	of Featu	ire Leng	gth (ft)	
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005
Irrigation							
	Floodplain Dike/Levee	7,487	7,487	7,487	7,487	7,487	7,487
	Totals	7,487	7,487	7,487	7,487	7,487	7,487
Other Off Channe	el						
	Floodplain Dike/Levee	1,296	2,794	2,794	2,794	2,794	2,794
	Totals	1,296	2,794	2,794	2,794	2,794	2,794
Stream Stabilizat	ion						
	Rock RipRap	240	240	511	692	692	692
	Concrete RipRap	0	0	428	1,147	1,619	1,619
	Totals	240	240	939	1,839	2,311	2,311
Transportation E	ncroachment						
	Other	685	685	685	685	685	685
	County Road	2,068	2,068	2,068	2,068	2,068	2,068
	Bridge Approach	2,731	2,731	2,731	4,064	4,064	4,064
	Totals	5,485	5,485	5,485	6,818	6,818	6,818

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	44,372	71,314	2.61	1950 to 1976:	-1.11%
1976	42,962	67,805	2.58	1976 to 1995:	-25.15%
1995	45,882	42,659	1.93	1995 to 2001:	11.34%
2001	45,770	52,567	2.15	1950 to 2001:	-17.59%
Change 1950 - 2001	1,398	-18,747	-0.46		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)	95	3.0%		
Agriculture (generally relates to field boundaries)	0	0.0%		
Agriculture (isloated by canal or large ditch)	0	0.0%		
Levee/Riprap (protecting agricultural lands)	0	0.0%		
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%		
Railroad	604	18.9%		
Abandoned Railroad	0	0.0%		
Transportation (Interstate and other roads)	0	0.0%		
Total Not Isolated (Ac)	2492		2497	
Total Floodplain Area (Ac)	3191		3108	
Total Isolated (Ac)	699	21.9%	611	27.9%

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	278	0	0	278

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal Restrict MZ CMZ age Acreag	ed % Restric Migratic e Area	ted Tota on AHZ Acrea	I Restric AHZ ge Acrea	ted % Restricted Avulsion ge Area
	665	1,330	2,9	65 125	4%	4	0	0%
2011 Res	stricted Mig	ration A	rea Sun	nmary	Note that th	ese data reflec	ct the observed	conditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, C	OE for the res	t of the river).	and Sweet Grass
Road/Railro	oad Prism							
	Public Road		105	3.5%				
RipRap								
	Irrigated		20	0.7%				
		Totals	125	4.2%				
Land Us	es within th	e CMZ (/	Acres)	Flood Irrigation	Sprinkler Irrigation	Pivot Irrigation	Urban/ ExUrban	Trans- portation

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	61	139	170	188	0.9%	2.2%	2.6%	2.9%	
	Totals	61	139	170	188	0.9%	2.2%	2.6%	2.9%	
Agricultural Lan	d									
	Non-Irrigated	3,434	3,221	3,341	3,052	53.3%	50.0%	51.9%	47.4%	
	Irrigated	1,212	1,656	1,604	1,339	18.8%	25.7%	24.9%	20.8%	
	Totals	4,647	4,876	4,946	4,392	72.1%	75.7%	76.8%	68.2%	
Channel										
	Channel	1,681	1,371	1,256	1,742	26.1%	21.3%	19.5%	27.1%	
	Totals	1,681	1,371	1,256	1,742	26.1%	21.3%	19.5%	27.1%	
ExUrban										
	ExUrban Other	0	0	14	23	0.0%	0.0%	0.2%	0.4%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	0	0	35	0.0%	0.0%	0.0%	0.5%	
	Totals	0	0	14	58	0.0%	0.0%	0.2%	0.9%	
Transportation										
	Public Road	45	45	46	51	0.7%	0.7%	0.7%	0.8%	
	Interstate	0	1	1	1	0.0%	0.0%	0.0%	0.0%	
	Railroad	9	9	9	9	0.1%	0.1%	0.1%	0.1%	
	Totals	54	54	55	61	0.8%	0.8%	0.9%	0.9%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Til	meline - Tiers 3 an	d 4								Char	ige Beti	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	1,212	1,656	1,604	1,339	26.1%	34.0%	32.4%	30.5%	7.9%	-1.5%	-1.9%	4.4%
	Totals	1,212	1,656	1,604	1,339	26.1%	34.0%	32.4%	30.5%	7.9%	-1.5%	-1.9%	4.4%

Non-Irrigated

Multi-Use	2,874	2,580	2,845	2,492	61.9%	52.9%	57.5%	56.7%	-8.9%	4.6%	-0.8%	-5.1%
Hay/Pasture	560	640	497	561	12.0%	13.1%	10.0%	12.8%	1.1%	-3.1%	2.7%	0.7%
Totals	3,434	3,221	3,341	3,052	73.9%	66.0%	67.6%	69.5%	-7.9%	1.5%	1.9%	-4.4%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

		Shrub (Acres	5)	Clos	ed Timber (A	(cres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.3	0.3	0.6	0.5	0.8	1.1	1.2	0.4	0.8
Max	41.4	31.7	138.4	100.5	65.7	50.9	80.8	107.7	57.6
Average	6.7	7.3	14.1	16.6	17.5	14.5	14.3	14.0	16.1
Sum	308.9	301.0	535.6	430.9	333.4	420.4	272.3	419.0	160.9
Riparian	Turnove	er			Riparian t	o Channel (a	cres)	277.6	
Conver from ch	rsion of ripar nannel to ripa	ian areas to o arian betwee	channel, or n the 1950's		Channel t	o Riparian (a	cres)	408.4	
and 20	01 data set.			R	iparian Encre	oachment (a	cres)	130.8	
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	414.1		
Creation of riparian areas		as	1950s Floodp	lain Mapped	as 2011 Cha	nnel (Ac)	222.4		
between 19	950s and 20	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	636.5		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	11.1	135.1	110.7	0.0	256.9
Acres/Valley Mile	1.5	17.8	14.6	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	55.68	2.17%	20.65	0.31	26.47	9.33

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	362.1	182.9	14.6%
Rip Rap Bottom	54.7	20.9	1.7%
Bluff Pool	24.3	21.6	1.7%
Secondary Channel		16.8	1.3%
Secondary Channel (Seasonal)	223.8	163.8	13.0%
Channel Crossover	246.9	112.9	9.0%
Point Bar		152.4	12.1%
Side Bar		87.3	7.0%
Mid-channel Bar		40.2	3.2%
Island	344.0	344.0	27.4%
Dry Channel		113.0	9.0%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed	in Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	□ ✓ Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	Ovenbird	☐ ✓ Warbling Vireo
	Black-and-white Warbler	Eastern Kingbird	Plumbeous Vireo	V Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	✓ ✓ Red-headed Woodpecker	✓ ✓ Western Meadowlark
	Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	V Western Wood-pewee
	Bobolink	Field Sparrow	Red Crossbill	☐ ✔ White-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	Ring-necked Pheasant	☐ ✔ White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	U Wild Turkey
	Brown Creeper	✓ ✓ Gray Catbird	Rock Dove	V Wood Duck
	Brown Thrasher	Great Blue Heron	Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Vellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	Vellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region B

The study segment Big Horn to Laurel includes data from the people of one large county, Yellowstone County. Three themes dominate conversations with the four interest groups. One theme focuses on the evolving communities of Yellowstone County, most of which are influenced by the economic success and sheer growth of Billings. The second theme focuses on the evolving relationships that the people have with the river. While traditional agricultural activities continue in the county, many people discuss notions related to urban and residential experiences and how the river becomes an asset that improves one's quality of life as an urban dweller. The third theme involves a complex tangle of pressures and demands that require managerial strategies capable of dealing with a future that has arrived.

County	Yellowstone
Classification	PCA: Partially confined anabranching
General Location	Bull Mountain
General Comments	Pompey's Pillar

Upstream River Mile	331.8
Downstream River Mile	322.7
Length	9.10 mi (14.65 km)

Narrative Summary

Reach B8 is located downstream of Pompey's Pillar. The Reach is 9.1 miles long and is partially confined by the valley wall with numerous forested islands. In the 1950's, the main channel flowed more closely along the north valley wall; southward migration since that time has reduced the influence of the valley wall on stream geomorphology. The valley is wide in this area, which is typical where the bounding rock units are made up of the relatively erodible Cretaceous-age Bearpaw shale.

Just over 3,000 feet of streambank are armored by rock riprap, which is about 3.3 percent of the total bankline. All of the bank armor in the reach is protecting the rail line on the south side of the river. High resolution imagery from fall 2011 indicates that at RM 328 about 570 feet of rock riprap has been flanked on the right bank against the rail line, and that the flanked rock is about 80 feet into the river off of the south bank. Currently, the river is within 100 feet of the rail line and migrating rapidly in that direction.

One side channel that is about 6,200 feet long at RM 326R was blocked prior to 1950.

Land uses in the reach are primarily agricultural, with about 1,240 acres of flood irrigated land mapped as of 2011. There are 124 acres of land in sprinkler and 86 under pivot. The modern 5-year floodplain contains about 250 acres of flood-irrigated ground.

One dump site was mapped on an old swale adjacent to a flood irrigated field at RM 326.5R.

The Channel Migration Zone (CMZ) has been developed for primarily flood irrigation; as of 2011, there were 457 acres of flood irrigated land in the CMZ, and about 7 percent of the total CMZ footprint has become restricted by bank armor and road prisms. The railroad has isolated almost 9 percent of the historic 100-year floodplain in the reach. About 22 percent of the 5-year floodplain has become isolated in Reach B8. Much of that 5-year floodplain isolation is due to transportation infrastructure on the south side of the river.

Similar to Reach B7 upstream, Reach B8 shows major southward migration of the river since 1950, with one area at RM 324.3 experiencing over 1,500 feet of migration over the past 60 years. This southward migration has threatened the rail line at RM 328R.

Overall, the migration rates and floodplain turnover rates have dropped since 1976 from 1.9 acres/valley mile/year from 1950 to 1976 to 1.5 acres/valley mile/year from 1976-2001.

Reach B8 has 91 mapped acres of Russian olive that can be found in dense stands, especially on forested islands. Even so, the extensive lateral migration of the river has promoted extensive recruitment of new woody riparian habitat. Since the 1950s there has been about 600 acres of riparian recruitment in the reach, most of which was riparian colonization of old 1950's channel area. The acreage of recruitment has exceeded that of erosion of riparian areas by 51 acres. Additionally, there are 271 mapped wetlands in the reach, including 147 acres of wet meadows and marsh. The reach contains about 33 wetland acres per valley mile, which is a relatively high value for the Yellowstone River.

Reach B8 was sampled as part of the avian study. The average species richness in this reach was 7.8, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for sites evaluated is 8. One bird species identified by the Montana Natural Heritage Program as a Potential Species of Concern was identified, the Plumbeous Vireo. Another species identified as a Species of Concern was identified, the Red-headed Woodpecker.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The mean annual flood is estimated to have dropped from 28,000 cfs to 22,800 cfs, a drop of about 19 percent. The 2-year flood, which strongly influences overall channel form, has dropped by 11 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 3,040 cfs to 2,070 cfs with human development, a reduction of 32 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 3,846 cfs under unregulated conditions to 2,227 cfs under regulated conditions at the Billings gage, a reduction of 42 percent.

CEA-Related observations in Reach B8 include: •Migration away from valley wall resulting in loss of bluff pool habitat. •Blockage of one side channel at RM 326 sometime prior to 1950 •Transportation infrastructure –caused isolation of 5-year floodplain south of the river at RM 329.5

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach B8 include: •Side channel reactivation at RM 326 •Dump removal at RM 326.5R

•Flanked armor removal at RM 328R

•Russian olive removal

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Billings

Floo	od His	story	,							Downstream	Upstream
	Year	Da	te Fl	ow on Date	Return Ir	Return Interval		Corro No		Gage 6309000	Gage 6214500
	1943	Jun	21	61,200	10-25	5 yr			Location	Miles City	Billings
	1996	Jun	12	61,900	10-25	5 yr		Pario		1929-2015	1020-2015
	1944	Jun	27	64,800	10-25	5 yr		Feno		1323-2013	1323-2013
	1967	Jun	16	66,100	10-25	5 yr		Distance	e To (miles)	138.7	32.6
	1975	Jul	7	67,600	10-25	5 yr					
	1974	Jun	19	69,500	25-50) yr					
	2011	Jul	2	70,600	25-50) yr					
	1918	Jun	15	78,100	50-10	0 yr					
	1997	Jun	12	82,000	>100	yr					
Disc	harg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
U	Inregul	ated	28,000	51,700	63,500	70,700	85,100	90,900	104,000	3,040	3,846
	Regul	ated	22,800	46,100	58,300	65,800	81,300	87,600	102,000	2,070	2,227
	% Cha	ange	-18.57%	-10.83%	-8.19%	-6.93%	-4.47%	-3.63%	-1.92%	-31.91%	-42.10%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	NARA	July 9-27, 1950	B/W		6214500	29500
1976	USCOE	29-Sep-76	B/W	1:24,000	6214500	5630
1995	USGS DOQQ	7/29/96 - 9/11/96	B/W		6214500	10400
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6214500	1700
2004	Merrick	5/15/04 - 5/14/04	Color	1:15,840	6214500	5960
2005	NAIP	07/14/2005	color	1-meter pixels	6214500	9730
2005	NAIP	07/09/2005	color	1-meter pixels	6214500	11100
2009	NAIP	6/29/2009	Color	1-meter pixels	6214500	26200
2011	USCOE	October 2012	color	1-ft pixel	6214500	3860
2011	NAIP	7/16/2011	Color	1-meter pixels	6214500	36000
2013	NAIP	06/16/2013	color	1-meter pixels	6214500	
2013	NAIP	06/15/2013	color	1-meter pixels	6214500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature	Feature	2001	% of	2011	% of	2001-2011
Class	Туре	Length (ft)	Bankline	Length (ft)	Bankline	Change
Stream St	abilization					
	Rock RipRap	3,209	3.3%	3,209	3.3%	0
	Feature Type Totals	3,209	3.3%	3,209	3.3%	0
Floodplain	Control					
	Transportation Encroachment	13,957	14.5%	13,957	14.5%	0
	Feature Type Totals	13,957	14.5%	13,957	14.5%	0
	Reach Totals	17,166	17.8%	17,166	17.8%	0

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		325	338	0	0	0	1,889	0	0
	Totals	325	338	0	0	0	1,889	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

		Sum of Feature Length (ft)						
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005	
Irrigation								
	Floodplain Dike/Levee	0	1,314	1,314	1,314	1,314	1,314	
	Totals	0	1,314	1,314	1,314	1,314	1,314	
Other Off Channe	1							
	Floodplain Dike/Levee	0	0	2,190	2,190	2,190	2,190	
	Totals	0	0	2,190	2,190	2,190	2,190	
Stream Stabilizati	on							
	Rock RipRap	1,010	1,489	2,839	2,839	2,839	2,839	
	Flow Deflector	0	0	199	199	199	199	
	Totals	1,010	1,489	3,038	3,038	3,038	3,038	
Transportation Er	croachment							
	Railroad	17,269	17,269	17,269	17,269	17,269	17,269	
	Interstate	0	11,402	11,402	11,402	11,402	11,402	
	Totals	17,269	28,670	28,670	28,670	28,670	28,670	

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	51,355	76,381	2.49	1950 to 1976:	-1.05%
1976	46,802	68,389	2.46	1976 to 1995:	11.40%
1995	47,129	82,091	2.74	1995 to 2001:	-7.86%
2001	48,159	73,512	2.53	1950 to 2001:	1.57%
Change 1950 - 2001	-3,196	-2,869	0.04		
Length of Side		Pre-1950s (ft)	6,209		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	219	8.7%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	2310		2696		
Total Floodplain Area (Ac)	2530		3138		
Total Isolated (Ac)	219	8.7%	442	21.6%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	251	0	0	251

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal Restricte MZ CMZ eage Acreage	d % Restrict Migratio Area	ted Tota n AHZ Acrea	l Res 2 / ge Ac	tricted AHZ reage	% Restricted Avulsion Area
	515	1,031	3,1	75 224	7%	63		0	0%
2011 Res	stricted Mig	gration Ar	ea Sun	nmary	Note that the	ese data refle	ct the obser	ved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	2011 aerial photography (NAIP for Park and Counties, COE for the rest of the river).		r).	Sweet Glass	
RipRap									
	Railroad		224	6.9%					
		Totals	224	6.9%					
Land Us	es within th	ne CMZ (A	(cres)	Flood Irrigation 456.7	Sprinkler Irrigation 2.7	Pivot Irrigation 0.0	Urban/ ExUrban 3.8	ך pc	rans- ortation 79.8

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	91	105	126	123	1.3%	1.5%	1.8%	1.8%
	Totals		105	126	123	1.3%	1.5%	1.8%	1.8%
Agricultural Lan	d								
	Non-Irrigated	3,613	3,313	3,245	3,057	52.2%	47.9%	46.9%	44.2%
	Irrigated	1,276	1,349	1,386	1,449	18.4%	19.5%	20.0%	20.9%
	Totals	4,889	4,663	4,632	4,506	70.6%	67.4%	66.9%	65.1%
Channel									
	Channel	1,793	1,853	1,863	1,979	25.9%	26.8%	26.9%	28.6%
	Totals	1,793	1,853	1,863	1,979	25.9%	26.8%	26.9%	28.6%
ExUrban									
	ExUrban Other	0	0	0	2	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	43	64	64	75	0.6%	0.9%	0.9%	1.1%
	Totals	43	64	64	77	0.6%	0.9%	0.9%	1.1%
Transportation									
	Public Road	58	63	63	63	0.8%	0.9%	0.9%	0.9%
	Interstate	0	126	126	126	0.0%	1.8%	1.8%	1.8%
	Railroad	47	47	46	46	0.7%	0.7%	0.7%	0.7%
	Totals	105	236	235	235	1.5%	3.4%	3.4%	3.4%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	meline - Tiers 3 and	4								Char	ige Beti	ween Y	ears
			Acr	es		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	01-11	'50-11
Irrigated													
	Sprinkler	6	64	124	124	0.1%	1.4%	2.7%	2.8%	1.2%	1.3%	0.1%	2.6%
	Pivot	0	86	86	86	0.0%	1.8%	1.9%	1.9%	1.8%	0.0%	0.1%	1.9%
	Flood	1,270	1,200	1,176	1,239	26.0%	25.7%	25.4%	27.5%	-0.2%	-0.3%	2.1%	1.5%
	Totals	1,276	1,349	1,386	1,449	26.1%	28.9%	29.9%	32.2%	2.8%	1.0%	2.2%	6.1%

Non-Irrigated

Multi-Use	3,149	2,837	2,824	2,691	64.4%	60.8%	61.0%	59.7%	-3.6%	0.1%	-1.2%	-4.7%
Hay/Pasture	464	476	422	366	9.5%	10.2%	9.1%	8.1%	0.7%	-1.1%	-1.0%	-1.4%
Totals	3,613	3,313	3,245	3,057	73.9%	71.1%	70.1%	67.8%	-2.8%	-1.0%	-2.2%	-6.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Closed Timber (Acres)			Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.3	0.5	0.9	0.6	0.8	0.7	1.4	1.8	2.9
Max	72.9	79.9	93.2	105.1	72.0	115.3	91.2	47.9	96.4
Average	11.4	9.2	16.0	14.8	18.9	26.8	22.4	14.2	23.0
Sum	434.1	388.1	432.9	489.6	490.4	590.2	336.0	312.8	322.4
Riparian	Turnove	er er			Riparian t	to Channel (a	cres)	378.2	
from cl	nannel to rip	arian betwee	n the 1950's		Channel to Riparian (acres) 428.7				
and 2001 data set.				R	iparian Encre	oachment (a	cres)	50.5	
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	432.2		
Creation o	f riparian are	eas	1950s Floodp	plain Mapped as 2011 Channel (Ac) 165.3					
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	597.4		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	10.3	147.4	113.7	0.0	271.4
Acres/Valley Mile	1.3	18.8	14.5	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	91.16	3.23%	25.56	2.82	24.25	30.93

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	247.6	121.5	6.5%
Rip Rap Bottom	82.7	24.2	1.3%
Bluff Pool	148.1	88.7	4.8%
Secondary Channel	110.2	42.9	2.3%
Secondary Channel (Seasonal)	392.6	227.2	12.2%
Channel Crossover	155.4	101.5	5.4%
Point Bar		66.2	3.6%
Side Bar		115.4	6.2%
Mid-channel Bar		82.8	4.4%
Island	768.7	774.6	41.6%
Dry Channel		219.0	11.7%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed	in Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
>	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
>	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
>	American Goldfinch		✓ ✓ Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
>	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
>	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
>	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	☐ ✓ Vesper Sparrow
>	Black-billed Magpie	Downy Woodpecker	Osprey	Violet-green Swallow
>	Black-capped Chickadee	Eastern Bluebird	Ovenbird	V Warbling Vireo
	Black-and-white Warbler	✓ ✓ Eastern Kingbird	Plumbeous Vireo	V Western Kingbird
>	Black-headed Grosbeak	Eurasian Collared-dove	✓ ✓ Red-headed Woodpecker	🖌 🖌 Western Meadowlark
	Blue Jay	🖌 🖌 European Starling	Red-naped Sapsucker	V Western Wood-pewee
	Bobolink	Field Sparrow	Red Crossbill	V White-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	✓ ✓ Ring-necked Pheasant	✓ ✓ White-throated Swift
>	Brown-headed Cowbird	Grasshopper Sparrow	✓ ✓ Red-tailed hawk	U Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	V Wood Duck
>	Brown Thrasher	Great Blue Heron	✓ ✓ Red-winged Blackbird	Yellow-bellied Sapsucker
>	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
\checkmark	Cedar Waxwing	House Finch	Say's Phoebe	Vellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	Vellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region B

The study segment Big Horn to Laurel includes data from the people of one large county, Yellowstone County. Three themes dominate conversations with the four interest groups. One theme focuses on the evolving communities of Yellowstone County, most of which are influenced by the economic success and sheer growth of Billings. The second theme focuses on the evolving relationships that the people have with the river. While traditional agricultural activities continue in the county, many people discuss notions related to urban and residential experiences and how the river becomes an asset that improves one's quality of life as an urban dweller. The third theme involves a complex tangle of pressures and demands that require managerial strategies capable of dealing with a future that has arrived.

County	Yellowstone
Classification	UA: Unconfined anabranching
General Location	Reed Creek
General Comments	Meander cutoff isolated by railroad

Upstream River Mile Downstream River Mile 318 4.70 mi (7.56 km) Length

Narrative Summary

Reach B9 is located in lower Yellowstone County near Reed Creek. The Reach is 4.7 miles long and is an Unconfined Anabranching (UA) reach type, indicating the presence of extensive forested islands with little valley wall influence on the main channel. This reach type is typically the most dynamic in the system due to a lack of confinement and extent of side channels.

About 7,300 feet of streambank are armored by rock riprap, which is about 15 percent of the total bankline. Most of the bank armor in the reach is protecting the rail line on the south side of the river, and most of it is located along the edge of a section of bluff line. Another section of armor is protecting a major power line crossing on the north bank at RM 321. Currently, two towers on the crossing are right on the edge of the river.

One side channel that is about 8.000 feet long at RM 321.5L was blocked prior to 1950. The lower end of this old channel still holds. open water, but the upstream end has been graded into fields and also supports two major power line towers.

Land uses related to both irrigation and the railroad have encroached into the Channel Migration Zone (CMZ) in Reach B9. Overall, land uses in the reach are primarily agricultural, with about 508 acres of flood irrigated land mapped as of 2011. About half of that irrigated acreage is within the CMZ. There are 384 acres under pivot, about 75 of which are within the CMZ. The railroad has encroached into 101 acres of the CMZ and is primarily responsible for its isolation. In total, just under 10 percent of the CMZ has been restricted due to bank armor, and 7.3 percent of the restriction is due to the railroad, while 2.4 percent is associated with the protection of irrigated lands.

The modern 5-year floodplain contains about 76 acres of flood-irrigated ground, and 64 acres of ground under pivot.

Waco-Custer Diversion Dam is located at RM 320. The Waco-Custer ditch company was formed in the early 1900's, and the diversion dam was constructed shortly thereafter (http://www.fws.gov/YellowstoneRiverCoordinator/Waco-custer.html). The Waco-Custer diversion supports approximately 4,300 acres of irrigation, with a diversion capacity of 125 cfs. The structure is located approximately eight miles west of Custer, at River Mile 320. At the diversion, the Yellowstone River flows through two main channels, and the structure itself blocks only the right channel. The structure feeds the Waco-Custer Canal, which flows on the south floodplain surface of the Yellowstone River.

Migration rates in several locations in Reach B9 have exceeded an average of 10 feet per year since the mid-1950s. At Rm 322, the river migrated almost 200 feet between 2001 and 2011, which is double that average rate of 10 feet per year. That rapid recent migration has been through irrigated fields on the south side of the river. Lateral migration of the river has promoted extensive recruitment of new woody riparian habitat. Since the 1950s there has been about 210 acres of riparian recruitment in the reach, most of which was riparian colonization of old 1950's channel area. Additionally, there are 213 mapped wetlands in the reach, including 105 acres of emergent wetland types such as wet meadows and marsh. The reach contains about 53 wetland acres per valley mile, which is a relatively high value for the Yellowstone River.

Reach B9 has had a major loss of forest area that is considered at low risk of cowbird parasitism. In 19590, there were about 48 acres per valley mile of such forest, and that had been reduced by 2001 to 21 acres per valley mile.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The mean annual flood is estimated to have dropped from 30,200 cfs to 24,500 cfs, a drop of about 19 percent. The 2-year flood, which strongly influences overall channel form, has dropped by 11 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 3,060 cfs to 2,080 cfs with human development, a reduction of 32 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 3.846 cfs under unregulated conditions to 2.227 cfs under regulated conditions at the Billings gage, a reduction of 42 percent.

About 23 percent of the 5-year floodplain has become isolated in Reach B9, and the vast majority of this isolation is on the south side of the river at RM 321 where the rail line has isolated an historic side channel. Much of that 5-year floodplain isolation is due to transportation infrastructure on the south side of the river. This isolated floodplain area still holds open water in a distinct swale.

CEA-Related observations in Reach B9 include:

•Blockage of one side channel at RM 321.5 sometime prior to 1950

•Railroad isolation of major channel remnant that supports open water.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach B9 include:

•Side channel reactivation at RM 321.5-may be difficult due to power line

•CMZ management due to~10 percent restriction of CMZ

Russian olive removal

•Floodplain reconnection where active rail line has isolated historic channel remnant at RM 321R.

•Fish passage Practice at Waco Custer Diversion Dam (not complete blockage)

•Watercraft passage Practice at Waco Custer Diversion Dam (side channel passage exists)

•Irrigation Infrastructure management at Waco Custer Diversion Dam.
Reach B9

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Billings

Flood H	Hist	tory								Downstream	Upstream
Yea	ır	Dat	e Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6309000	Gage 6214500
1943	3	Jun	21	61,200	10-25	5 yr			Location	Miles City	Billings
199	6	Jun	12	61,900	10-25	10-25 yr Period of Record			1929-2015	1929-2015	
1944	4	Jun 27 64,800 10-25 yr			Fellou ol Necolu		1020 2010	1020 2010			
196	7 Jun 16 66,100 10-25 yr		5 yr		Distance	e lo (miles)	134.0	41.7			
197	5	Jul	7	67,600	10-25	i yr					
1974 Jun 19 69		69,500	25-50) yr							
201	2011 Jul 2 70,600		70,600	25-50) yr						
1918	8	Jun	15	78,100	50-10	0 yr					
199	7	Jun	12	82,000	>100	yr					
Discha	rge	•								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unreg	gula	ted	30,200	55,500	68,100	75,700	91,000	97,200	111,000	3,060	3,846
Reg	gula	ted	24,500	49,400	62,400	70,400	86,900	93,600	108,800	2,080	2,227
% (Cha	nae	-18.87%	-10.99%	-8.37%	-7.00%	-4.51%	-3.70%	-1.98%	-32.03%	-42.10%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	NARA	July 9-27, 1950	B/W		6214500	29500
1976	USCOE	29-Sep-76	B/W	1:24,000	6214500	5630
1995	USGS DOQQ	29-Jul-96	B/W		6214500	10400
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6214500	1700
2004	Merrick	14-May-04	Color	16000	6214500	7010
2005	NAIP	07/14/2005	color	1-meter pixels	6214500	9730
2009	NAIP	6/29/2009	Color	1-meter pixels	6214500	26200
2011	USCOE	October 2012	color	1-ft pixel	6214500	3860
2011	NAIP	7/16/2011	Color	1-meter pixels	6214500	36000
2013	NAIP	06/16/2013	color	1-meter pixels	6214500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	7,304	14.9%	7,304	14.9%	0
	Flow Deflectors	18	0.0%	18	0.0%	0
	Between Flow Deflectors	70	0.1%	70	0.1%	0
	Feature Type Totals	7,393	15.1%	7,393	15.1%	0
Floodplain	Control					
	Transportation Encroachment	1,748	3.6%	1,748	3.6%	0
	Feature Type Totals	1,748	3.6%	1,748	3.6%	0
	Reach Totals	9,141	18.6%	9,141	18.6%	0

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		0	0	0	0	0	6,445	0	0
	Totals	0	0	0	0	0	6,445	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

			Sum	of Featu	ure Leng	gth (ft)	
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005
Irrigation							
-	In Channel Diversion	198	198	198	198	198	198
	Floodplain Dike/Levee	2,233	2,233	2,233	2,233	2,233	2,233
	Totals	2,431	2,431	2,431	2,431	2,431	2,431
Other							
	Floodplain Dike/Levee	0	173	173	173	173	173
	Totals	0	173	173	173	173	173
Other Off Channe	el						
	Floodplain Dike/Levee	1,545	1,545	1,545	1,545	1,545	1,545
	Totals	1,545	1,545	1,545	1,545	1,545	1,545
Stream Stabilizat	tion						
	Rock RipRap	6,336	6,448	8,229	8,891	8,891	8,891
	Totals	6,336	6,448	8,229	8,891	8,891	8,891
Transportation E	ncroachment						
	Railroad	14,094	14,094	14,094	14,094	14,094	14,094
	Interstate	0	1,745	1,745	1,745	1,745	1,745
Thursday, March 3	8, 2016						

County Road Totals 6,9806,9806,9806,9806,9806,98021,07422,81922,81922,81922,81922,819

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Bankfull ary Chan. Anab. Ch. Braiding ngth (ft) Length (ft) Parameter				
1950	23,025	41,519	2.80	1950 to 1976:	8.46%	
1976	22,453	45,810	3.04	1976 to 1995:	-20.71%	
1995	24,596	34,695	2.41	1995 to 2001:	7.65%	
2001	24,510	39,093	2.59	1950 to 2001:	-7.43%	
Change 1950 - 2001	1,485	-2,426	-0.21			
Lenath of Side		Pre-1950s (ft)	7,943			
Channels Blocked		Post-1950s (ft)	0			

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year			
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain		
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%				
Agriculture (generally relates to field boundaries)	0	0.0%				
Agriculture (isloated by canal or large ditch)	0	0.0%				
Levee/Riprap (protecting agricultural lands)	0	0.0%				
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%				
Railroad	0	0.0%				
Abandoned Railroad	0	0.0%				
Transportation (Interstate and other roads)	0	0.0%				
Total Not Isolated (Ac)	1059		1136			
Total Floodplain Area (Ac)	1059		1311			
Total Isolated (Ac)	0	0.0%	175	22.7%		

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	76	0	64	140

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 525	Erosion Buffer (ft) 1,049	To CN Acre 1,6	tal MZ eage 51	Restricted CMZ Acreage 99	% Restrict Migratio Area 6%	ted n A	Total AHZ creage 82	Restricted AHZ Acreage 69	d % Restricte Avulsion Area 85%	€
2011 Res	stricted Mia	ration A	ea Sun	nmar	V	Note that the	ese data	reflect the	e observed co	onditions in the	
Reason for Restriction	Land Use Protected		RMA Acres	Perce Cl	ent of MZ	2011 aerial p Counties, CO	ohotogra OE for th	ohy (NAII e rest of f	P for Park and the river).	I Sweet Grass	
Road/Railro	ad Prism										
	Railroad		101	5.8	3%						
RipRap/Flov	w Deflectors										
	Other Infrast	tructure	2	0.1	1%						
RipRap											
	Railroad		26	1.5	5%						
	Irrigated		40	2.3	3%						
		Totals	169	9.1	7%						
Land Use	es within th	e CMZ (A	Acres)	Fi Irrig 23	ood gation 32.1	Sprinkler Irrigation 0.0	Pivo Irrigati 74.5	t l ion Ex	Jrban/ xUrban 0.6	Trans- portation 17.5	

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		%	% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	12	31	58	62	0.3%	0.8%	1.5%	1.6%
	Totals	12	31	58	62	0.3%	0.8%	1.5%	1.6%
Agricultural Lan	d								
	Non-Irrigated	2,250	2,222	1,841	1,805	58.8%	58.1%	48.1%	47.2%
	Irrigated	657	575	923	892	17.2%	15.0%	24.1%	23.3%
	Totals	2,906	2,797	2,763	2,697	75.9%	73.1%	72.2%	70.5%
Channel									
	Channel	847	845	852	914	22.1%	22.1%	22.3%	23.9%
	Totals	847	845	852	914	22.1%	22.1%	22.3%	23.9%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	1	1	1	1	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	1	1	1	1	0.0%	0.0%	0.0%	0.0%
Transportation									
	Public Road	38	41	41	41	1.0%	1.1%	1.1%	1.1%
	Interstate	0	88	88	88	0.0%	2.3%	2.3%	2.3%
	Railroad	23	23	23	23	0.6%	0.6%	0.6%	0.6%
	Totals	61	153	153	153	1.6%	4.0%	4.0%	4.0%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Ti	meline - Tiers 3 a	and 4								Char	ige Betv	veen Y	ears
			Acres			% of Reach Area				(% of Agricultural Land)			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	384	0.0%	0.0%	0.0%	14.2%	0.0%	0.0%	14.2%	14.2%
	Flood	657	575	923	508	22.6%	20.7%	33.4%	18.8%	-1.9%	12.7% -	-14.6%	-3.8%
	Totals	657	575	923	892	22.6%	20.7%	33.4%	33.1%	-1.9%	12.7%	-0.3%	10.5%

Non-Irrigated

Multi-Use	1,845	1,691	1,752	1,652	63.5%	60.9%	63.4%	61.3%	-2.6%	2.5%	-2.1%	-2.2%
Hay/Pasture	405	511	89	153	13.9%	18.4%	3.2%	5.7%	4.5%	-15.2%	2.5%	-8.3%
Totals	2,250	2,201	1,841	1,805	77.4%	79.3%	66.6%	66.9%	1.9%	-12.7%	0.3%	-10.5%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Sh		Shrub (Acres	5)	Clos	ed Timber (A	(cres)	Ор	en Timber (A	cres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001		
Min	0.1	0.4	1.9	0.3	3.5	1.1	0.1	0.0	0.2		
Max	33.8	109.4	99.0	100.2	75.8	87.8	41.1	33.8	55.8		
Average	6.5	8.8	10.4	19.9	20.5	26.9	15.4	9.9	17.9		
Sum	208.0	289.6	270.5	357.8	266.2	269.1	76.9	88.7	161.2		
Riparian	Turnove)r			Riparian f	o Channel (a	icres)	168 9			
Conver	sion of ripar	ian areas to o	channel, or		Channel to Riparian (acres) 175.3						
and 20	iannei to rip 01 data set	arian betweel	n the 1950's								
	o i data set.			R	iparian Encre	oachment (a	cres)	6.4			
Riparian Recruitment 1950s Channe			nnel Mapped	as 2011 Ripa	arian (Ac)	175.8					
Creation of	[;] riparian are	as	1950s Floodp	lain Mapped	as 2011 Cha	innel (Ac)	34.9				
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	210.7				

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	24.3	104.6	83.6	0.0	212.5
Acres/Valley Mile	6.2	26.9	21.5	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	5.90	0.27%	0.14	0.58	2.15	1.31

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat Scour Pool	Bankfull 164.1	Low Flow 75.4	% of Low Flow 8.9%
Rip Rap Margin	20.4	11.3	1.3%
Bluff Pool	13.3	6.2	0.7%
Secondary Channel	105.5	22.6	2.7%
Secondary Channel (Seasonal)	85.6	110.1	12.9%
Channel Crossover	127.2	83.4	9.8%
Point Bar		35.4	4.2%
Side Bar		50.6	5.9%
Mid-channel Bar		42.5	5.0%
Island	277.5	317.6	37.3%
Dry Channel		81.6	9.6%
Dam Influenced	16.7	15.0	1.8%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region B

The study segment Big Horn to Laurel includes data from the people of one large county, Yellowstone County. Three themes dominate conversations with the four interest groups. One theme focuses on the evolving communities of Yellowstone County, most of which are influenced by the economic success and sheer growth of Billings. The second theme focuses on the evolving relationships that the people have with the river. While traditional agricultural activities continue in the county, many people discuss notions related to urban and residential experiences and how the river becomes an asset that improves one's quality of life as an urban dweller. The third theme involves a complex tangle of pressures and demands that require managerial strategies capable of dealing with a future that has arrived.

Reach BI0

County	Yellowstone
Classification	PCM: Partially confined meandering
General Location	Waco
General Comments	Encroached

Upstream River Mile318Downstream River Mile310.8Length7.20 mi (11.59 km)

Narrative Summary

Reach B10 is located in lower Yellowstone County and contains the Captain Clark Fishing Access Site. The Reach is 7.2 miles long and is a Partially Confined Meandering reach type, (PCM), indicating the presence of a primary meandering channel thread with substantial valley wall influence on the river. The Captain Clark Fishing Access Site is located in the middle of the reach.

There are about 1,150 feet of rock riprap and 800 feet of flow deflectors in the reach, which collectively armor about 3 percent of the total bankline. About one half of the armor is protecting the active railroad, and the other half is protecting agricultural land. High resolution 2011 imagery shows the complete flanking of the mapped flow deflectors since 2001. The river has since eroded over 100 feet of bank behind the flanked barbs, eroding into a series of old corrals. The barbs are readily visible in the river.

One abandoned side channel that is about 3,300 feet long at RM 315R appears to be very old, however has several crossings that currently form plugs along its course. The channel is still within the 5-year floodplain, so the plugs have likely affected its function as a flood channel, and perhaps historically as a seasonal channel. This historic side channel is located landward (south) of the Fishing Access Site, which is on an old island. The lower end of this old channel supports a high density of Russian olive.

Reach B10 has lost almost 5.5 miles of side channel length since 1950. In the uppermost portion of the reach, the main river channel flipped from the south side of the corridor to the north sometime between 1976 and 2001, progressively abandoning a mile long channel and focusing the river into a single thread that flows along the north valley bluff line. This is where the flow deflectors described above have been flanked. This pattern has been common all through the reach; major secondary channels from the 1950s have been abandoned and the river has shifted to much more of a single thread meandering river. Some of the 1950's channels have potentially been blocked, and others appear to have been passively abandoned.

On the south side of the river at RM 312.5, the rail line currently isolates about 42 acres of historic 100-year floodplain. The river is currently against the rail line at this location, so that the separation between the river and the isolated remnant is only about 200 feet. This area is also adjacent to about 20 acres of mapped emergent wetland.

Overall, land uses in reach B10 are primarily agricultural, with about 860 acres of flood irrigated land mapped as of 2011. About one third of that irrigated acreage is within the CMZ. The railroad has encroached into 19 acres of the CMZ. In total, just under 7 percent of the CMZ has been restricted, and all of that restriction is due to bank armor protecting the rail line.

The modern 5-year floodplain contains about 72 acres of flood-irrigated ground. Reach B10 also supports almost 40 acres of mapped wetlands per valley mile, which is a relatively high density for the corridor.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The mean annual flood is estimated to have dropped from 30,200 cfs to 24,500 cfs, a drop of about 19 percent. The 2-year flood, which strongly influences overall channel form, has dropped by 11 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 3,070 cfs to 2,090 cfs with human development, a reduction of 32 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 3,846 cfs under unregulated conditions to 2,227 cfs under regulated conditions at the Billings gage, a reduction of 42 percent.

CEA-Related observations in Reach B10 include:

•Active and passive abandonment of over five miles of anabranching channel length since 1950 •Bank armor flanking associated with flow consolidation into single thread.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach B10 include: •Removal of flanked flow deflectors at RM 318

•Side channel reactivation throughout reach

•Floodplain reconnection at Rm 312.5R

•Russian olive removal

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Billings

Floo	od His	story	,							Downstream	Upstream
	Year	Da	te Fl	ow on Date	Return Ir	nterval			Gage No	Gage	Gage 6214500
	1943	Jun	21	61,200	10-25	5 yr			Location	Miles City	Billings
	1996	Jun	12	61,900	10-25	5 yr		Pario	t of Pocord	1020-2015	1020-2015
	1944	Jun	27	64,800	10-25	5 yr		Feno		1323-2013	1323-2013
	1967	Jun	16	66,100	10-25	i yr		Distance	e To (miles)	126.8	46.4
	1975	Jul	7	67,600	10-25	i yr					
	1974	Jun	19	69,500	25-50) yr					
	2011	Jul	2	70,600	25-50) yr					
	1918	Jun	15	78,100	50-10	0 yr					
	1997	Jun	12	82,000	>100	yr					
Dise	charg	е								7Q10	95% Sum.
	_		1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
U	Jnregul	ated	30,200	55,500	68,100	75,700	91,000	97,200	111,000	3,070	3,846
	Regul	ated	24,500	49,400	62,400	70,400	86,900	93,600	108,800	2,090	2,227
	% Cha	ange	-18.87%	-10.99%	-8.37%	-7.00%	-4.51%	-3.70%	-1.98%	-31.92%	-42.10%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	NARA	July 9-27, 1950	B/W		6214500	29500
1976	USCOE	29-Sep-76	B/W	1:24,000	6214500	5630
1995	USGS DOQQ	7/29/1996 - 8/26/96 - 8/19/96	B/W		6214500	10400
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6214500	1700
2004	Merrick	14-May-04	Color	1:15,840	6214500	7010
2005	NAIP	07/14/2005	color	1-meter pixels	6214500	9730
2009	NAIP	6/29/2009	Color	1-meter pixels	6214500	26200
2011	USCOE	October 2012	color	1-ft pixel	6214500	3860
2011	NAIP	7/16/2011	Color	1-meter pixels	6214500	36000
2013	NAIP	06/16/2013	color	1-meter pixels	6214500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	1,153	1.5%	1,153	1.5%	0
	Flow Deflectors	194	0.3%	194	0.3%	0
	Between Flow Deflectors	613	0.8%	613	0.8%	0
	Feature Type Totals	1,960	2.6%	1,960	2.6%	0
Floodplain	Control					
	Transportation Encroachment	6,439	8.5%	6,439	8.5%	0
	Feature Type Totals	6,439	8.5%	6,439	8.5%	0
	Reach Totals	8,399	11.0%	8,399	11.0%	0

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between Fl	Ds	0	0	895	0	0	0	0	0
Rock RipRap		0	0	0	0	0	656	0	0
	Totals	0	0	895	0	0	656	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

		Sum of Feature Length (ft)						
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005	
Stream Stabilization								
	Rock RipRap	1,048	1,956	2,172	2,172	2,172	2,172	
	Flow Deflector	0	0	0	742	2,131	2,131	
	Concrete RipRap	0	0	255	255	255	255	
	Totals	1,048	1,956	2,427	3,169	4,558	4,558	
Transportation E	ncroachment							
	Railroad	20,661	20,661	20,661	20,661	20,661	20,661	
	Interstate	0	9,540	9,540	9,540	9,540	9,540	
	County Road	19,403	19,403	19,403	19,403	19,403	19,403	
	Totals	40,064	49,605	49,605	49,605	49,605	49,605	

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	36,593	55,863	2.53	1950 to 1976:	-24.62%
1976	39,622	35,840	1.90	1976 to 1995:	12.29%
1995	37,698	42,926	2.14	1995 to 2001:	-19.85%
2001	38,094	27,208	1.71	1950 to 2001:	-32.15%
Change 1950 - 2001	1,501	-28,655	-0.81		
Length of Side		Pre-1950s (ft)	3,344		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	112	6.5%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	1595		1648		
Total Floodplain Area (Ac)	1707		1850		
Total Isolated (Ac)	112	6.5%	202	18.7%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	72	0	0	72

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To Cl Acre	tal Res MZ C eage Act	tricted MZ reage	% Restrict Migratio Area	ted Tota n AHZ Acrea	I Rest C Al ge Acro	ricted % I HZ / eage	Restricted Avulsion Area
	668	1,336	2,3	32	164	7%	50	(C	0%
2011 Res	stricted Mig	gration A	rea Sur	nmary		Note that the	ese data refle	ct the observ	ed condition	ns in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	f	Counties, COE for the rest of the river).		k and Swee).	weet Glass	
Road/Railro	oad Prism									
	Railroad		159	6.7%						
RipRap/Flo	w Deflectors									
	Other Infras	structure	5	0.2%						
		Totals	164	6.9%						
Land Us	es within t	he CMZ (Acres)	Flood Irrigatio	on I	Sprinkler rrigation	Pivot Irrigation	Urban/ ExUrban	Trans portati	s- ion
Land Us	Other Infras	structure Totals he CMZ (5 164 Acres)	0.2% 6.9% Flood Irrigatio 323.6	in I	Sprinkler rrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 0.0	Trans portati 18.7	5-

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	44	54	56	58	0.8%	1.0%	1.0%	1.1%	
	Totals	44	54	56	58	0.8%	1.0%	1.0%	1.1%	
Agricultural Lan	d									
	Non-Irrigated	3,565	3,487	3,387	3,406	64.6%	63.2%	61.3%	61.7%	
	Irrigated	637	749	909	858	11.5%	13.6%	16.5%	15.5%	
	Totals	4,202	4,236	4,296	4,264	76.1%	76.7%	77.8%	77.2%	
Channel										
	Channel	1,220	1,060	992	1,021	22.1%	19.2%	18.0%	18.5%	
	Totals	1,220	1,060	992	1,021	22.1%	19.2%	18.0%	18.5%	
ExUrban										
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	2	8	8	0.0%	0.0%	0.1%	0.1%	
	Totals	0	2	8	8	0.0%	0.0%	0.1%	0.1%	
Transportation										
	Public Road	18	41	41	41	0.3%	0.7%	0.7%	0.7%	
	Interstate	0	93	93	93	0.0%	1.7%	1.7%	1.7%	
	Railroad	36	36	36	36	0.7%	0.7%	0.7%	0.7%	
	Totals	55	170	170	170	1.0%	3.1%	3.1%	3.1%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Ti	meline - Tiers 3	and 4								Char	ige Betv	ween Y	ears
			Aci	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	637	749	909	858	15.2%	17.7%	21.2%	20.1%	2.5%	3.5%	-1.0%	5.0%
	Totals	637	749	909	858	15.2%	17.7%	21.2%	20.1%	2.5%	3.5%	-1.0%	5.0%

Reach BI0

Non-Irrigated

Multi-Use	3,089	2,948	3,006	2,985	73.5%	69.6%	70.0%	70.0%	-3.9%	0.4%	0.0%	-3.5%
Hay/Pasture	476	539	381	421	11.3%	12.7%	8.9%	9.9%	1.4%	-3.9%	1.0%	-1.5%
Totals	3,565	3,487	3,387	3,406	84.8%	82.3%	78.8%	79.9%	-2.5%	-3.5%	1.0%	-5.0%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (Acres)			Clos	ed Timber (A	(cres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.0	0.2	0.4	0.0	1.4	1.8	0.8	1.6	5.3
Max	54.3	35.8	115.1	64.0	30.8	75.1	138.5	76.0	45.7
Average	8.1	7.8	19.2	15.8	12.8	27.3	16.2	19.0	17.5
Sum	276.3	321.3	422.2	427.9	166.8	327.2	226.1	304.3	157.7
Riparian	Turnove	er			Riparian t	o Channel (a	cres)	230.5	
Conver from ch	rsion of ripar nannel to rip	arian areas to a	channel, or n the 1950's		Channel to Riparian (acres) 237.2				
and 2001 data set.				R	Riparian Encroachment (acres)6.7				
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	244.2		
Creation of	f riparian are	as	1950s Floodp	lain Mapped	as 2011 Cha	innel (Ac)	170.4		
between 1950s and 2001.			Total Recruitment (1950s to 2011)(Ac) 414						

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	19.7	113.2	106.4	0.0	239.3
Acres/Valley Mile	3.3	18.9	17.8	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	38.82	1.47%	5.14	0.78	10.00	3.84	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat Scour Pool	Bankfull	Low Flow	% of Low Flow
Rip Rap Bottom	50.1	24.1	2.4%
Bluff Pool	329.4	145.6	14.7%
Secondary Channel (Seasonal)	163.8	145.2	14.6%
Channel Crossover	100.5	79.4	8.0%
Point Bar		54.4	5.5%
Side Bar		41.1	4.1%
Mid-channel Bar		62.7	6.3%
Island	222.3	222.3	22.4%
Dry Channel		153.0	15.4%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
>	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
\checkmark	American Goldfinch	Cliff Swallow	Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	🗌 🗹 Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
\checkmark	Belted Kingfisher	Cooper's Hawk	Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	☐ ✓ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	Ovenbird	☐ ✓ Warbling Vireo
	Black-and-white Warbler	Eastern Kingbird	Plumbeous Vireo	Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	🗌 ✔ Western Meadowlark
	Blue Jay	🖌 🖌 European Starling	Red-naped Sapsucker	☐ ✔ Western Wood-pewee
	Bobolink	Field Sparrow	Red Crossbill	☐ ✔ White-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	✓ ✓ Ring-necked Pheasant	☐ ✔ White-throated Swift
>	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Vellow-headed Blackbird
	Chimney Swift	House Wren	Savannah Sparrow	V Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region B

The study segment Big Horn to Laurel includes data from the people of one large county, Yellowstone County. Three themes dominate conversations with the four interest groups. One theme focuses on the evolving communities of Yellowstone County, most of which are influenced by the economic success and sheer growth of Billings. The second theme focuses on the evolving relationships that the people have with the river. While traditional agricultural activities continue in the county, many people discuss notions related to urban and residential experiences and how the river becomes an asset that improves one's quality of life as an urban dweller. The third theme involves a complex tangle of pressures and demands that require managerial strategies capable of dealing with a future that has arrived.

Reach BII

County	Yellowstone
Classification	PCA: Partially confined anabranching
General Location	To Custer Bridge
General Comments	To Custer Bridge

Upstream River Mile	310.8
Downstream River Mile	302.7
Length	8.10 mi (13.04 km)

Narrative Summary

Reach B11 is located in lower Yellowstone County. The Reach is 8.1 miles long and is a Partially Confined Anabranching reach type, (PCA), indicating the presence of forested islands with substantial valley wall influence on the river. Custer Bridge and the town of Bighorn are at the lower end of the reach.

There are about 2,600 feet of rock riprap and 1,200 feet of flow deflectors in the reach, which collectively armors about 4 percent of the total bankline. All of the armor is protecting agricultural land, both irrigated and non-irrigated. Most of the rock riprap was built between 1950 and 1976, whereas the flow deflectors were built between 1995 and 2001.

One side channel that is about 1,000 feet long at RM 305R appears to have been blocked as a seasonal channel by three different plugs that were all in place in 1950. Hydraulic modeling results show that under undeveloped conditions, the channel conveyed water at a 2-year discharge, but now it doesn't convey flow at the 5-year discharge. The blocked channel now has dense stands of Russian olive on its lower end.

Since 1950, the bankfull area of the channel has increased by about 60 acres in Reach B11 indicating some enlargement of the main channel between 1950 and 2001. This is interesting because there was also a net increase in riparian area due to erosional processes of about 75 acres, which may appear contradictory. In reviewing the GIS data, it is apparent that much of the channel migration in Reach B11 was through unvegetated farm fields such that the channel was able to enlarge, and the area created by the migration was then colonized by riparian vegetation, resulting in a net gain in riparian area, along with an increase in overall channel size. The total riparian recruitment acreage in the reach was 483 acres; 334 of those acres of recruitment were in 1950s channel areas, and 149 acres of eroded floodplain have been colonized by woody riparian species. The increase in riparian area is most evidenced by riparian shrub, which increased from 219 acres in 1950 to 462 acres in 2001. Reach B11 consequently has a robust riparian corridor with active recruitment associated with channel migration.

Reach B11 experienced a major avulsion between 1976 and 1002, when the river jumped about 1,600 feet to the northwest between RM 305 and RM 306, relocating into a relatively small developing side channel. The avulsed channel has since been migrating back to the southeast, creating a large sediment deposit downstream at RM 305 where the river corridor is tightly confined by the valley wall to the northwest and bank armored fields to the southeast. This section of river appears quite unstable.

Most of the floodplain isolation has been related to more frequent flooding; whereas 2 percent of the 100-year floodplain has become isolated due to human development, about 17 percent of the 5-year floodplain is no longer inundated at that frequency. Much of the loss of 5-year floodplain was in the blocked channel at RM 305R described above. The 100-year isolated floodplain is behind the active rail line and Interstate about 1,000 feet south of the river at RM 308.5R. Emergent wetlands have been mapped in this isolated floodplain area, which is about 21 acres in size. Hydraulic modeling indicates that this area would also be inundated at a 5-year event, making it a good potential candidate for restoring floodplain connectivity through the rail line and frontage road, or for simple wetland restoration.

The mapped land uses in Reach B11 indicate that flood irrigation is the dominant land use, with about 1,500 acres of ground in flood irrigation and 100 in pivot. The town of Bighorn contributes to about 70 acres of urban/exurban development, and the proximity of the rail line to the river corridor is evidenced by 191 acres of transportation footprint. The most common developed land use in the Channel Migration Zone (CMZ) is flood irrigation (431 acres). About 17 percent of the CMZ has been isolated due to physical features such as bank armor and floodplain dikes, and most of that is riprap protection against irrigated lands (11 percent of CMZ). Most of these restrictions are in the lower reach near the town of Bighorn.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The mean annual flood is estimated to have dropped from 30,200 cfs to 24,500 cfs, a drop of about 19 percent. The 2-year flood, which strongly influences overall channel form, has dropped by 11 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 3,080 cfs to 2,100 cfs with human development, a reduction of 32 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 3,846 cfs under unregulated conditions to 2,227 cfs under regulated conditions at the Billings gage, a reduction of 42 percent.

CEA-Related observations in Reach B11 include: •Side channel blockage prior to 1950 •Channel instability caused by avulsion at RM 305

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach B11 include: •Side channel reactivation at RM 305R •Floodplain reconnection at Rm 308.5R •Russian olive removal

•Channel Migration Zone (CMZ) management due to extent of CMZ restricted (17 percent)

Reach BII

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Billings

Flood	His	tory								Downstream	Upstream
Yea	Year Date		te Fl	ow on Date	Return Interval				Cago No		Gage 6214500
194	43	Jun	21	61,200	10-25	5 yr			Location	Miles City	Billings
199	96	Jun	12	61,900	10-25	5 yr		Porio	t of Pocord	1929-2015	1020-2015
194	44	Jun	27	64,800	10-25	i yr		Fello		1929-2013	1929-2015
196	67	Jun	16	66,100	10-25	i yr		Distance	e To (miles)	118.7	53.6
197	75	Jul	7	67,600	10-25	i yr					
197	74	Jun	19	69,500	25-50) yr					
201	11	Jul	2	70,600	25-50) yr					
191	18	Jun	15	78,100	50-10	0 yr					
199	1997 Jun 12		12	82,000	>100 yr						
Discha	arge	e								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unre	egula	ated	30,200	55,500	68,100	75,700	91,000	97,200	111,000	3,080	3,846
Re	egula	ated	24,500	49,400	62,400	70,400	86,900	93,600	108,800	2,100	2,227
%	Cha	nae	-18.87%	-10.99%	-8.37%	-7.00%	-4.51%	-3.70%	-1.98%	-31.82%	-42.10%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	NARA	July 9-27, 1950	B/W		6214500	29500
1976	USCOE	29-Sep-76	B/W	1:24,000	6214500	5630
1995	USGS DOQQ	19-Aug-96	B/W		6214500	5320
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6214500	1700
2004	Merrick	14-May-04	Color	1:15,840	6214500	7010
2005	NAIP	07/14/2005	color	1-meter pixels	6214500	9730
2009	NAIP	6/29/2009	Color	1-meter pixels	6214500	26200
2011	USCOE	October 2012	color	1-ft pixel	6214500	3860
2011	NAIP	7/16/2011	Color	1-meter pixels	6214500	36000
2013	NAIP	06/16/2013	color	1-meter pixels	6214500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	2,570	3.0%	2,570	3.0%	0
	Flow Deflectors	395	0.5%	395	0.5%	0
	Between Flow Deflectors	774	0.9%	774	0.9%	0
	Feature Type Totals	3,740	4.4%	3,740	4.4%	0
	Reach Totals	3,740	4.4%	3,740	4.4%	0

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FDs	;	1,168	0	0	0	0	0	0	0
Rock RipRap		597	1,975	0	0	0	0	0	0
1	otals	1,765	1,975	0	0	0	0	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

			Sum	of Featu	ure Leng	gth (ft)	
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005
Other Off Channe	el						
	Floodplain Dike/Levee	2,005	2,005	2,005	2,005	2,005	2,005
	Totals	2,005	2,005	2,005	2,005	2,005	2,005
Stream Stabilizati	ion						
	Rock RipRap	0	4,133	5,643	6,103	6,103	6,103
	Flow Deflector	0	0	0	939	939	939
	Totals	0	4,133	5,643	7,042	7,042	7,042
Transportation Er	ncroachment						
	Railroad	12,691	12,691	12,691	12,691	12,691	12,691
	County Road	11,967	11,967	11,967	11,967	11,967	11,967
	Bridge Approach	3,362	3,362	3,362	3,362	3,362	3,362
	Totals	28,020	28,020	28,020	28,020	28,020	28,020

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	43,911	64,157	2.46	1950 to 1976:	-3.81%
1976	44,567	60,938	2.37	1976 to 1995:	5.48%
1995	42,397	63,466	2.50	1995 to 2001:	3.63%
2001	42,826	67,992	2.59	1950 to 2001:	5.14%
Change 1950 - 2001	-1,085	3,834	0.13		
Length of Side		Pre-1950s (ft)	1,002		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%		
Agriculture (generally relates to field boundaries)	0	0.0%		
Agriculture (isloated by canal or large ditch)	0	0.0%		
Levee/Riprap (protecting agricultural lands)	0	0.0%		
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%		
Railroad	33	1.9%		
Abandoned Railroad	0	0.0%		
Transportation (Interstate and other roads)	0	0.0%		
Total Not Isolated (Ac)	1743		1989	
Total Floodplain Area (Ac)	1777		2195	
Total Isolated (Ac)	33	1.9%	206	16.9%

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	74	0	0	74
CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 607	Erosion Buffer (ft) 1,214	To CN Acre 2,82	tal Restrictor IZ CMZ age Acreage 20 309	ed % Restric Migratic e Area 11%	cted Tota on AHZ Acrea 228	I Restric AH2 ge Acrea 203	ted % Restricted Avulsion ge Area 89%
2011 Po	stricted Mig	ration A			Note that th	ese data refle	ct the observed	l conditions in the
ZUIIRE	stricted wig		ea Sun	lillary	2011 aerial	photography (NAIP for Park	and Sweet Grass
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, C	OE for the res	t of the river).	
Road/Railro	oad Prism							
	Railroad		98	3.2%				
	Public Road		1	0.0%				
RipRap/Flo	w Deflectors							
	Irrigated		88	2.9%				
RipRap								
	Irrigated		325	10.7%				
		Totals	511	16.8%				
Land Us	es within th	e CMZ (A	Acres)	Flood Irrigation 431.0	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 1.0	Trans- portation 24.5

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	54	62	70	74	0.8%	0.9%	1.0%	1.1%
	Totals	54	62	70	74	0.8%	0.9%	1.0%	1.1%
Agricultural Lan	d								
	Non-Irrigated	3,927	3,508	3,334	3,348	57.8%	51.6%	49.1%	49.3%
	Irrigated	1,190	1,538	1,685	1,592	17.5%	22.6%	24.8%	23.4%
	Totals	5,117	5,046	5,018	4,941	75.3%	74.3%	73.9%	72.7%
Channel									
	Channel	1,462	1,444	1,456	1,516	21.5%	21.3%	21.4%	22.3%
	Totals	1,462	1,444	1,456	1,516	21.5%	21.3%	21.4%	22.3%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	6	20	0.0%	0.0%	0.1%	0.3%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	2	4	5	5	0.0%	0.1%	0.1%	0.1%
	Totals	2	4	11	25	0.0%	0.1%	0.2%	0.4%
Transportation									
	Public Road	49	48	48	48	0.7%	0.7%	0.7%	0.7%
	Interstate	0	104	104	104	0.0%	1.5%	1.5%	1.5%
	Railroad	39	39	39	39	0.6%	0.6%	0.6%	0.6%
	Totals	88	191	191	191	1.3%	2.8%	2.8%	2.8%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	26	26	26	26	0.4%	0.4%	0.4%	0.4%
	Urban Commercial	21	19	19	19	0.3%	0.3%	0.3%	0.3%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	21	0	0	0	0.3%	0.0%	0.0%	0.0%
	Totals	68	45	45	45	1.0%	0.7%	0.7%	0.7%

Land Use Tir	meline - Tiers 3 and	4								Char	ige Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	l I	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	37	99	102	0.0%	0.7%	2.0%	2.1%	0.7%	1.2%	0.1%	2.1%
	Flood	1,190	1,501	1,586	1,491	23.3%	29.8%	31.6%	30.2%	6.5%	1.8%	-1.4%	6.9%
	Totals	1,190	1,538	1,685	1,592	23.3%	30.5%	33.6%	32.2%	7.2%	3.1%	-1.3%	9.0%

Reach BII

Multi-Use	3,091	3,010	3,110	2,772	60.4%	59.6%	62.0%	56.1%	-0.8%	2.3%	-5.9%	-4.3%
Hay/Pasture	836	498	223	577	16.3%	9.9%	4.5%	11.7%	-6.5%	-5.4%	7.2%	-4.7%
Totals	3,927	3,508	3,334	3,348	76.7%	69.5%	66.4%	67.8%	-7.2%	-3.1%	1.3%	-9.0%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (Acres			s) Closed Timber (Acres)			(cres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.4	0.2	0.5	0.6	0.6	1.1	1.3	6.5	5.0	
Max	31.0	34.1	85.4	122.4	92.9	86.6	51.4	27.6	53.5	
Average	6.5	8.4	14.9	18.0	19.0	28.1	8.9	14.2	21.5	
Sum	219.3	319.5	462.4	504.7	531.0	422.1	169.4	155.7	215.2	
Riparian	Turnove	er			Riparian t	to Channel (a	cres)	255.2		
from cl	rsion of ripar hannel to ripa	arian areas to	channel, or n the 1950's		Channel to Riparian (acres) 329.7					
and 20	01 data set.			R	iparian Encr	cres)	74.5			
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	334.4			
Creation of	f riparian are	as	1950s Floodp	olain Mapped	as 2011 Cha	innel (Ac)	149.3			
between 1	950s and 20	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	483.7			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	17.6	160.7	43.0	0.0	221.4
Acres/Valley Mile	2.4	21.8	5.8	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	30.62	0.85%	1.45	3.23	12.87	2.88

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	286.3	192.2	13.2%
Rip Rap Bottom	17.0	12.7	0.9%
Bluff Pool	89.0	31.0	2.1%
Secondary Channel	49.8	33.7	2.3%
Secondary Channel (Seasonal)	384.2	176.3	12.1%
Channel Crossover	150.0	115.4	7.9%
Point Bar		37.3	2.6%
Side Bar		99.9	6.9%
Mid-channel Bar		75.3	5.2%
Island	479.7	479.7	32.9%
Dry Channel		202.5	13.9%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region B

The study segment Big Horn to Laurel includes data from the people of one large county, Yellowstone County. Three themes dominate conversations with the four interest groups. One theme focuses on the evolving communities of Yellowstone County, most of which are influenced by the economic success and sheer growth of Billings. The second theme focuses on the evolving relationships that the people have with the river. While traditional agricultural activities continue in the county, many people discuss notions related to urban and residential experiences and how the river becomes an asset that improves one's quality of life as an urban dweller. The third theme involves a complex tangle of pressures and demands that require managerial strategies capable of dealing with a future that has arrived.

Reach BI2

County	Yellowstone	Upstream River Mile	302.7
Classification	UA: Unconfined anabranching	Downstream River Mile	298.1
General Location	To Bighorn River confluence	Length	4.60 mi (7.40 km)
General Comments	to Bighorn River confluence		

Narrative Summary

Reach B12 is located in lowermost Yellowstone County and extends to the mouth of the Bighorn River. The Reach is 4.6 miles long and is an Unconfined Anabranching reach type, (UA), indicating the presence of forested islands with minimal valley wall influence on the river. These reach types tend to be the most dynamic of all reach types, with typically high rates of bank migration.

There are about 7,800 feet of rock riprap in the reach, which collectively armors about 16 percent of the total bankline. Most of the armor (7,700 feet) is protecting the rail line, with the remainder protecting non-irrigated agricultural land. At two locations (RM 301.5 and RM 299), the river is flowing along bank armor that is right on the railroad prism. One segment of bank armor right at the Bighorn River confluence is actively flanking and will likely be eroded out shortly. Most of the rock riprap was in place in 1950. About 3 miles of transportation encroachment due to the railroad was mapped in the reach.

No blocked side channels have been mapped in Reach B12.

Floodplain turnover rates have dropped in this reach, from 1.9 acres/year/valley mile between 1950 and 1976 to 1.3 acres/year/valley mile between 1976 and 2001. Between 1950 and 2001, there was a total of 214 acres of riparian recruitment in the reach, most of which was colonization of area that was channel in 1950.

Whereas 9 percent of the 100-year floodplain has become isolated due to human development, about 21 percent of the 5-year floodplain is no longer inundated at that frequency. All of the 100-year floodplain isolation is due to the railroad. These areas are very proximal to the river at RM 299 and 302, and could potentially be considered for floodplain and/or wetland restoration.

Land use is dominated by agriculture, with 137 acres of pivot irrigation development since 1950. Almost 50 of those acres of pivot are within the Channel Migration Zone (CMZ). Almost 9 percent of the Channel Migration Zone (CMZ) has been restricted, and the vast majority of that restriction is due to rock riprap protection of the railroad (8 percent).

Reach B12 supports 144 acres of wetland, which at over 35 acres per valley mile is a relatively high concentration of wetlands on the river. There are also 33 acres of mapped Russian olive.

Contrary to most other Reaches, Reach B11 has seen an increase in forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 33 acres per valley mile of such forest, and that number increased to 36 acres per valley mile by 2001.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The mean annual flood is estimated to have dropped from 30,200 cfs to 24,500 cfs, a drop of about 19 percent. The 2-year flood, which strongly influences overall channel form, has dropped by 11 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 3,090 cfs to 2,100 cfs with human development, a reduction of 32 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 3,846 cfs under unregulated conditions to 2,227 cfs under regulated conditions at the Billings gage, a reduction of 42 percent.

CEA-Related observations in Reach B12 include: •Active flanking of bank armor at mouth of Bighorn River •Channel instability caused by avulsion at RM 305

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach B12 include: •Bank armor maintenance where active flanking is occurring at mouth of Bighorn River at RM 298.3R •Russian olive removal PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Billings

Flo	od His	story	,							Downstream	Upstream
	Year	Da	te Fl	ow on Date	Return Ir	nterval			Gage No	Gage 6309000	Gage 6214500
	1943	Jun	21	61,200	10-25	5 yr			Location	Miles City	Billings
	1996	Jun	12	61,900	10-25	10-25 yr		Deried of Pecerd		1929-2015	1020-2015
	1944	Jun	27	64,800	10-25	i yr		Fello		1929-2013	1929-2013
	1967	Jun	16	66,100	10-25	i yr		Distance	e To (miles)	114.1	61.7
	1975	Jul	7	67,600	10-25	i yr					
	1974	Jun	19	69,500	25-50) yr					
	2011	Jul	2	70,600	25-50) yr					
	1918	Jun	15	78,100	50-100	0 yr					
	1997	Jun	12	82,000	>100	yr					
Dis	charg	е								7Q10	95% Sum.
			1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
ι	Unregul	ated	30,200	55,500	68,100	75,700	91,000	97,200	111,000	3,090	3,846
	Regul	ated	24,500	49,400	62,400	70,400	86,900	93,600	108,800	2,100	2,227
	% Cha	ande	-18.87%	-10.99%	-8.37%	-7.00%	-4.51%	-3.70%	-1.98%	-32.04%	-42.10%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	NARA	July 9-27, 1950	B/W		6214500	29500
1976	USCOE	29-Sep-76	B/W	1:24,000	6214500	5630
1995	USGS DOQQ	8/19/96 - 8/8/96	B/W		6214500	5320
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6214500	1700
2004	Merrick	14-May-04	Color	1:15,840	6214500	7010
2005	NAIP	07/14/2005	color	1-meter pixels	6214500	9730
2005	NAIP	07/13/2005	color	1-meter pixels	6214500	11100
2009	NAIP	6/29/2009	Color	1-meter pixels	6214500	26200
2011	USCOE	October 2012	color	1-ft pixel	6214500	3860
2011	NAIP	7/20/2011	Color	1-meter pixels	6214500	30500
2011	NAIP	7/16/2011	Color	1-meter pixels	6214500	36000
2013	NAIP	06/16/2013	color	1-meter pixels	6214500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					-
	Rock RipRap	7,778	16.2%	7,778	16.2%	0
	Feature Type Totals	7,778	16.2%	7,778	16.2%	0
Floodplain	Control					
	Transportation Encroachment	15,641	32.5%	15,641	32.5%	0
	Feature Type Totals	15,641	32.5%	15,641	32.5%	0
	Reach Totals	23,420	48.7%	23,420	48.7%	0

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		0	1,227	0	0	0	7,698	0	0
	Totals	0	1,227	0	0	0	7,698	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

			Sum	of Featu	ure Leng	gth (ft)	
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005
Other Off Channe	el						
	Floodplain Dike/Levee	987	987	987	987	987	987
	Totals	987	987	987	987	987	987
Stream Stabilizat	ion						
	Rock RipRap	7,346	8,666	9,392	10,182	10,182	10,182
	Totals	7,346	8,666	9,392	10,182	10,182	10,182
Transportation E	ncroachment						
	Railroad	15,096	15,096	15,096	15,096	15,096	15,096
	Interstate	0	3,548	3,548	3,548	3,548	3,548
	Bridge Approach	562	562	562	562	562	562
	Totals	15,658	19,206	19,206	19,206	19,206	19,206

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	23,947	47,793	3.00	1950 to 1976:	-6.81%
1976	23,530	42,157	2.79	1976 to 1995:	1.36%
1995	23,760	43,470	2.83	1995 to 2001:	0.80%
2001	24,028	44,502	2.85	1950 to 2001:	-4.80%
Change 1950 - 2001	81	-3,291	-0.14		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-`	/ear
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%		
Agriculture (generally relates to field boundaries)	0	0.0%		
Agriculture (isloated by canal or large ditch)	0	0.0%		
Levee/Riprap (protecting agricultural lands)	0	0.0%		
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%		
Railroad	90	8.7%		
Abandoned Railroad	0	0.0%		
Transportation (Interstate and other roads)	0	0.0%		
Total Not Isolated (Ac)	937		1097	
Total Floodplain Area (Ac)	1027		1239	
Total Isolated (Ac)	90	8.7%	142	20.7%

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	0	6	6

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

		(π)	Acre	eage	CMZ Acreage	Migratio Area	n AHZ Acrea	Z Al ge Acre	HZ eage	Avulsion Area		
	381	761	1,6	54	147	9%	17	()	0%		
2011 Restr	icted Mig	ration A	rea Sur	nmary	y	Note that the	ese data refle	ct the observ	ed conditi	ons in the		
Reason for Restriction	Land Use Protected		RMA Acres	Perce CN	ent of MZ	Counties, COE for the rest of the river).						
Road/Railroad	Prism											
	Public Road		12	0.7	7%							
RipRap												
	Railroad		134	8.0	0%							
		Totals	147	8.8	8%							
Land Uses	within the	e CMZ (A	Acres)	FI Irriç	lood gation	Sprinkler Irrigation	Pivot Irrigation	Urban/ ExUrban	Tra porta	ns- ation		

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Aci	res		%	of Rea	ch Area	ł
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	11	21	31	43	0.3%	0.5%	0.8%	1.1%
	Totals	11	21	31	43	0.3%	0.5%	0.8%	1.1%
Agricultural Lan	d								
	Non-Irrigated	2,487	2,327	2,198	2,112	61.8%	57.8%	54.6%	52.5%
	Irrigated	498	522	676	693	12.4%	13.0%	16.8%	17.2%
	Totals	2,985	2,848	2,874	2,805	74.2%	70.8%	71.4%	69.7%
Channel									
	Channel	955	1,011	976	1,033	23.7%	25.1%	24.2%	25.7%
	Totals	955	1,011	976	1,033	23.7%	25.1%	24.2%	25.7%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%
Transportation									
	Public Road	35	39	39	39	0.9%	1.0%	1.0%	1.0%
	Interstate	0	65	65	65	0.0%	1.6%	1.6%	1.6%
	Railroad	25	25	25	25	0.6%	0.6%	0.6%	0.6%
	Totals	60	130	130	130	1.5%	3.2%	3.2%	3.2%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	4	4	4	4	0.1%	0.1%	0.1%	0.1%
	Urban Commercial	11	11	11	11	0.3%	0.3%	0.3%	0.3%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	15	15	15	15	0.4%	0.4%	0.4%	0.4%

Land Use Ti	meline - Tiers 3 a	and 4								Char	nge Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
Sprinkler			0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	15	137	0.0%	0.0%	0.5%	4.9%	0.0%	0.5%	4.4%	4.9%
Flood 498			522	661	556	16.7%	18.3%	23.0%	19.8%	1.6%	4.7%	-3.2%	3.1%
Totals 498			522	676	693	16.7%	18.3%	23.5%	24.7%	1.6%	5.2%	1.2%	8.0%

Reach BI2

Non-Irrigated

Multi-Use	2,053	2,033	2,029	1,944	68.8%	71.4%	70.6%	69.3%	2.6%	-0.8%	-1.3%	0.5%
Hay/Pasture	434	294	170	168	14.5%	10.3%	5.9%	6.0%	-4.2%	-4.4%	0.1%	-8.5%
Totals	2,487	2,327	2,198	2,112	83.3%	81.7%	76.5%	75.3%	-1.6%	-5.2%	-1.2%	-8.0%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	;	Shrub (Acres	5)	Clos	ed Timber (A	Acres)	Ор	en Timber (A	cres)
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.5	0.7	0.6	3.2	0.8	0.6	0.0	0.5	0.3
Max	62.3	49.2	66.6	91.5	131.1	56.8	30.5	47.0	112.3
Average	10.4	7.7	13.9	25.2	30.7	17.3	9.7	9.0	26.0
Sum	198.4	199.8	333.3	226.5	276.3	190.5	115.9	126.4	182.2
Riparian	Turnove	er eren erene te	abannal ar		Riparian t	to Channel (a	icres)	138.5	
from cl	nannel to rip	arian betwee	n the 1950's		Channel t	o Riparian (a	icres)	206.1	
and 20	01 data set.			R	iparian Encre	oachment (a	cres)	67.6	
Riparian	Recruit	ment	1950s Cha	nnel Mapped	l as 2011 Ripa	arian (Ac)	197.2		
Creation of riparian areas 1950s Flo			1950s Floodp	lain Mapped	as 2011 Cha	innel (Ac)	17.3		
between 1	950s and 20	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	214.5		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	5.6	104.4	34.3	0.0	144.3
Acres/Valley Mile	1.5	27.8	9.1	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	32.54	1.56%	0.42	1.66	12.52	10.02

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (
Habitat Scour Pool	Bankfull 179.4	Low Flow 99.9	% of Low Flow 10.2%
Rip Rap Bottom	64.0	10.2	1.0%
Secondary Channel	31.8	19.4	2.0%
Secondary Channel (Seasonal)	228.1	144.2	14.8%
Channel Crossover	60.9	54.1	5.5%
Point Bar		13.5	1.4%
Side Bar		58.4	6.0%
Mid-channel Bar		37.4	3.8%
Island	423.1	423.1	43.4%
Dry Channel		115.7	11.9%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region B

The study segment Big Horn to Laurel includes data from the people of one large county, Yellowstone County. Three themes dominate conversations with the four interest groups. One theme focuses on the evolving communities of Yellowstone County, most of which are influenced by the economic success and sheer growth of Billings. The second theme focuses on the evolving relationships that the people have with the river. While traditional agricultural activities continue in the county, many people discuss notions related to urban and residential experiences and how the river becomes an asset that improves one's quality of life as an urban dweller. The third theme involves a complex tangle of pressures and demands that require managerial strategies capable of dealing with a future that has arrived.

County	Treasure	Upstream River Mile	298.1
Classification	UA: Unconfined anabranching	Downstream River Mile	292.3
General Location	From Bighorn confluence	Length	5.80 mi (9.33 km)
General Comments	From Bighorn confluence: Includes 1 mile of left bank valley w	all control; Extensive bank	prot.

Narrative Summary

Reach C1 is located just downstream of the Bighorn River confluence. The Reach is 5.8 miles long and is an Unconfined Anabranching reach type, (UA), indicating the presence of forested islands with minimal valley wall influence on the river. These reach types tend to be the most dynamic of all reach types, with typically high rates of bank migration. At RM 296.5 for example, the river has migrated over 250 feet to the southeast between 2001 and 2011, indicating an average migration rate of over 25 feet per year.

There are about 2,300 feet of rock riprap in the reach, which collectively armors about 4 percent of the total bankline. About 1,000 feet of armor is protecting the rail line and another 500 feet is protecting agricultural ground. The remainder is protecting the Rancher's Ditch Diversion Structure at RM 295.5.

The Rancher's Ditch diversion dam is located approximately 2.5 miles downstream of the Bighorn River confluence. The dam was constructed in the early part of the 20th century and feeds a canal that flows on the north side of the river. There is a large, vegetated island in the Yellowstone River at the point of diversion, and diversion dams block channels on both sides of the island. The 2011 imagery shows that the south channel is becoming progressively abandoned, so that most flow goes over the main diversion structure on the north channel.

Since 1950, there have been over 7,000 feet of side channel blocked by floodplain dikes in the reach. These channels are on the lower end of the reach on the left (northwest) bank at RM 293. Even though side channels have been blocked, there has been a net gain of side channel length in the reach; since 1950, the total anabranching channel length has increased by 3,800 feet.

Since 1950, Reach C1 has experienced over 300 acres of new riparian recruitment, with most of that colonization occurring in old 1950s channel area. In balancing the amount of riparian area eroded out to the colonization acreage, there has still been a net gain of 118 acres of riparian area associated with channel movement. This reflects erosion of non-wooded lands and colonization of resulting open bar surfaces by woody vegetation, as well as the fact that the channel has gotten smaller since 1950; the bankfull area dropped by almost 50 acres (6 percent) between 1950 and 2001.

Whereas 8 percent of the 100-year floodplain has become isolated due to human development, about 47 percent (633 acres) of the 5year floodplain is no longer inundated at that frequency. About 80 acres of historic 100-year floodplain area has become isolated by the railroad, and another 42 acres due to flow alterations. The loss of 5-year floodplain shows the strong imprint of flow alterations below the mouth of the Bighorn River and of development of those areas that are less frequently inundated; about 216 acres of currently flood irrigated floodplain areas are in the historic 5-year floodplain footprint.

Land use is dominated by agriculture, with 1,212 acres of pivot irrigation development since 1950. About 15 of those acres of pivot are within the Channel Migration Zone (CMZ). Approximately 7 percent of the Channel Migration Zone (CMZ) has been restricted, with about half of the restrictions due to riprap along the railroad, and the other half due to floodplain dikes protecting irrigated lands.

There are several corrals associated with an animal handling facility at RM 296.8R. The river is migrating in the direction of these corrals and is currently about 600 feet from the facility.

Reach C1 supports over 40 acres per valley mile of mapped wetland, which is a relatively high wetland density for the river. There are also over 100 acres of Russian olive mapped in the reach, occupying 2.6 percent of the total floodplain area.

Reach C1 has seen a substantial loss in forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 48 acres per valley mile of such forest, and that number decreased to 20 acres per valley mile by 2001.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The mean annual flood is estimated to have dropped from 60,800 cfs to 47,100 cfs, a drop of about 23 percent. The 2-year flood, which strongly influences overall channel form, has dropped by 20 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,600 cfs to 2,950 cfs with human development, a reduction of 36 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,150 cfs under unregulated conditions to 3,320 cfs under regulated conditions at Reach C10 downstream where the analysis begins, a reduction of 46 percent.

CEA-Related observations in Reach C1 include: •Blocking of over a mile of side channel by floodplain dikes

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C1 include:

•Fish Passage at Ranchers Ditch Diversion: Structures block two channels at the diversion.

•Watercraft Passage at Ranchers Ditch Diversion

•Irrigation Infrastructure Management at Ranchers Ditch Diversion

Side channel reactivation at RM 293

Reach Cl

Reach CI

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

Flood His	story							Downstream	Upstream
Year	Date	Flow on Dat	e Return li	nterval		Gage No.		Gage	Gage 6214500
1974	Jun 22	75,400	10-25	10-25 yr		Location		Miles City	Billings
1997	Jun 15	83,300	10-25	10-25 yr		Perior	l of Record	1929-2015	1929-2015
1943	Jun 26	83,700	10-25	10-25 yr		Distance To (miles)		102.0 2010	66.2
2011	May 24	85,400	10-25	10-25 yr				100.3	00.3
1944	Jun 19	96,300	50-10	0 yr					
1978	May 22	102,000	50-10	0 yr					
Discharg	е							7Q10	95% Sum.
	1.0	1 Yr 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregul	ated	60,80	0 76,600	86,900	110,000	119,000	142,000	4,600	3,846

Unregulated	60,800	76,600	86,900	110,000	119,000	142,000	4,600	3,846
Regulated	47,100	61,400	70,700	91,200	99,900	121,000	2,950	2,227
% Change	-22.53%	-19.84%	-18.64%	-17.09%	-16.05%	-14.79%	-35.87%	-42.10%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	8-Aug-96	B/W		6295000	9110
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	07/13/2005	color	1-meter pixels	6309000	17700
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	6/29/2009	Color	1-meter pixels	6309000	42200
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/20/2011	Color	1-meter pixels	6309000	46100
2013	NAIP	07/21/2013	color	1-meter pixels	6309000	
2013	NAIP	07/20/2013	color	1-meter pixels	6309000	
2013	NAIP	06/15/2013	color	1-meter pixels	6309000	
2013	NAIP	06/16/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	1,900	3.0%	2,306	3.7%	406
	Feature Type Totals	1,900	3.0%	2,306	3.7%	406
Floodplain	Control					
	Floodplain Dike/Levee	9,038	14.4%	9,038	14.4%	0
	Feature Type Totals	9,038	14.4%	9,038	14.4%	0
	Reach Totals	10,938	17.5%	11,344	18.1%	406

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		0	0	984	0	0	472	0	0
	Totals	0	0	984	0	0	472	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan.	Anab. Ch.	Bankfull Braiding Parameter		% Change in Braiding	
1950	31,562	43,000	2.36	1950 to 1976:	8.77%	
1976	30,782	48,316	2.57	1976 to 1995:	-6.93%	
1995	31,314	43,579	2.39	1995 to 2001:	4.32%	
2001	31,294	46,785	2.50	1950 to 2001:	5.62%	
Change 1950 - 2001	-269	3,785	0.13			
Length of Side		Pre-1950s (ft)	0			
Channels Blocked		Post-1950s (ft)	7,171			

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	42	2.2%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	30	1.6%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	80	4.2%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	1737		1476		
Total Floodplain Area (Ac)	1889		2110		
Total Isolated (Ac)	152	8.1%	633	45.9%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	69	0	0	69

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To Cl Acre	otal MZ eage	Restricted CMZ Acreage	% Restric Migratio Area	ted Tota n AHZ Acrea	I Rest A ge Acr	ricted % I HZ & eage	Restricted Avulsion Area
	355	711	1,8	804	113	6%	162	(0	0%
2011 Res	stricted Mig	ration A	rea Sur	nmary	/	Note that the	ese data refle	ot the observ	ed condition	ns in the
Reason for Restriction	Land Use Protected		RMA Acres	Perce CN	ent of /IZ	Counties, COE for the rest of the river).			e Grass	
RipRap										
	Railroad		56	2.9	9%					
Dike/Levee										
	Irrigated		57	2.9	9%					
		Totals	113	5.7	%					
Land Us	es within tł	ne CMZ (A	Acres)	FI Irriç	ood jation	Sprinkler Irrigation	Pivot Irrigation	Urban/ ExUrban	Trans portati	s- ion
				Irrig 1	jation 50.0	Irrigation 0.0	Irrigation 14.5	ExUrban 0.0	portati 10.1	ion

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Acı	res		% of Reach Area			a I
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	51	66	54	40	0.9%	1.1%	0.9%	0.7%
	Totals	51	66	54	40	0.9%	1.1%	0.9%	0.7%
Agricultural Lan	d								
	Non-Irrigated	2,850	2,846	2,739	2,486	48.0%	47.9%	46.1%	41.8%
	Irrigated	1,895	1,816	1,975	2,176	31.9%	30.6%	33.2%	36.6%
	Totals	4,745	4,662	4,714	4,662	79.8%	78.4%	79.3%	78.4%
Channel									
	Channel	1,062	1,092	1,021	1,082	17.9%	18.4%	17.2%	18.2%
	Totals	1,062	1,092	1,021	1,082	17.9%	18.4%	17.2%	18.2%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	5	0.0%	0.0%	0.0%	0.1%
	Totals	0	0	0	5	0.0%	0.0%	0.0%	0.1%
Transportation									
	Public Road	54	91	58	58	0.9%	1.5%	1.0%	1.0%
	Interstate	0	0	65	65	0.0%	0.0%	1.1%	1.1%
	Railroad	32	32	32	32	0.5%	0.5%	0.5%	0.5%
	Totals	85	123	154	154	1.4%	2.1%	2.6%	2.6%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 a	and 4								Char	ige Betv	veen Y	ears
			Acr	es		%	of Rea	ch Area	a	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	137	177	1,212	0.0%	2.9%	3.7%	26.0%	2.9%	0.8%	22.3%	26.0%
	Flood	1,895	1,679	1,798	964	39.9%	36.0%	38.1%	20.7%	-3.9%	2.1%	-17.5%	-19.3%
	Totals	1,895	1,816	1,975	2,176	39.9%	39.0%	41.9%	46.7%	-1.0%	2.9%	4.8%	6.7%

Non-Irrigated

Multi-Use	2,758	2,449	2,400	2,138	58.1%	52.5%	50.9%	45.9%	-5.6%	-1.6%	-5.0%	-12.3%
Hay/Pasture	92	397	339	348	1.9%	8.5%	7.2%	7.5%	6.6%	-1.3%	0.3%	5.5%
Totals	2,850	2,846	2,739	2,486	60.1%	61.0%	58.1%	53.3%	1.0%	-2.9%	-4.8%	-6.7%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres) Closed Timber (Acres)			Acres)	Open Timber (Acres)				
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.5	0.5	1.1	1.4	0.8	1.2	1.6	1.9	5.4
Max	33.2	155.4	177.4	229.3	28.0	77.6	137.1	47.9	47.1
Average	8.5	17.1	19.1	24.7	11.1	16.2	21.0	23.9	24.3
Sum	169.9	411.4	477.9	468.6	177.1	355.7	188.7	287.1	121.5
Riparian Turnover Riparian to Channe						to Channel (a	l (acres) 130.1		
Conversion of riparian areas to channel, or from channel to riparian between the 1950's Channel to F				Channel to Riparian (acres) 248.3					
and 2001 data set. Riparian Encroachmer					oachment (a	cres)	118.2		
Riparian Recruitment 1950s Channel Mapped as 2011 Riparian (Ac)					arian (Ac)	218.2			
Creation of	f riparian are	as	1950s Floodplain Mapped as 2011 Channel (Ac)				92.3		
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	310.6		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	2.4	121.5	73.2	0.0	197.1
Acres/Valley Mile	0.5	25.8	15.5	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	104.53	2.59%	1.31	2.05	9.26	4.44

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	304.8	179.4	17.6%
Rip Rap Margin	3.2	3.1	0.3%
Bluff Pool	46.4	45.5	4.5%
Secondary Channel	64.2	52.4	5.1%
Secondary Channel (Seasonal)	165.7	112.4	11.0%
Channel Crossover	133.1	100.8	9.9%
Point Bar		83.0	8.1%
Side Bar		45.6	4.5%
Mid-channel Bar		23.7	2.3%
Island	292.2	295.5	28.9%
Dry Channel		79.4	7.8%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.
CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

County	Treasure	Upstream River Mile	292.3			
Classification	PCB: Partially confined braided	Downstream River Mile	286.8			
General Location	To Myers Bridge	Length	5.50 mi (8.85 km)			
General Comments	To Myers Br (RM 285.5); Railroad adjacent to channel on valley wall; low sinuosity					

Narrative Summary

Reach C2 is located just upstream of Myers Bridge. The Reach is 5.5 miles long and is a Partially Confined Braided (PCB) reach type indicating some valley wall influence on a channel with fairly extensive low flow channels and open gravel bars. The reach follows the southern bluff line along the entire reach, which is almost entirely armored to protect the railroad.

There are over five miles of bank armor in the reach, most of which is rock riprap protecting the rail line. A total of 46 percent of the bank is armored. Since 2001, 1,200 feet of flow deflectors have been built on the right bank just above Myers Bridge.

About two miles of side channel have recently been blocked in Reach C2. In the upper end of the reach, two large side channels were blocked by a several thousand foot long floodplain dike sometime after 1976, and the old island in between these side channels is now cleared and farmed. The heads of these channels are at RM 293, and removal of the plugs at their heads could potentially reactivate over a mile of side channel connectivity. A second channel on the north side of the river at RM 289 appears relatively old, but has access roads crossing it that appear to block seasonal access. Similar to upstream, the isolation of this ~9,000 foot-long side channel has prompted clearing and farming of the old island area that is currently accessible. In total, about 18 percent (162 acres) of the mapped 1950s riparian vegetation in the reach has been cleared and converted to irrigation.

Land use is dominated by agriculture, with 137 acres of pivot irrigation development since 1950. There are several corrals associated with an animal handling facility at RM 289.5L. The corrals are on the edge of a blocked historic side channel that drains to the river. Dikes, levees, and irrigation-related riprap have collectively isolated just over 10 percent of the Channel Migration Zone in Reach C2.

Over 600 acres of 100-year floodplain has been isolated by human development, and all of that isolation is due to agricultural development on the north side of the river. The isolation reflects 23 percent of the total 100-year floodplain. The 5-year floodplain is even more affected; 59 percent of the historic 5-year floodplain is no longer inundated at that frequency. The loss of 5-year floodplain shows the strong imprint of flow alterations below the mouth of the Bighorn River and consequent development of those areas that are less frequently inundated; about 550 acres of currently flood irrigated areas are in the historic 5-year floodplain footprint.

Since 1950, Reach C2 has experienced about 190 acres of new riparian recruitment, with most of that colonization occurring in old 1950s channel area. There has been a net gain of 40 acres of riparian area in the reach associated with channel movement. This reflects encroachment of vegetation into the channel that has experienced a 20 percent reduction in channel forming (2-year) flow. There are about 46 acres of Russian olive in the reach.

Reach C2 was sampled as part of the fisheries study. A total of 32 fish species were sampled in the reach and one of those species was Sauger, which has been identified by the Montana Natural Heritage Program as a Species of Concern (SOC).

Reach C2 has seen a substantial loss in forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 37 acres per valley mile of such forest, and that number decreased to 6 acres per valley mile by 2001.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The mean annual flood is estimated to have dropped from 60,900 cfs to 47,100 cfs, a drop of about 23 percent. The 2-year flood, which strongly influences overall channel form, has dropped by 20 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,610 cfs to 2,950 cfs with human development, a reduction of 36 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,150 cfs under unregulated conditions to 3,320 cfs under regulated conditions at Reach C10 downstream where the analysis begins, a reduction of 46 percent.

CEA-Related observations in Reach C2 include:

- •Blocking of over a mile of side channel by floodplain dikes
- •Riparian clearing and irrigation development in isolated 5-year floodplain
- ·Loss of area at low risk of cowbird parasitism with riparian clearing

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C2 include:

- •Side channel reactivation at RM 293
- •Side channel reactivation at RM 289
- •Nutrient management at corrals associated with an animal handling facility at RM 288.8L
- Russian olive removal

Reach C

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

-22.66%

-19.97%

-18.74%

Flood Hi	story							Downstream	Upstream
Year	Date	Flow on Date	Return Ir	nterval			Gage No	Gage 6309000	6214500
1974	Jun 22	75,400	10-25	10-25 yr		Location	Miles City	Billings	
1997	Jun 15	83,300	10-25	5 yr		Poriod of Pocord		1929-2015	1929-2015
1943	Jun 26	83,700	10-25	5 yr		Distance		400.0	70.4
2011	May 24	85,400	10-25	5 yr		Distance	lo (miles)	102.8	72.1
1944	Jun 19	96,300	50-10	0 yr					
1978	May 22	102,000	50-10	D yr					
Dischar	ge							7Q10	95% Sum.
	1.0	1 Yr 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregu	lated	60,900	76,600	87,000	110,000	119,000	142,000	4,610	3,846
Regu	ulated	47,100	61,300	70,700	91,200	100,000	121,000	2,950	2,227

-17.09%

-15.97%

-14.79%

-36.01%

-42.10%

% Change

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	8-Aug-96	B/W		6295000	9110
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	07/13/2005	color	1-meter pixels	6309000	17700
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	7/30/2009	Color	1-meter pixels	6309000	13800
2009	NAIP	6/29/2009	Color	1-meter pixels	6309000	42200
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/20/2011	Color	1-meter pixels	6309000	46100
2013	NAIP	07/21/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization	0 ()		0 (7		0
	Tree Revetments	702	1.2%	702	1.2%	0
	Rock RipRap	25,527	43.8%	25,537	43.9%	10
	Flow Deflectors	0	0.0%	387	0.7%	387
	Between Flow Deflectors	0	0.0%	869	1.5%	869
	Feature Type Totals	26,229	45.0%	27,495	47.2%	1,266
Floodplain	Control					
	Floodplain Dike/Levee	1,508	2.6%	1,508	2.6%	0
	Feature Type Totals	1,508	2.6%	1,508	2.6%	0
	Reach Totals	27,737	47.6%	29,003	49.8%	1,266

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		1,168	0	0	0	0	24,708	0	0
Tree Revetments		0	0	0	0	0	0	0	0
	Totals	1,168	0	0	0	0	24,708	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)			Bankfull		
(,	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Braiding Parameter		% Change in Braiding
1950	29,638	28,656	1.97	1950 to 1976:	7.47%
1976	29,979	33,391	2.11	1976 to 1995:	-36.35%
1995	29,256	10,104	1.35	1995 to 2001:	-1.76%
2001	29,112	9,366	1.32	1950 to 2001:	-32.80%
Change 1950 - 2001	-526	-19,291	-0.65		
Length of Side		Pre-1950s (ft)	1,014		
Channels Blocked		Post-1950s (ft)	10,614		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year			
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain		
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%				
Agriculture (generally relates to field boundaries)	129	4.7%				
Agriculture (isloated by canal or large ditch)	476	17.3%				
Levee/Riprap (protecting agricultural lands)	19	0.7%				
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%				
Railroad	0	0.0%				
Abandoned Railroad	0	0.0%				
Transportation (Interstate and other roads)	0	0.0%				
Total Not Isolated (Ac)	2123		1250			
Total Floodplain Area (Ac)	2747		2209			
Total Isolated (Ac)	624	22.7%	959	59.3%		

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	217	0	0	217

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 331	Erosion Buffer (ft) 663	Tot CM Acre 1,5	tal MZ eage 17	Restricted CMZ Acreage 143	% Restrict Migratio Area 9%	ted Tota n AH Acrea 120	al R Z Age /	estricted AHZ Acreage 15	% Restricted Avulsion Area 12%
2011 Res	stricted Migr	ation A	rea Sun	nmary	/	Note that the	ese data refle	ect the obs	erved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perce CN	ent of //Z	Counties, CO	DE for the re	(NAIP for st of the ri	Park and s ver).	Sweet Grass
RipRap										
	Irrigated		47	2.8	3%					
Flow Deflect	ctors									
	Non-Irrigated		10	0.6	8%					
Dike/Levee										
	Public Road		2	0.1	%					
	Irrigated		109	6.6	5%					
		Totals	168	10.	2%					
Land Us	es within the	e CMZ (A	Acres)	FI Irrig 24	ood jation 14.3	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urbar ExUrb 0.0	n/ T an pc	Trans- ortation 0.1

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres				% of Reach Area				
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	69	170	187	190	1.1%	2.7%	3.0%	3.0%	
	Totals	69	170	187	190	1.1%	2.7%	3.0%	3.0%	
Agricultural Lan	d									
	Non-Irrigated	2,677	2,590	2,755	2,700	42.3%	41.0%	43.6%	42.7%	
	Irrigated	2,465	2,434	2,566	2,610	39.0%	38.5%	40.6%	41.3%	
	Totals	5,141	5,024	5,321	5,311	81.3%	79.5%	84.1%	84.0%	
Channel						•				
	Channel	1,057	1,076	758	765	16.7%	17.0%	12.0%	12.1%	
	Totals	1,057	1,076	758	765	16.7%	17.0%	12.0%	12.1%	
ExUrban										
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	0	5	5	0.0%	0.0%	0.1%	0.1%	
	Totals	0	0	5	5	0.0%	0.0%	0.1%	0.1%	
Transportation										
	Public Road	24	21	21	21	0.4%	0.3%	0.3%	0.3%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	33	33	33	33	0.5%	0.5%	0.5%	0.5%	
	Totals	57	54	54	54	0.9%	0.8%	0.8%	0.8%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	neline - Tiers 3 and	4								Char	ige Beti	ween Y	ears
			Acr	res		%	of Rea	ch Area	a	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	77	79	0.0%	0.0%	1.4%	1.5%	0.0%	1.4%	0.0%	1.5%
	Pivot	0	0	138	138	0.0%	0.0%	2.6%	2.6%	0.0%	2.6%	0.0%	2.6%
	Flood	2,465	2,434	2,351	2,394	47.9%	48.4%	44.2%	45.1%	0.5%	-4.3%	0.9%	-2.9%
	Totals	2,465	2,434	2,566	2,610	47.9%	48.4%	48.2%	49.2%	0.5%	-0.2%	0.9%	1.2%

Reach C2

Non-Irrigated	

Multi-Use	2,601	2,510	2,736	2,697	50.6%	49.9%	51.4%	50.8%	-0.6%	1.5%	-0.6%	0.2%
Hay/Pasture	76	81	19	3	1.5%	1.6%	0.4%	0.1%	0.1%	-1.3%	-0.3%	-1.4%
Totals	2,677	2,590	2,755	2,700	52.1%	51.6%	51.8%	50.8%	-0.5%	0.2%	-0.9%	-1.2%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Clos	ed Timber (A	(cres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.9	0.3	1.4	0.1	0.0	2.0	4.7	0.3	1.8	
Max	28.3	27.0	86.8	78.9	156.8	107.5	167.0	96.0	126.0	
Average	9.6	8.2	16.1	19.8	37.8	31.2	59.9	22.7	29.9	
Sum	172.2	180.1	241.1	276.7	416.0	374.0	479.1	182.0	149.7	
Riparian	Turnove	er ion orono to i	obannal ar		Riparian t	o Channel (a	cres)	90.0		
from cl	hannel to rip	arian betwee	n the 1950's		Channel t	o Riparian (a	cres)	128.7		
and 2001 data set.				R	Riparian Encroachment (acres) 38.8					
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	136.8			
Creation o	f riparian are	as	1950s Floodp	s Floodplain Mapped as 2011 Channel (Ac) 56.3						
between 1	950s and 20	01.	Total Recruitment (1950s to 2011)(Ac) 193.1							

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	2.3	68.1	33.6	0.0	104.1
Acres/Valley Mile	0.4	12.7	6.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	45.84	0.87%	1.02	4.89	7.04	6.59

Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region	Region	Region	Region Reach
Bigmouth buffalo	Flathead chub	Northern redbelly dace	Stonecat
Black bullhead	Freshwater drum	Pallid sturgeon	Sturgeon chub
Black crappie	Goldeye	Pumpkinseed	Sucker species
Blue sucker	Green sunfish	Rainbow trout	Sunfish species
✓ ✓ Bluegill	Lake chub	River carpsucker	V Walleye
Brook stickleback	✓ ✓ Largemouth bass	Rock bass	Vestern silvery minnow
Brown trout	✓ ✓ Longnose dace	Sand shiner	White bass
✓ ✓ Burbot	✓ ✓ Longnose sucker	Sauger	White crappie
Catfish species	Minnow species	Shorthead redhorse	✓ ✓ White sucker
✓ ✓ Channel catfish	Mottled sculpin	🗌 🔄 Shortnose gar	Yellow bullhead
Common carp	Mountain sucker	Shovelnose sturgeon	Yellow perch
Creek chub	Mountain whitefish	Sicklefin chub	
Emerald shiner	Northern pike	Smallmouth bass	
✓ ✓ Fathead minnow	🗌 🗸 Northern plains killifish	✓ ✓ Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	100.3	50.4	6.6%
Rip Rap Bottom		3.1	0.4%
Rip Rap Margin	166.6	127.3	16.8%
Secondary Channel	78.8	71.6	9.4%
Secondary Channel (Seasonal)	111.0	52.4	6.9%
Channel Crossover	133.3	103.8	13.7%
Point Bar		6.4	0.8%
Side Bar		29.0	3.8%
Mid-channel Bar		97.1	12.8%
Island	167.6	167.6	22.1%
Dry Channel		49.0	6.5%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

County	Treasure	Upstream River Mile	286.8
Classification	UA: Unconfined anabranching	Downstream River Mile	282
General Location	To Yellowstone Diversion	Length	4.80 mi (7.72 km)
General Comments	Just downstream of Myers Bridge, Reach C3 provides an examisolation that can occur in the vicinity of transportation and irrid	mple of the extent of Chann gation infrastructure.	el Migration Zone

Narrative Summary

Reach C3 is located in Treasure County, between Myers Bridge and the Yellowstone Ditch Diversion, at the head of the Mission Valley. The reach is a 4.4 mile long Unconfined Anabranching reach type, extending from RM 282.0 to RM 286.4. In this area the alluvial valley bottom is approximately 2.5 miles wide, and this broad valley configuration is due to the presence of relatively erodible Cretaceous-age Bearpaw Shale in the valley walls and valley floor on the west limb of the Porcupine Dome. The Bearpaw Shale consists of dark gray shale that is approximately 800 feet thick. The unit is commonly exposed in the valley walls where the Yellowstone valley bottom is anomalously wide, such as in the Mission and Hammond Valleys, indicating that it is erodible in comparison to the resistant sandstones that typically form the valley margin. Upstream of Myers Bridge, the river has undercut its right bank where Bearpaw Shale underlies Hell Creek sandstone. The rail line follows the river's edge on the sandstone, and land sliding on the shale horizon has resulted in extensive bank armoring to protect the rail line (Womack, 2001).

This reach was used by Koch (1977) to exemplify an especially dynamic river segment where the channel crosses the valley from one valley wall to another. Koch (1977) and Womack (2001) noted that in these areas, the Yellowstone River exhibits a particularly rich and diverse riparian zone.

There are over two miles of bank armor in the reach, all of which is rock riprap. A total of 25 percent of the bank is armored. In addition, approximately 31,000 linear feet of transportation encroachments and floodplain dikes were mapped in the reach. These floodplain features include floodplain dikes at Myers Bridge and the Yellowstone Ditch Diversion, and a long segment of railroad grade that is on a high terrace margin adjacent to an anabranching channel thread. Several of the floodplain dikes are protected by riprap. Land use is dominated by agriculture, with 33 acres of pivot irrigation development since 1950. Physical features such as bank armor, dikes, and levees have isolated 19 percent of the Channel Migration Zone in Reach C3.

The Yellowstone Ditch Diversion Dam is located at the lower end of Reach C3 at River Mile 282. The structure was built in 1909.

Even though Reach C3 has extensive armoring and diking throughout the reach, it has maintained substantial side channel connectivity.

Over 300 acres of 100-year floodplain has been isolated by human development, and all of that isolation is due to agricultural development on the north side of the river. The isolation reflects 12 percent of the total 100-year floodplain. The 5-year floodplain is even more affected; 65 percent of the historic 5-year floodplain is no longer inundated at that frequency. The loss of 5-year floodplain shows the strong imprint of flow alterations below the mouth of the Bighorn River and consequent development of those areas that are less frequently inundated; about 700 acres of currently irrigated areas are in the historic 5-year floodplain footprint.

Reach C3 shows a net encroachment of 192 acres of woody vegetation into the active channel corridor, suggesting that hydrologic alterations may have driven some channel narrowing since 1950. This is also supported by the loss of 121 acres of bankfull area between 1950 and 2001. This reflects encroachment of vegetation into the channel that has experienced a 20 percent reduction in channel forming (2-year) flow. There are about 21 acres of Russian olive in the reach. The reach supports about 30 acres of wetland per valley mile, which is a relatively dense wetland concentration for the corridor.

Reach C3 was sampled as part of the fisheries study. A total of 32 fish species were sampled in the reach and one of those species was Sauger, which has been identified by the Montana Natural Heritage Program as a Species of Concern (SOC).

Reach C3 was sampled as part of the avian study. A total of 39 bird species were identified in the reach. The average species richness in Reach C3 was 8.1, which indicates the average number of species observed during site visits to the reach in cottonwood habitats. The average species richness for sites evaluated is 8. Three bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) were also found, the Chimney Swift, the Ovenbird and the Plumbeous Vireo. One species identified as a Species of Concern (SOC) was documented, the Read-headed Woodpecker. In contrast to most other reaches, Reach C3 has seen an increase in the forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 65 acres per valley mile of such forest, and that number increased to 82 acres per valley mile by 2001.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 23 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,610 cfs to 2,950 cfs with human development, a reduction of 36 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,150 cfs under unregulated conditions to 3,320 cfs under regulated conditions at Reach C10 downstream where the analysis begins, a reduction of 46 percent.

CEA-Related observations in Reach C3 include:

•Influence of flow alterations on floodplain inundation and riparian extent

Increase in area at low risk of cowbird parasitism with riparian encroachment

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C3 include:

Reach C

•Fish passage at Yellowstone Ditch Diversion RM 282

•Watercraft passage at Yellowstone Ditch Diversion at RM 282

•Irrigation diversion infrastructure management at Yellowstone Ditch Diversion at RM 282

•Russian olive removal

PHYSICAL FEATURES MAP (2011)

Floodplain Dike/Levee Flow Deflector Rock RipRap Concrete RipRap Flow Deflectors Physical Features Other nterstate Highway US or State Route Secondary Road 7z Reach Breaks **River Miles** 8 Counties Legend

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

-22.66%

-19.97%

-18.74%

Flood Hi	story							Downstream	Upstream
Year	Date	Flow on Date	Return Ir	nterval			Gage No	Gage 6309000	6214500
1974	Jun 22	75,400	10-25	10-25 yr			Location	Miles City	Billings
1997	Jun 15	83,300	10-25	10-25 yr		Period of Record		1929-2015	1929-2015
1943	Jun 26	83,700	10-25	10-25 yr		Distance To (miles)		08.0	77.6
2011	May 24	85,400	10-25 yr			Distance 10 (innes)		98.0	77.0
1944	Jun 19	96,300	50-10	0 yr					
1978	May 22	102,000	50-10	0 yr					
Discharg	je							7Q10	95% Sum.
	1.0	1 Yr 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregu	lated	60,900	76,600	87,000	110,000	119,000	142,000	4,610	3,846
Regu	lated	47,100	61,300	70,700	91,200	100,000	121,000	2,950	2,227

-17.09%

-15.97%

-14.79%

-36.01%

-42.10%

% Change

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	8/8/96 - 7/14/96	B/W		6295000	25300
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	07/13/2005	color	1-meter pixels	6309000	17700
2007	Woolpert	10/15/2007 - 11/2/0007	Color		6309000	6490
2009	NAIP	7/30/2009	Color	1-meter pixels	6309000	13800
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/20/2011	Color	1-meter pixels	6309000	46100
2013	NAIP	07/13/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	12,557	25.2%	12,618	25.4%	62
	Feature Type Totals	12,557	25.2%	12,618	25.4%	62
Floodplain	n Control					
	Transportation Encroachment	13,219	26.6%	13,219	26.6%	0
	Floodplain Dike/Levee	17,438	35.1%	17,438	35.1%	0
	Feature Type Totals	30,657	61.6%	30,657	61.6%	0
	Reach Totals	43,214	86.9%	43,276	87.0%	62

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

	Totals	7,856	0	492	2,165	0	2,158	0	0
Rock RipRap		7,856	0	492	2,165	0	2,158	0	0
Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	27,296	37,678	2.38	1950 to 1976:	-2.87%
1976	29,355	38,514	2.31	1976 to 1995:	16.55%
1995	24,717	41,887	2.69	1995 to 2001:	-2.69%
2001	24,872	40,347	2.62	1950 to 2001:	10.16%
Change 1950 - 2001	-2,424	2,669	0.24		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	45	1.6%			
Levee/Riprap (protecting agricultural lands)	188	6.9%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	81	3.0%			
Total Not Isolated (Ac)	2409		1245		
Total Floodplain Area (Ac)	2723		2442		
Total Isolated (Ac)	314	11.5%	1197	65.1%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	113	0	0	113

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 512	Erosion Buffer (ft) 1,024	To CM Acre 2,2	tal AZ eage 49	Restricted CMZ Acreage 476	% Restrict Migration Area 21%	ed Tota n AH2 Acrea 283	al R Z age /	estricted AHZ Acreage 0	% Restricted Avulsion Area 0%	
2011 Restricted Migration Area Summary					ry	Note that these data reflect the observed conditions in the					
Reason for Restriction	Land Use Protected		RMA Acres	Perc	cent of CMZ	2011 aerial p Counties, CC	hotography)E for the re	(NAIP for st of the ri	Park and S ver).	Sweet Grass	
КірКар	Pailroad		27	1	10/						
	Raili Jau Public Pood		21 60	ו כ	. 1 70 70/						
	Irrigated		205	8	.1%						
Flow Deflee	ctors										
	Non-Irrigated		0	0	.0%						
Dike/Levee											
	Public Road		69	2	.7%						
	Non-Irrigated		106	4	.2%						
		Totals	476	18	3.8%						
Land Us	es within the	e CMZ (/	Acres)	l Irr	Flood igation 393.6	Sprinkler Irrigation 0.0	Pivot Irrigation 17.9	Urbar ExUrb 1.4	ו/ T an pc	Frans- ortation 9.2	

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3		Acı	res		% of Reach Area			1
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	8	8	8	8	0.2%	0.2%	0.2%	0.2%
	Agricultural Roads	0	11	11	11	0.0%	0.2%	0.2%	0.2%
	Other Infrastructure	33	74	89	89	0.7%	1.6%	1.9%	1.9%
	Totals	41	93	108	108	0.9%	2.0%	2.3%	2.3%
Agricultural Lan	d								
	Non-Irrigated	1,394	1,406	1,409	1,367	29.2%	29.5%	29.6%	28.7%
	Irrigated	1,882	1,817	1,821	1,811	39.5%	38.1%	38.2%	38.0%
	Totals	3,276	3,223	3,229	3,177	68.7%	67.6%	67.8%	66.7%
Channel									
	Channel	1,410	1,402	1,381	1,425	29.6%	29.4%	29.0%	29.9%
	Totals	1,410	1,402	1,381	1,425	29.6%	29.4%	29.0%	29.9%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	8	0.0%	0.0%	0.0%	0.2%
	Totals	0	0	0	8	0.0%	0.0%	0.0%	0.2%
Transportation									
	Public Road	22	31	31	31	0.5%	0.7%	0.6%	0.6%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	17	17	17	17	0.4%	0.4%	0.4%	0.4%
	Totals	39	48	48	48	0.8%	1.0%	1.0%	1.0%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 ar	าd 4								Char	nge Betv	veen Y	ears
			Acr	res		%	of Rea	ch Area	1	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	33	0.0%	0.0%	0.0%	1.0%	0.0%	0.0%	1.0%	1.0%
	Flood	1,882	1,817	1,821	1,778	57.4%	56.4%	56.4%	55.9%	-1.1%	0.0%	-0.4%	-1.5%
	Totals	1,882	1,817	1,821	1,811	57.4%	56.4%	56.4%	57.0%	-1.1%	0.0%	0.6%	-0.5%

Reach C3

Non-	Irrigated

Multi-Use	1,244	1,356	1,378	1,336	38.0%	42.1%	42.7%	42.0%	4.1%	0.6%	-0.6%	4.1%
Hay/Pasture	150	50	31	31	4.6%	1.5%	1.0%	1.0%	-3.1%	-0.6%	0.0%	-3.6%
Totals	1,394	1,406	1,409	1,367	42.6%	43.6%	43.6%	43.0%	1.1%	0.0%	-0.6%	0.5%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	:	Shrub (Acres	5)	Closed Timber (Acres)			Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.4	0.4	0.7	0.1	1.5	1.0	10.8	1.6	1.9	
Max	47.8	107.1	75.5	272.5	79.0	154.8	63.2	141.9	102.6	
Average	7.9	14.6	14.6	32.5	19.3	33.7	25.0	36.8	29.0	
Sum	213.3	365.7	320.6	747.4	521.5	674.1	99.8	368.0	347.6	
Riparian	Turnove	er			Riparian f	to Channel (a	cres)	122.1		
from cl	rsion of ripar nannel to rip	arian areas to e	channel, or n the 1950's		Channel t	o Riparian (acres) 314.2				
and 20	01 data set.			R	iparian Encr	oachment (a	cres)	192.1		
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	318.6			
Creation o	f riparian are	as	1950s Floodp	blain Mapped as 2011 Channel (Ac) 79.4			79.4			
between 1	between 1950s and 2001.			I Recruitme	nt (1950s to 2	2011)(Ac)	398.0			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	6.4	90.6	23.2	0.0	120.2
Acres/Valley Mile	2.0	28.7	7.4	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	21.17	0.60%	5.66	4.51	2.15	1.40

Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region	Region	Region	Region Reach
Bigmouth buffalo	✓ ✓ Flathead chub	Northern redbelly dace	Stonecat
✓ ✓ Black bullhead	Freshwater drum	Pallid sturgeon	Sturgeon chub
Black crappie	Goldeye	Pumpkinseed	Sucker species
Blue sucker	Green sunfish	Rainbow trout	Sunfish species
Bluegill	Lake chub	River carpsucker	V Walleye
Brook stickleback	Largemouth bass	Rock bass	Vestern silvery minnow
Brown trout	✓ ✓ Longnose dace	Sand shiner	White bass
✓ ✓ Burbot	✓ ✓ Longnose sucker	Sauger	Vite crappie
Catfish species	Minnow species	Shorthead redhorse	✓ ✓ White sucker
✓ ✓ Channel catfish	Mottled sculpin	Shortnose gar	Yellow bullhead
Common carp	✓ ✓ Mountain sucker	Shovelnose sturgeon	Yellow perch
Creek chub	Mountain whitefish	Sicklefin chub	
Emerald shiner	Northern pike	Smallmouth bass	
✓ ✓ Fathead minnow	✓ ✓ Northern plains killifish	✓ ✓ Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat	Bankfull	Low Flow	% of Low Flow
	123.5	81.6	5.9%
Rip Rap Bottom	69.2	52.3	3.8%
Secondary Channel	21.1	22.0	1.6%
Secondary Channel (Seasonal)	216.1	147.4	10.7%
Channel Crossover	146.7	81.1	5.9%
Point Bar		45.0	3.3%
Side Bar		96.8	7.0%
Mid-channel Bar		30.5	2.2%
Island	777.7	777.7	56.3%
Dry Channel		23.2	1.7%
Dam Influenced	26.5	23.2	1.7%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	✓ ✓ Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	🗹 🗹 Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
	Barn Swallow	✓ ✓ Common Yellowthroat	Mourning Dove	✓ ✓ Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	✓ ✓ Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	✓ ✓ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	V Vovenbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	✓ ✓ Eastern Kingbird	Plumbeous Vireo	V Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	✓ ✓ Red-headed Woodpecker	✓ ✓ Western Meadowlark
	Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	☐ ✓ Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
	Brewer's Blackbird	✓ ✓ Franklin's Gull	✓ ✓ Ring-necked Pheasant	✓ ✓ White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	✓ ✓ Red-tailed hawk	V Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	V Wood Duck
	Brown Thrasher	Great Blue Heron	✓ ✓ Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	✓ ✓ Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	V Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

County	Treasure
Classification	PCB: Partially confined braided
General Location	Below Yellowstone Diversion
General Comments	Below Yellowstone Diversion

Upstream River Mile282Downstream River Mile278.2Length3.80 mi (6.12 km)

Narrative Summary

Reach C4 is located in Treasure County, below Yellowstone Diversion Dam. Amelia Island Fishing Access Site is located in the middle of the reach. The reach is a 3.8 mile long Partially Confined Braided reach type, indicating some influence of the valley wall along with fairly common mid-channel bars. Within this reach the river trends toward and along the north valley wall near Hysham.

There are almost 5,000 feet of bank armor in the reach, all of which is rock riprap protecting flood irrigated fields at RM 279. Channel migration at the upstream end of this armor will pose risk of flanking as the bankline continues to erode to the south. A total of 13 percent of the bank is armored. Land use is dominated by agriculture, with 371 acres of pivot irrigation development since 1950. Physical features such as bank armor, dikes, and levees have isolated 9 percent of the Channel Migration Zone in Reach C4. All of the armor is protecting agricultural land. There are 22 acres of land in the CMZ under pivot irrigation.

Reach C4 has lost 8,200 feet of side channel length since 1950; however none of those lost channels were mapped as intentionally blocked.

Reach C4 shows a reduction in floodplain turnover rates from 3.4 acres/valley mile/year from 1950-1976 to 1.8 acres/valley mile/year from 1976-2001. There has also been a net loss of 15.5 acres of mid-channel bars since 1950, and a 10 acre increase in bank-attached bars, indicating a loss in overall low flow channel complexity. About 120 acres of riparian area has been cleared for irrigation, which is 18 percent of the total mapped 1950 riparian zone. There are 34 acres of Russian olive in the reach.

Over 300 acres of 100-year floodplain has been isolated by human development, and all of that isolation is due to agricultural development on the south side of the river. The isolation reflects 20 percent of the total 100-year floodplain. The 5-year floodplain is even more affected; 35 percent of the historic 5-year floodplain is no longer inundated at that frequency. The isolation of the historic 5-year floodplain, which is due primarily to flow alterations, has been associated with increased development in these areas; currently there are about 160 acres of flood irrigated land and 40 acres of pivot within the historic 5-year floodplain.

Reach C4 was sampled as part of the avian study. A total of 39 bird species were identified in the reach. Two bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) were also found, the Chimney Swift, and the Ovenbird. In contrast to most other reaches, Reach C4 has seen an increase in the forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 43 acres per valley mile of such forest, and that number increased to 138 acres per valley mile by 2001.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 23 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,620 cfs to 2,960 cfs with human development, a reduction of 36 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,150 cfs under unregulated conditions to 3,320 cfs under regulated conditions at Reach C10 downstream where the analysis begins, a reduction of 46 percent.

CEA-Related observations in Reach C4 include: •Influence of flow alterations on floodplain inundation and riparian extent •Increase in area at low risk of cowbird parasitism with riparian encroachment

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C4 include: •Russian olive removal

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

-22.66%

-20.08%

-18.74%

Flood Hi	story							Downstream	Upstream
Year	Date	Flow on Date	Return Ir	nterval			Gage No	Gage 6309000	6214500
1974	Jun 22	75,400	10-25	5 yr			Location	Miles City	Billings
1997	Jun 15	83,300	10-25	5 yr		Perior	l of Record	1929-2015	1929-2015
1943	Jun 26	83,700	10-25	5 yr		Distance		04.0	00.4
2011	May 24	85,400	10-25	5 yr		Distance	lo (miles)	94.2	82.4
1944	Jun 19	96,300	50-10	0 yr					
1978	May 22	102,000	50-10	D yr					
Dischar	ge							7Q10	95% Sum.
	1.0	1 Yr 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregu	lated	60,900	76,700	87,000	110,000	120,000	143,000	4,620	3,846
Regu	ulated	47,100	61,300	70,700	91,200	100,000	121,000	2,960	2,227

-17.09%

-16.67%

-15.38%

-35.93%

-42.10%

% Change

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	1995?	B/W		6295000	
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	07/13/2005	color	1-meter pixels	6309000	17700
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	7/30/2009	Color	1-meter pixels	6309000	13800
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/20/2011	Color	1-meter pixels	6309000	46100
2011	NAIP	7/17/2011	Color	1-meter pixels	6309000	54600
2013	NAIP	07/20/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	4,376	11.0%	4,972	12.5%	595
	Feature Type Totals	4,376	11.0%	4,972	12.5%	595
	Reach Totals	4,376	11.0%	4,972	12.5%	595

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		4,346	0	0	0	0	0	0	0
	Totals	4,346	0	0	0	0	0	0	0
ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	18,505	14,169	1.77	1950 to 1976:	-28.18%
1976	19,287	5,171	1.27	1976 to 1995:	4.10%
1995	19,319	6,184	1.32	1995 to 2001:	-1.59%
2001	19,946	5,966	1.30	1950 to 2001:	-26.42%
Change 1950 - 2001	1,441	-8,203	-0.47		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	101	6.2%			
Levee/Riprap (protecting agricultural lands)	223	13.6%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	1317		1076		
Total Floodplain Area (Ac)	1641		1440		
Total Isolated (Ac)	324	19.7%	364	34.7%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	232	0	1	232

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal Restricte NZ CMZ eage Acreage	d % Restrict Migration Area	ed Total n AHZ Acreas	Restri AH ge Acrea	cted % Rest Z Avuls age Are	ricted sion ea
	386	772	1,0	31 114	11%	234	0	0%	6
2011 Res	stricted Mig	ration A	rea Sun	nmary	Note that the	ese data reflec	t the observe	d conditions in	the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, COE for the rest of the river).		and Sweet Gra	ass	
RipRap									
	Irrigated		114	9.0%					
		Totals	114	9.0%					
Land Us	es within th	ne CMZ (A	Acres)	Flood Irrigation 269.9	Sprinkler Irrigation 0.0	Pivot Irrigation 22.2	Urban/ ExUrban 0.0	Trans- portation 2.2	

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	32	32	32	32	1.0%	1.0%	1.0%	1.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	34	26	5	5	1.1%	0.8%	0.2%	0.2%
	Totals	66	58	37	37	2.0%	1.8%	1.1%	1.1%
Agricultural Lan	d								
	Non-Irrigated	1,477	1,265	1,567	1,502	45.2%	38.7%	48.0%	46.0%
	Irrigated	1,279	1,437	1,143	1,178	39.2%	44.0%	35.0%	36.1%
	Totals	2,756	2,701	2,710	2,680	84.4%	82.8%	83.0%	82.1%
Channel									
	Channel	411	474	486	516	12.6%	14.5%	14.9%	15.8%
	Totals	411	474	486	516	12.6%	14.5%	14.9%	15.8%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%
Transportation									
	Public Road	22	22	22	22	0.7%	0.7%	0.7%	0.7%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	9	9	9	9	0.3%	0.3%	0.3%	0.3%
	Totals	31	31	31	31	0.9%	0.9%	0.9%	0.9%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 and 4	4								Char	ige Betv	ween Y	ears
			Acr	es		%	of Rea	ch Area	l I	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	371	0.0%	0.0%	0.0%	13.8%	0.0%	0.0%	13.8%	13.8%
	Flood	1,279	1,437	1,143	808	46.4%	53.2%	42.2%	30.1%	6.8%	-11.0%	-12.0%	-16.3%
	Totals	1,279	1,437	1,143	1,178	46.4%	53.2%	42.2%	44.0%	6.8%	-11.0%	1.8%	-2.5%

Non-Irrigated

	E2 C0/ AC 00/	E7 00/ EC 00/	C 00/	44 00/ 4 00/	0 E0/
Hay/Pasture 0 0 35 35	0.0% 0.0%	1.3% 1.3%	0.0%	1.3% 0.0%	1.3%
Multi-Use 1,477 1,265 1,532 1,467	53.6% 46.8%	56.5% 54.7%	-6.8%	9.7% -1.8%	1.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	:	Shrub (Acres	\$)	Closed Timber (Acres)			Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.8	0.0	1.3	1.7	0.7	0.5	15.2	2.8	9.4	
Max	24.8	29.8	12.8	342.0	197.7	255.9	26.4	62.6	56.4	
Average	9.2	9.8	6.0	90.2	68.1	77.5	20.6	22.7	23.0	
Sum	100.8	127.9	71.7	541.4	340.5	387.4	82.3	113.5	91.8	
Riparian	Turnove	er			Riparian t	to Channel (ad	cres)	63.2		
Conve from cl	rsion of ripar hannel to ripa	ian areas to o arian betweer	channel, or the 1950's		Channel t	to Riparian (ad	acres) 75.5			
and 20	01 data set.			Ri	iparian Encr	oachment (ad	cres)	12.4		
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	76.7			
Creation o	f riparian are	as	1950s Floodp	olain Mapped	as 2011 Cha	innel (Ac)	8.8			
between 1	950s and 20	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	85.5			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	1.8	30.7	25.1	0.0	57.5
Acres/Valley Mile	0.8	12.9	10.6	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	33.88	1.58%	6.69	0.02	6.62	1.78	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	24.6	7.2	1.5%
Rip Rap Bottom	77.3	54.3	11.2%
Bluff Pool	80.5	53.7	11.0%
Secondary Channel	40.6	33.9	7.0%
Secondary Channel (Seasonal)	46.5	19.7	4.1%
Channel Crossover	121.7	82.0	16.9%
Point Bar		36.2	7.4%
Side Bar		40.4	8.3%
Mid-channel Bar		6.4	1.3%
Island	95.0	95.0	19.5%
Dry Channel		57.4	11.8%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	🗹 🗹 Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	Venbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	✓ ✓ Eastern Kingbird	Plumbeous Vireo	🗌 🗹 Western Kingbird
	Black-headed Grosbeak	🗌 🗹 Eurasian Collared-dove	Red-headed Woodpecker	Vestern Meadowlark
	Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	✓ ✓ Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
	Brewer's Blackbird	🗌 🗹 Franklin's Gull	✓ ✓ Ring-necked Pheasant	☐ ✔ White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	🗌 🗹 Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Vood Duck
	Brown Thrasher	Great Blue Heron	Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	✓ ✓ Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

County	Treasure
Classification	PCS: Partially confined straight
General Location	Hysham
General Comments	Hysham

Upstream River Mile278.2Downstream River Mile275Length3.20 mi (5.15 km)

Narrative Summary

Reach C5 is located north of Hysham. The reach is a 3.2 mile long Partially Confined Straight reach type, as the river flows straight eastward along the northern bluff line.

There is no mapped bank armor in the reach.

One side channel in the upper part of the reach has had land use encroachment and appears to have potentially been blocked prior to 1950. It is a small seasonal channel, however, and thus may have decayed naturally.

Land use is dominated by agriculture, with 181 acres of pivot irrigation development since 1950. There are about 260 acres of flood irrigated land within the CMZ, but due to the lack of bank armor, none of the CMZ has become restricted.

Two ice jams have been recorded in Reach C5. The first was in January 1997, and the second was a break-up event in mid-March of 2003.

Reach C5 shows a net loss of 15 acres of gravel bars 1950. Most of that loss has been associated with mid-channel bars. About 23 acres of riparian area has been cleared for irrigation, which is 6 percent of the total mapped 1950 riparian zone. There are 22 acres of Russian olive in the reach.

About 19 percent of the total 100-year floodplain has become isolated due to human development. The 5-year floodplain is even more affected; 68 percent of the historic 5-year floodplain is no longer inundated at that frequency. The isolation of the historic 5-year floodplain, due primarily to flow alterations, has been associated with increased development in these areas; currently there are about 380 acres of flood irrigated land within the historic 5-year floodplain. The vast majority of isolated 5-year floodplain area is within flood irrigated fields south of the river. The isolation is due to flow alterations.

Reach C5 was sampled as part of the avian study. A total of 35 bird species were identified in the reach. One bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) was found, the Ovenbird. Reach C5 has seen a decrease in the forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 41 acres per valley mile of such forest, and that number decreased to 26 acres per valley mile by 2001.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 23 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,630 cfs to 2,960 cfs with human development, a reduction of 36 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,150 cfs under unregulated conditions to 3,320 cfs under regulated conditions at Reach C10 downstream where the analysis begins, a reduction of 46 percent.

CEA-Related observations in Reach C5 include: •Influence of flow alterations on floodplain inundation

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C5 include: •Russian olive removal

PHYSICAL FEATURES MAP (2011)

Reach C5

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

-22.66%

-20.08%

-18.83%

Flood H	istory							Downstream	Upstream
Year	Date	Flow on Date	Return Ir	nterval		Gage No		Gage 6309000	6214500
1974	Jun 22	75,400	10-25	10-25 yr		Location		Miles City	Billings
1997	Jun 15	83,300	10-25	10-25 yr		Period of Record		1929-2015	1929-2015
1943	Jun 26	83,700	10-25	5 yr		Distance		01.0	96.0
2011	May 24	85,400	10-25	5 yr		Distance	ro (mies)	91.0	00.2
1944	Jun 19	96,300	50-10	0 yr					
1978	May 22	102,000	50-10	0 yr					
Dischar	ge							7Q10	95% Sum.
	1.0	1 Yr 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unreg	ulated	60,900	76,700	87,100	110,000	120,000	143,000	4,630	3,846
Regi	ulated	47,100	61,300	70,700	91,200	100,000	121,000	2,960	2,227

-17.09%

-16.67%

-15.38%

-36.07%

-42.10%

% Change

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	7/14/96 - 9/23/97	B/W		6295000	25300
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	07/13/2005	color	1-meter pixels	6309000	17700
2005	NAIP	07/12/2005	color	1-meter pixels	6309000	17500
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	7/30/2009	Color	1-meter pixels	6309000	13800
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/17/2011	Color	1-meter pixels	6309000	54600
2013	NAIP	07/21/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

1/2/1997

3/15/2003

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	16,729	16,263	1.97	1950 to 1976:	-2.98%
1976	16,403	14,980	1.91	1976 to 1995:	-3.37%
1995	16,646	14,130	1.85	1995 to 2001:	-1.71%
2001	16,646	13,603	1.82	1950 to 2001:	-7.86%
Change 1950 - 2001	-83	-2,660	-0.15		
Length of Side		Pre-1950s (ft)	8,829		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	321	18.8%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	1385		620		
Total Floodplain Area (Ac)	1706		1256		
Total Isolated (Ac)	321	18.8%	636	67.8%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	88	0	0	88

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

Mean 50-Yr	Erosion	Total	Restricted	% Restricted	Total	Restricted	% Restricted
Migration	Buffer	CMZ	CMZ	Migration	AHZ	AHZ	Avulsion
Distance (ft)	(ft)	Acreage	Acreage	Area	Acreage	Acreage	Area
186	371	620	0	0%	339	0	0%

Land Uses within the CMZ (Acres)	Flood	Sprinkler	Pivot	Urban/	Trans-
	Irrigation	Irrigation	Irrigation	ExUrban	portation
	257.5	0.0	0.0	0.0	0.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	31	31	31	31	0.8%	0.8%	0.8%	0.8%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	35	47	36	39	0.9%	1.2%	0.9%	1.0%
	Totals	66	78	67	70	1.7%	2.0%	1.7%	1.8%
Agricultural Lan	d								
	Non-Irrigated	1,408	1,539	1,590	1,572	36.7%	40.1%	41.4%	41.0%
	Irrigated	1,866	1,707	1,665	1,673	48.6%	44.5%	43.4%	43.6%
	Totals	3,273	3,246	3,255	3,245	85.3%	84.6%	84.8%	84.6%
Channel						•			
	Channel	436	439	439	446	11.4%	11.5%	11.4%	11.6%
	Totals	436	439	439	446	11.4%	11.5%	11.4%	11.6%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	8	8	8	0.0%	0.2%	0.2%	0.2%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	4	6	6	0.0%	0.1%	0.2%	0.2%
	Totals	0	12	15	15	0.0%	0.3%	0.4%	0.4%
Transportation									
	Public Road	23	23	23	23	0.6%	0.6%	0.6%	0.6%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	10	10	10	10	0.2%	0.2%	0.2%	0.2%
	Totals	33	33	33	33	0.8%	0.8%	0.8%	0.8%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	11	11	14	14	0.3%	0.3%	0.4%	0.4%
	Urban Commercial	7	7	7	7	0.2%	0.2%	0.2%	0.2%
	Urban Undeveloped	7	7	4	4	0.2%	0.2%	0.1%	0.1%
	Urban Industrial	4	4	4	4	0.1%	0.1%	0.1%	0.1%
	Totals	30	30	30	30	0.8%	0.8%	0.8%	0.8%

Land Use Tir	neline - Tiers 3 a	nd 4								Char	ige Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	I	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	40	181	0.0%	0.0%	1.2%	5.6%	0.0%	1.2%	4.4%	5.6%
	Flood	1,866	1,707	1,626	1,492	57.0%	52.6%	49.9%	46.0%	-4.4%	-2.6%	-4.0%	-11.0%
	Totals	1,866	1,707	1,665	1,673	57.0%	52.6%	51.2%	51.6%	-4.4%	-1.4%	0.4%	-5.4%

Reach C5

7.0%

1.4% -0.4%

0.0% 0.0% -1.5%

1.4% -0.4% 5.4%

	Totals	1,408	1,539	1,590	1,572	43.0%	47.4%	48.8%	48.4%	4.4%
	Hay/Pasture	51	0	1	1	1.5%	0.0%	0.0%	0.0%	-1.5%
	Multi-Use	1,357	1,539	1,589	1,571	41.4%	47.4%	48.8%	48.4%	6.0%
Non-Irrigated										

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (A			\$)	Clos	ed Timber (A	Acres)	Ор	cres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	6.3	0.6	0.9	4.7	2.4	2.4	1.1	8.4	3.0	
Max	26.1	59.2	26.5	46.4	85.2	62.0	96.2	29.5	124.3	
Average	12.2	14.5	9.0	20.9	29.9	18.3	27.2	20.0	31.6	
Sum	97.7	216.9	90.2	146.4	179.1	146.3	163.4	80.0	157.9	
Riparian	Turnove	er			Riparian f	to Channel (a	cres)	24.9		
Conver from ch	sion of ripai nannel to rip	rian areas to o arian betweei	the 1950's		Channel t	to Riparian (a	cres)	39.6		
and 20	01 data set.			R	Riparian Encroachment (acres) 14.8					
Riparian	Recruit	ment	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	39.7			
Creation of	Creation of riparian areas 1950s F			olain Mapped	as 2011 Cha	nnel (Ac)	5.0			
between 1950s and 2001.		01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	44.7			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	13.6	43.6	6.9	0.0	64.0
Acres/Valley Mile	4.5	14.4	2.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	22.36	0.83%	3.12	0.00	1.47	2.02

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat Scour Pool	Bankfull 25.6	Low Flow 17.4	% of Low Flow 4.0%
Bluff Pool	165.7	147.1	33.5%
Secondary Channel		3.1	0.7%
Secondary Channel (Seasonal)	62.8	46.1	10.5%
Channel Crossover	64.8	47.3	10.8%
Side Bar		18.6	4.2%
Mid-channel Bar		6.2	1.4%
Island	119.7	119.7	27.3%
Dry Channel		33.1	7.5%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	☐ ✓ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	Venbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	Eastern Kingbird	Plumbeous Vireo	Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	Vestern Meadowlark
	Blue Jay	🖌 🖌 European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
	Brewer's Blackbird	🗌 🗹 Franklin's Gull	Ring-necked Pheasant	Vite-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Vood Duck
	Brown Thrasher	✓ ✓ Great Blue Heron	Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	✓ ✓ Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

County	Treasure	Upstream River Mile	275
Classification	UA: Unconfined anabranching	Downstream River Mile	269.4
General Location	Mission Valley	Length	5.60 mi (9.01 km)
General Comments	Reach C6 is located in Mission Valley and provides a good ex features and hydrologic alterations.	xample of a reach likely imp	acted by both physical

Narrative Summary

Reach C6 is located in the Mission Valley north of Hysham. The reach is a 5.6 mile long Unconfined Anabranching reach type, indicating minimal valley wall influence and extensive side channels and forested islands. In this area the alluvial valley bottom is approximately 2.5 miles wide, and this broad valley has formed in the relatively erodible Cretaceous-age Bearpaw Shale.

There are just over 3,000 feet of bank armor in the reach, which covers 5.1 percent of the total bankline. About 600 feet of a floodplain dike at RM 273.2R appears to have been eroded out since 2001.

Almost 11,000 feet of side channels have been blocked by physical features in the reach since 1950. One floodplain dike that blocked a side channel at RM 227.8L in 2001 was eroded out and has since been rebuilt. Additional side channel length has been lost passively, overall, there has been about a three mile reduction in side channel length in this reach since 1950.

About 20 percent of the total 100-year floodplain has become isolated due to human development. The 5-year floodplain is even more affected; 70 percent of the historic 5-year floodplain is no longer inundated at that frequency. The isolation of the historic 5-year floodplain, due primarily to flow alterations, has been associated with increased development in these areas; currently there are about 650 acres of flood irrigated land and 200 acres of pivot land within the historic 5-year floodplain. The vast majority of isolated 5-year floodplain area is within irrigated fields south of the river, and the isolation appears to be due to both flow alterations and agricultural dikes.

Land use is dominated by agriculture, with 188 acres of pivot irrigation development since 1950. There are about 260 acres of flood irrigated land within the CMZ, but due to the lack of bank armor, none of the CMZ has become restricted.

Riparian mapping data show a net gain of 158 acres of woody vegetation into the active channel corridor since 1950. This has occurred both on migrating point bars that have become vegetated, as well as within abandoned side channels. Since 1950, the total area of open timber increased by approximately 250 acres. There are 40 acres of Russian olive in the reach.

Reach C6 was sampled as part of the fisheries study. A total of 26 fish species were sampled in the reach.

Reach C6 was sampled as part of the avian study. A total of 32 bird species were identified in the reach. Two bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) were found, the Ovenbird, and the Chimney Swift. In contrast to most reaches, Reach C6 has seen an increase in the forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 55 acres per valley mile of such forest, and that number increased to 106 acres per valley mile by 2001.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 23 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,630 cfs to 2,960 cfs with human development, a reduction of 36 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,150 cfs under unregulated conditions to 3,320 cfs under regulated conditions at Reach C10 downstream where the analysis begins, a reduction of 46 percent.

CEA-Related observations in Reach C6 include:

Active and passive loss of thousands of feet of side channel
Reconstruction of side-channel blockage following its failure post-2001.

•Reconstruction of side-charmer blockage following its failure post-2001.

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C6 include: •Side channel reactivation at RM 275R and RM 271L •Russian olive removal Reach C6

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

-22.95%

-20.18%

-18.92%

Flood Hi	story							Downstream	Upstream
Year	Date	Flow on Date	Return Ir	nterval			Gage No	Gage 6309000	6214500
1974	Jun 22	75,400	10-25	5 yr			Location	Miles City	Billings
1997	Jun 15	83,300	10-25	5 yr		Period	of Record	1929-2015	1929-2015
1943	Jun 26	83,700	10-25	5 yr		Distance	To (miles)	85 4	89.4
2011	May 24	85,400	10-25	5 yr		Diotario		00.1	00.1
1944	Jun 19	96,300	50-100	0 yr					
1978	May 22	102,000	50-100	0 yr					
Dischar	ge							7Q10	95% Sum.
	1.0	1 Yr 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregu	lated	61,000	76,800	87,200	110,000	120,000	143,000	4,640	3,846
Requ	lated	47,000	61,300	70,700	91,300	100,000	121,000	2,970	2,227

-17.00%

-16.67%

-15.38%

-35.99%

-42.10%

% Change

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	7/14/96 - 9/23/97	B/W		6295000	25300
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	07/12/2005	color	1-meter pixels	6309000	17500
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	7/30/2009	Color	1-meter pixels	6309000	13800
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/17/2011	Color	1-meter pixels	6309000	54600
2011	NAIP	7/16/2011	Color	1-meter pixels	6309000	57900
2013	NAIP	07/21/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	2,478	4.1%	2,478	4.1%	0
	Concrete RipRap	574	1.0%	574	1.0%	0
	Feature Type Totals	3,052	5.1%	3,052	5.1%	0
Floodplain	Control					
	Floodplain Dike/Levee	4,123	6.9%	4,501	7.5%	378
	Feature Type Totals	4,123	6.9%	4,501	7.5%	378
	Reach Totals	7,175	12.0%	7,553	12.6%	378

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap		574	0	0	0	0	0	0	0
Rock RipRap		2,476	0	0	0	0	0	0	0
	Totals	3,050	0	0	0	0	0	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	26,335	41,916	2.59	1950 to 1976:	2.64%
1976	28,910	47,992	2.66	1976 to 1995:	-24.31%
1995	29,871	30,274	2.01	1995 to 2001:	-7.09%
2001	29,871	26,011	1.87	1950 to 2001:	-27.82%
Change 1950 - 2001	3,536	-15,905	-0.72		
Lenath of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	10,910		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	159	4.5%			
Agriculture (generally relates to field boundaries)	487	13.7%			
Agriculture (isloated by canal or large ditch)	3	0.1%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	82	2.3%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	2838		1255		
Total Floodplain Area (Ac)	3570		2919		
Total Isolated (Ac)	732	20.5%	1664	70.2%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	162	0	0	162

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 325	Erosion Buffer (ft) 651	Tot CN Acre 1,98	tal MZ age 82	Restricted CMZ Acreage 124	% Restrict Migratio Area 6%	ted Tota n AHZ Acreas 100	I Rest A ge Acr	ricted HZ eage 52	% Restricted Avulsion Area 52%
2011 Res	stricted Mia	ation A	rea Sun	nmar	'V	Note that the	ese data reflec	ct the observ	ved condi	tions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	2011 aerial p Counties, CO	bhotography (DE for the res	NAIP for Pai t of the river	rk and Sv).	veet Grass
RipRap										
 "	Irrigated		62	3.	0%					
Dike/Levee	Non-Irrigated Irrigated		46 68	2. 3.	2% 3%					
		Totals	176	8.	.5%					
Land Us	es within the	e CMZ (/	Acres)	F Irri 2	lood gation 268.3	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 0.0	Tra port	ans- tation).0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3		Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure								1	
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	34	43	48	48	0.7%	0.9%	1.0%	1.0%	
	Totals	34	43	48	48	0.7%	0.9%	1.0%	1.0%	
Agricultural Lan	d									
	Non-Irrigated	1,646	1,822	2,065	2,031	34.8%	38.5%	43.6%	42.9%	
	Irrigated	1,754	1,535	1,555	1,554	37.0%	32.4%	32.8%	32.8%	
	Totals	3,401	3,357	3,619	3,584	71.8%	70.9%	76.4%	75.7%	
Channel									1	
	Channel	1,285	1,320	1,052	1,087	27.1%	27.9%	22.2%	22.9%	
	Totals	1,285	1,320	1,052	1,087	27.1%	27.9%	22.2%	22.9%	
ExUrban										
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
Transportation										
	Public Road	15	15	15	15	0.3%	0.3%	0.3%	0.3%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	1	1	1	1	0.0%	0.0%	0.0%	0.0%	
	Totals	16	17	17	17	0.3%	0.4%	0.4%	0.4%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	meline - Tiers 3 an	d 4								Char	nge Betv	veen Y	ears
			Acr	res		%	of Rea	ch Area	l I	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	19	188	0.0%	0.0%	0.5%	5.2%	0.0%	0.5%	4.7%	5.2%
	Flood	1,754	1,535	1,536	1,366	51.6%	45.7%	42.4%	38.1%	-5.9%	-3.3%	-4.3%	-13.5%
	Totals	1,754	1,535	1,555	1,554	51.6%	45.7%	43.0%	43.3%	-5.9%	-2.8%	0.4%	-8.2%

Reach C6

Non-Irrigated

Multi-Use	1,602	1,822	2,063	2,031	47.1%	54.3%	57.0%	56.7%	7.2%	2.7% -	-0.3%	9.5%
Hay/Pasture	44	0	2	0	1.3%	0.0%	0.1%	0.0%	-1.3%	0.1% -	-0.1%	-1.3%
Totals	1,646	1,822	2,065	2,031	48.4%	54.3%	57.0%	56.7%	5.9%	2.8% -	-0.4%	8.2%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (Acres)			5)	Clos	ed Timber (A	Acres)	Ор	en Timber (A	imber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001		
Min	0.8	0.1	2.0	1.8	1.6	1.6	1.0	1.5	3.6		
Max	19.2	48.2	51.2	167.9	173.4	156.2	86.1	89.6	165.2		
Average	5.5	10.6	10.7	41.0	40.6	45.5	32.6	24.4	68.7		
Sum	105.2	274.6	160.3	738.3	730.7	682.9	163.0	219.2	412.3		
Riparian	Turnove	er			Rinarian f	to Channel (a	cres)	110 1			
Conver	rsion of ripar	ian areas to o	channel, or								
from ch	nannel to ripa	arian betweel	n the 1950's		Channel to Riparian (acres) 277.4						
and 20	01 data set.			R	iparian Encr	oachment (a	cres)	158.3			
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	278.1				
Creation of	f riparian are	as	1950s Floodp	lain Mapped	as 2011 Cha	nnel (Ac)	21.2				
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	299.3				

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	19.0	89.1	22.5	0.0	130.5
Acres/Valley Mile	5.5	25.8	6.5	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	40.00	0.93%	7.06	0.48	7.42	5.96

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region	Region	Region	Region Reach
Bigmouth buffalo	✓ ✓ Flathead chub	Northern redbelly dace	Stonecat
Black bullhead	Freshwater drum	Pallid sturgeon	Sturgeon chub
Black crappie	Goldeye	Pumpkinseed	Sucker species
Blue sucker	Green sunfish	Rainbow trout	Sunfish species
Bluegill	Lake chub	River carpsucker	Valleye
Brook stickleback	Largemouth bass	Rock bass	Vestern silvery minnow
Brown trout	✓ ✓ Longnose dace	Sand shiner	White bass
Burbot	✓ ✓ Longnose sucker	Sauger	White crappie
Catfish species	Minnow species	Shorthead redhorse	✓ ✓ White sucker
✓ ✓ Channel catfish	Mottled sculpin	🗌 🔄 Shortnose gar	Yellow bullhead
✓ ✓ Common carp	Mountain sucker	Shovelnose sturgeon	Yellow perch
Creek chub	Mountain whitefish	Sicklefin chub	
Emerald shiner	Northern pike	Smallmouth bass	
✓ ✓ Fathead minnow	✓ ✓ Northern plains killifish	✓ ✓ Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat Scour Pool	Bankfull 242.1	Low Flow 158.7	% of Low Flow 15.1%
Rip Rap Bottom	98.9	68.6	6.5%
Secondary Channel		15.2	1.4%
Secondary Channel (Seasonal)	112.7	79.8	7.6%
Channel Crossover	95.2	74.6	7.1%
Point Bar		104.2	9.9%
Side Bar		7.6	0.7%
Mid-channel Bar		14.0	1.3%
Island	502.6	502.6	47.8%
Dry Channel		26.2	2.5%

Species of Concern

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	in Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	✓ ✓ Lark Sparrow	Spotted Towhee
>	American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	☐ ✔ Violet-green Swallow
\checkmark	Black-capped Chickadee	Eastern Bluebird	V Ovenbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	Eastern Kingbird	Plumbeous Vireo	✓ ✓ Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	🗌 🗹 Western Meadowlark
>	Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	✔ ✔ Western Wood-pewee
	Bobolink	☐ ✓ Field Sparrow	Red Crossbill	V White-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	Ring-necked Pheasant	☐ ✔ White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
	Brown Creeper	✓ ✓ Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	Red-winged Blackbird	Yellow-bellied Sapsucker
\checkmark	Bullock's Oriole	Great Horned Owl	✓ ✓ Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
>	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	✓ ✓ Yellow Warbler
CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

County	Ireasure
Classification	UA: Unconfined anabranching
General Location	Mission Valley
General Comments	Mission Valley

Upstream River Mile269.4Downstream River Mile260.3Length9.10 mi (14.65 km)

Narrative Summary

Reach C7 is 9.1 miles long and is located in the Mission Valley downstream of Hysham. It is an Unconfined Anabranching reach type, which indicates little in the way of valley wall influence coupled with extensive side channels and forested islands. The Mission Valley owes its width to the presence of the Bearpaw Shale in the valley wall. Because this Cretaceous-age shale is relatively erodible and prone to mass failure, over time the river has been able to erode the valley wall more easily than in other reaches, creating the large distinct valleys present today. Because the Mission and Hammond Valleys are so wide, the river developed a complex series of channels and an expansive riparian forest. These reaches are especially rich in terms of aquatic and riparian habitat extent, diversity, and geomorphic complexity.

Just over 2,000 feet of rock riprap lines the banks in Reach C7, protecting 2.3 percent of the bankline.

Prior to 1950 about 4,200 feet of side channel had been blocked in Reach C7, and since then, floodplain dikes have blocked another three miles of side channel. Blocked side channels are located at RM 270.8L, RM 263.5R, and RM 261R. Even with all of the blockages, Reach C7 still has on the order of 17 miles of functional side channel length.

Reach C7 appears to be experiencing an active major avulsion just north of Sanders, where an anabranching channel has been developing into a primary channel over the last decade. As rerouting of the river would shorten the main thread by approximately 1.5 miles, an avulsion is very likely to occur in this area over the next several years. The rate at which the anabranching side channel fully captures the main thread will depend on flood events, as floods will accelerate the avulsion process. This avulsion would take pressure off of the main channel to the south, which is currently threatening the rail line at RM 264.8R and RM 266.2R.

About 9 percent of the total 100-year floodplain has become isolated due to human development in Reach C7. The 5-year floodplain is even more affected; 41 percent of the historic 5-year floodplain is no longer inundated at that frequency. The isolation of the historic 5-year floodplain, due primarily to flow alterations, has been associated with increased development in these areas; currently there are about 95 acres of flood irrigated land and 56 acres of pivot land within the historic 5-year floodplain. Much of the isolated 5-year floodplain area is within the active stream corridor and riparian zone however, exemplifying the potential impacts of flow alterations on frequent floodplain inundation.

Land use is dominated by agriculture, with 277 acres of pivot irrigation development since 1950. There are about 350 acres of flood irrigated land and 31 acres of pivot within the CMZ, but only 4 percent of the CMZ is restricted by physical features.

Riparian mapping data show a net gain of 780 acres of woody vegetation into the active channel corridor since 1950. This has occurred both on migrating point bars that have become vegetated, as well as within abandoned side channels. Reach C7 has about 90 acres of wetland per valley mile, which makes it one of the most concentrated wetland areas in the corridor. There are also 164 acres of Russian olive in the reach.

Reach C7 was sampled as part of the fisheries study. A total of 27 fish species were sampled in the reach, including Sauger, which are recognized by the Montana Natural Heritage Program as a Species of Concern (SOC).

Reach C7 was sampled as part of the avian study. A total of 69 bird species were identified in the reach. Four bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) were found, the Black and White Warbler, the Plumbeous Vireo, the Ovenbird, and the Chimney Swift. Two Species of Concern (SOC) were identified, the Black Billed Cuckoo and the Bobolink. Brown Headed Cowbirds were also present. Reach C7 has seen an increase in the forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 86 acres per valley mile of such forest, and that number increased to 102 acres per valley mile by 2001.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 23 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,680 cfs to 2,990 cfs with human development, a reduction of 36 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,150 cfs under unregulated conditions to 3,320 cfs under regulated conditions at Reach C10 downstream where the analysis begins, a reduction of 46 percent.

CEA-Related observations in Reach C7 include: •Active and passive loss of thousands of feet of side channel

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C7 include: •Side channel reactivation at RM 270.8L, RM 263.5R, and RM 261R •Russian olive removal PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

-23.08%

-20.39%

-19.11%

Flood Hi	story							Downstream	Upstream
Year	Date	Flow on Date	Return Ir	nterval			Gage No	Gage 6309000	6214500
1974	Jun 22	75,400	10-25	5 yr			Location	Miles Citv	Billings
1997	Jun 15	83,300	10-25	5 yr		Period	l of Record	1929-2015	1929-2015
1943	Jun 26	83,700	10-25	5 yr		Distance	To (mileo)	76.2	05.0
2011	May 24	85,400	10-25	5 yr		Distance	e ro (miles)	70.3	95.0
1944	Jun 19	96,300	50-10	0 yr					
1978	May 22	102,000	50-10	0 yr					
Discharg	Je							7Q10	95% Sum.
	1.01	1 Yr 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregu	lated	61,100	77,000	87,400	110,000	120,000	144,000	4,680	3,846
Regu	lated	47,000	61,300	70,700	91,400	100,000	121,000	2,990	2,227

-16.91%

-16.67%

-15.97%

-36.11%

-42.10%

% Change

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	7/14/96 - 9/20/97	B/W		6295000	25300
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	07/12/2005	color	1-meter pixels	6309000	17500
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	8/11/2009	Color	1-meter pixels	6309000	12900
2009	NAIP	7/30/2009	Color	1-meter pixels	6309000	13800
2009	NAIP	7/25/2009	Color	1-meter pixels	6309000	13600
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/16/2011	Color	1-meter pixels	6309000	57900
2013	NAIP	07/20/2013	color	1-meter pixels	6309000	
2013	NAIP	07/21/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	2,173	2.3%	2,173	2.3%	0
	Feature Type Totals	2,173	2.3%	2,173	2.3%	0
Floodplain	Control					
	Floodplain Dike/Levee	429	0.4%	429	0.4%	0
	Feature Type Totals	429	0.4%	429	0.4%	0
	Reach Totals	2,602	2.7%	2,602	2.7%	0

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		2,171	0	0	0	0	0	0	0
	Totals	2,171	0	0	0	0	0	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)			Bankfull		
3(1)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Braiding Parameter		% Change in Braiding
1950	44,646	91,763	3.06	1950 to 1976:	9.52%
1976	47,069	110,437	3.35	1976 to 1995:	-22.68%
1995	50,128	79,561	2.59	1995 to 2001:	11.49%
2001	48,131	90,696	2.88	1950 to 2001:	-5.60%
Change 1950 - 2001	3,485	-1,066	-0.17		
Lenath of Side		Pre-1950s (ft)	4,230		
Channels Blocked		Post-1950s (ft)	15,593		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-`	/ear
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)	275	6.5%		
Agriculture (generally relates to field boundaries)	16	0.4%		
Agriculture (isloated by canal or large ditch)	0	0.0%		
Levee/Riprap (protecting agricultural lands)	0	0.0%		
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%		
Railroad	88	2.1%		
Abandoned Railroad	0	0.0%		
Transportation (Interstate and other roads)	0	0.0%		
Total Not Isolated (Ac)	3849		2820	
Total Floodplain Area (Ac)	4227		3928	
Total Isolated (Ac)	378	8.9%	1107	40.9%

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	121	0	104	225

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal MZ eage	Restricted CMZ Acreage	% Restric Migratic Area	ted Tota on AH2 Acrea	al Re Z Ige A	estricted AHZ creage	% Restricted Avulsion Area
	506	1,012	4,4	78	173	4%	241	l	0	0%
2011 Res	stricted Mig	gration A	rea Sur	nmary	/	Note that th	ese data refle	ect the obs	erved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perce CN	nt of 1Z	Counties, C	OE for the res	st of the riv	er).	Sweet Grass
Road/Railro	oad Prism									
	Railroad		101	2.1	%					
RipRap										
	Irrigated		72	1.5	%					
		Totals	173	3.7	'%					
Land Us	es within th	ne CMZ (A	Acres)	Fle Irrig	ood ation	Sprinkler Irrigation	Pivot Irrigation	Urban ExUrba	ר I וn po	Frans- ortation
				35	01.2	0.0	30.8	0.0		21.6

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Acı	res		%	of Rea	ich Area	1
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	10	10	10	10	0.1%	0.1%	0.1%	0.1%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	67	91	118	118	0.7%	1.0%	1.3%	1.3%
	Totals	77	101	128	128	0.8%	1.1%	1.4%	1.4%
Agricultural Lan	d								
	Non-Irrigated	3,501	3,872	4,499	4,468	37.4%	41.3%	48.0%	47.7%
	Irrigated	3,277	2,473	2,255	2,228	35.0%	26.4%	24.1%	23.8%
	Totals	6,778	6,345	6,755	6,696	72.3%	67.7%	72.1%	71.4%
Channel									
	Channel	2,416	2,821	2,378	2,437	25.8%	30.1%	25.4%	26.0%
	Totals	2,416	2,821	2,378	2,437	25.8%	30.1%	25.4%	26.0%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	1	8	8	0.0%	0.0%	0.1%	0.1%
	Totals	0	1	8	8	0.0%	0.0%	0.1%	0.1%
Transportation									
	Public Road	62	62	62	62	0.7%	0.7%	0.7%	0.7%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	40	42	42	42	0.4%	0.4%	0.4%	0.4%
	Totals	102	104	104	104	1.1%	1.1%	1.1%	1.1%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	meline - Tiers 3 and	4								Char	nge Betv	veen Y	ears
			Acr	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	56	276	0.0%	0.0%	0.8%	4.1%	0.0%	0.8%	3.3%	4.1%
	Flood	3,277	2,473	2,199	1,951	48.3%	39.0%	32.6%	29.1%	-9.4%	-6.4%	-3.4%	-19.2%
	Totals	3,277	2,473	2,255	2,228	48.3%	39.0%	33.4%	33.3%	-9.4%	-5.6%	-0.1%	-15.1%

Reach C7

Non-ingateu

Multi-Use	3,451	3,806	4,336	4,393	50.9%	60.0%	64.2%	65.6%	9.1%	4.2%	1.4%	14.7%
Hay/Pasture	50	66	164	75	0.7%	1.0%	2.4%	1.1%	0.3%	1.4%	-1.3%	0.4%
Totals	3,501	3,872	4,499	4,468	51.7%	61.0%	66.6%	66.7%	9.4%	5.6%	0.1%	15.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (Acro			es) Closed Timber (Acr			Acres)	en Timber (A	per (Acres)	
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.2	0.1	0.0	0.7	1.0	0.8	1.9	2.0	1.5
Max	82.2	38.9	65.8	358.0	226.4	275.4	259.3	195.1	376.3
Average	10.4	8.2	10.6	74.6	54.7	47.7	58.8	29.5	61.9
Sum	396.3	448.9	435.6	1,491.6	1,639.9	1,431.2	588.3	502.1	927.9
Riparian	Turnove	er			Riparian t	to Channel (a	cres)	395.3	
from cl	rsion of ripar hannel to ripa	arian areas to a	n the 1950's		Channel to Riparian (acres) 564.8				
and 2001 data set.					Riparian Encroachment (acres) 169.5				
Riparian	Recruitr	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	570.1		
Creation o	f riparian are	as	1950s Floodp	olain Mapped	ain Mapped as 2011 Channel (Ac) 21				
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	785.3		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	15.7	406.2	130.4	0.0	552.3
Acres/Valley Mile	2.5	65.4	21.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	164.35	2.08%	10.40	2.29	35.11	36.34

Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region Reach		Region	Region	Region
	Bigmouth buffalo	✓ ✓ Flathead chub	Northern redbelly dace	Stonecat
	Black bullhead	Freshwater drum	Pallid sturgeon	Sturgeon chub
~ ~	Black crappie	Goldeye	Pumpkinseed	Sucker species
	Blue sucker	Green sunfish	Rainbow trout	Sunfish species
 	Bluegill	Lake chub	River carpsucker	Walleye
~ ~	Brook stickleback	Largemouth bass	Rock bass	Vestern silvery minnow
	Brown trout	✓ ✓ Longnose dace	Sand shiner	White bass
~ ~	Burbot	✓ ✓ Longnose sucker	Sauger	✓ ✓ White crappie
	Catfish species	Minnow species	Shorthead redhorse	V White sucker
~ ~	Channel catfish	Mottled sculpin	Shortnose gar	Vellow bullhead
~ ~	Common carp	✓ ✓ Mountain sucker	Shovelnose sturgeon	Yellow perch
	Creek chub	Mountain whitefish	Sicklefin chub	
~ ~	Emerald shiner	Northern pike	Smallmouth bass	
 	Fathead minnow	✓ ✓ Northern plains killifish	Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	377.7	279.2	11.7%
Rip Rap Bottom	46.3	34.2	1.4%
Bluff Pool	53.5	35.9	1.5%
Secondary Channel	147.9	81.2	3.4%
Secondary Channel (Seasonal)	360.7	262.0	11.0%
Channel Crossover	231.0	153.2	6.4%
Point Bar		72.9	3.1%
Side Bar		127.7	5.4%
Mid-channel Bar		36.7	1.5%
Island	1,161.0	1,161.6	48.8%
Dry Channel		133.4	5.6%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird Species Observed	in Reach/Region	Species of Concern	Potential Species of Concern
Region	Region	Region	Region
American Robin	Chipping Sparrow	Killdeer	Song Sparrow
American Crow	✓ ✓ Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
American Goldfinch	Cliff Swallow	✓ ✓ Lark Sparrow	Spotted Towhee
✓ ✓ American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
American Redstart	🖌 🖌 Common Merganser	Least Flycatcher	Swainson's Thrush
✓ ✓ Bald Eagle	🖌 🖌 Common Nighthawk	Mallard	Sandhill Crane
Baltimore Oriole	Common Raven	Mountain Bluebird	Tree Swallow
V Barn Swallow	✓ ✓ Common Yellowthroat	Mourning Dove	Turkey Vulture
Belted Kingfisher	✓ ✓ Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
I Black-billed Cuckoo	Dickcissel	✓ ✓ Orchard Oriole	Vesper Sparrow
Black-billed Magpie	Downy Woodpecker	Osprey	Violet-green Swallow
I Black-capped Chickadee	Eastern Bluebird	V Ovenbird	✓ ✓ Warbling Vireo
Black-and-white Warbler	✓ ✓ Eastern Kingbird	Plumbeous Vireo	Vestern Kingbird
I Black-headed Grosbeak	🖌 🖌 Eurasian Collared-dove	Red-headed Woodpecker	Vestern Meadowlark
✓ ✓ Blue Jay	🖌 🖌 European Starling	Red-naped Sapsucker	Vestern Wood-pewee
Bobolink	Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
Brewer's Blackbird	🗌 🗹 Franklin's Gull	✓ ✓ Ring-necked Pheasant	☐ ✔ White-throated Swift
I Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Vild Turkey
Brown Creeper	✓ ✓ Gray Catbird	Rock Dove	Vood Duck
V Brown Thrasher	Great Blue Heron	Red-winged Blackbird	Yellow-bellied Sapsucker
V Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
Cedar Waxwing	House Finch	🖌 🖌 Say's Phoebe	Yellow-headed Blackbird
Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	V Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

County	Ireasure
Classification	PCS: Partially confined straight
General Location	Rosebud/Treasure County Line
General Comments	Rosebud/Treasure County Line

Upstream River Mile	260.3
Downstream River Mile	253.8
Length	6.50 mi (10.46 km)

Reach (

Narrative Summary

Reach C8 is 9.1 miles long and is located on the Rosebud/Treasure County line. It is a Partially Confined Straight reach type, as the river flows straight eastward along the northern bluff line.

There is approximately 4,100 feet of rock riprap in the reach, 800 feet of which was built since 2001. About 6 percent of the total bankline is armored.

Prior to 1950 about 2,300 feet of side channel had been blocked in Reach C8, and since then, floodplain dikes have blocked another 8,500 feet of side channel. Blocked side channels are located at RM 260R and RM 257R. Side channels have also been passively lost; since 1950, there has been a total loss of 2.6 miles of side channel in Reach C8. About four miles of active side channel remain.

About 35 percent of the total 100-year floodplain has become isolated due to human development. Most of the isolation is due to flow alterations. The 5-year floodplain is even more affected; 55 percent of the historic 5-year floodplain is no longer inundated at that frequency. The isolation of the historic 5-year floodplain, due primarily to flow alterations, has been associated with increased development in these areas; currently there are about 240 acres of flood irrigated land within the historic 5-year floodplain. Most of the isolated 5-year floodplain area is occupied by flood irrigated fields south of the river.

Land use is dominated by agriculture, with 342 acres of pivot irrigation development since 1950. There are about 178 acres of flood irrigated land and 12 acres of pivot within the CMZ, and 10 percent of the CMZ is restricted by physical features.

Riparian recruitment analyses show that between 1950 and 2001, there was 193 total acres of riparian colonization in the reach. Taking into account losses due to erosion, there was still a net gain of 94 acres of woody vegetation into the active channel corridor since 1950. This has occurred both on migrating point bars that have become vegetated, as well as within abandoned side channels. The extent of closed timber has increased from 293 acres in 1950 to 604 acres in 2001. There are 43 acres of Russian olive in the reach.

Reach C8 was sampled as part of the fisheries study. A total of 30 fish species were sampled in the reach, including Sauger, which are recognized by the Montana Natural Heritage Program as a Species of Concern (SOC).

Reach C8 was sampled as part of the avian study. A total of 37 bird species were identified in the reach. Two bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) were found, the Ovenbird and the Chimney Swift. Reach C8 has seen an increase in the forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 51 acres per valley mile of such forest, and that number increased to 61 acres per valley mile by 2001.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 23 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,680 cfs to 2,990 cfs with human development, a reduction of 36 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,150 cfs under unregulated conditions to 3,320 cfs under regulated conditions at Reach C10 downstream where the analysis begins, a reduction of 46 percent.

CEA-Related observations in Reach C8 include: •Active and passive loss of thousands of feet of side channel

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C8 include: •Side channel reactivation at RM 260R and RM 257R •Russian olive removal PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

Flood His	story							Downstream	Upstream
Year	Date	Flow on Date	Return Ir	Return Interval			Gage No	Gage	Gage 6214500
1974	Jun 22	75,400	10-25	10-25 yr			Location	Miles City	Billings
1997	Jun 15	83,300	10-25	10-25 yr		Perior	l of Record	1929-2015	1929-2015
1943	Jun 26	83,700	10-25	10-25 yr		Distance To (miles)		0.0	102.0 2010
2011	May 24	85,400	10-25	10-25 yr				69.8	104.1
1944	Jun 19	96,300	50-100	0 yr					
1978	May 22	102,000	50-100	0 yr					
Discharg	е							7Q10	95% Sum.
	1.0	1 Yr 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregu	lated	61,100	77,100	87,500	111,000	120,000	144,000	4,680	3,846

Unregulated	61,100	77,100	87,500	111,000	120,000	144,000	4,680	3,846
Regulated	47,000	61,300	70,700	91,400	100,000	122,000	2,990	2,227
% Change	-23.08%	-20.49%	-19.20%	-17.66%	-16.67%	-15.28%	-36.11%	-42.10%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	7/14/96 - 6/13/96	B/W		6295000	25300
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	07/12/2005	color	1-meter pixels	6309000	17500
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	8/11/2009	Color	1-meter pixels	6309000	12900
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/16/2011	Color	1-meter pixels	6309000	57900
2013	NAIP	07/21/2013	color	1-meter pixels	6309000	
2013	NAIP	07/20/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	3,286	4.8%	4,093	6.0%	807
	Flow Deflectors	0	0.0%	52	0.1%	52
	Feature Type Totals	3,286	4.8%	4,145	6.1%	859
Floodplain	Control					
	Floodplain Dike/Levee	1,447	2.1%	1,447	2.1%	0
	Feature Type Totals	1,447	2.1%	1,447	2.1%	0
	Reach Totals	4,734	6.9%	5,592	8.2%	859

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		3,287	0	0	0	0	0	0	0
	Totals	3,287	0	0	0	0	0	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	34,703	34,247	1.99	1950 to 1976:	-12.94%
1976	33,984	24,802	1.73	1976 to 1995:	-2.02%
1995	34,391	23,896	1.69	1995 to 2001:	-5.54%
2001	34,218	20,560	1.60	1950 to 2001:	-19.43%
Change 1950 - 2001	-485	-13,687	-0.39		
Lenath of Side		Pre-1950s (ft)	2,323		
Channels Blocked		Post-1950s (ft)	8,494		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-`	/ear
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)	665	26.8%		
Agriculture (generally relates to field boundaries)	35	1.4%		
Agriculture (isloated by canal or large ditch)	0	0.0%		
Levee/Riprap (protecting agricultural lands)	11	0.5%		
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%		
Railroad	186	7.5%		
Abandoned Railroad	0	0.0%		
Transportation (Interstate and other roads)	0	0.0%		
Total Not Isolated (Ac)	1581		1172	
Total Floodplain Area (Ac)	2479		1843	
Total Isolated (Ac)	898	36.2%	671	54.9%

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	66	0	0	67

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tot CN Acre	al Restricte IZ CMZ age Acreage	d % Restric Migratio Area	ted Total n AHZ Acreag	Restricted AHZ ge Acreage	% Restricted Avulsion Area			
	216	433	1,53	36 134	9%	164	32	20%			
2011 Res	stricted Mig	ration Ar	rea Sun	nmary	Note that the	ese data reflec	t the observed cor	ditions in the			
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, Co	OE for the rest	t of the river).	e river).			
RipRap											
	Non-Irrigated Irrigated		151 15	8.9% 0.9%							
		Totals	167	9.8%							
Land Use	es within the	e CMZ (A	Acres)	Flood Irrigation 177.9	Sprinkler Irrigation 0.0	Pivot Irrigation 11.7	Urban/ ExUrban p 0.0	Trans- ortation 0.0			

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3		Aci	res		%	of Rea	ch Area	a I
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	40	69	101	105	0.5%	0.9%	1.4%	1.4%
	Totals	40	69	101	105	0.5%	0.9%	1.4%	1.4%
Agricultural Lan	d								
	Non-Irrigated	3,338	2,946	3,338	2,985	45.7%	40.3%	45.7%	40.8%
	Irrigated	2,808	3,010	3,019	3,125	38.4%	41.2%	41.3%	42.8%
	Totals	6,146	5,956	6,357	6,110	84.1%	81.5%	87.0%	83.6%
Channel									
	Channel	1,027	1,188	754	998	14.0%	16.3%	10.3%	13.7%
	Totals		1,188	754	998	14.0%	16.3%	10.3%	13.7%
ExUrban									
ExUrban Other		0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%
Transportation									
	Public Road	67	67	67	67	0.9%	0.9%	0.9%	0.9%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	31	31	31	31	0.4%	0.4%	0.4%	0.4%
	Totals	98	98	98	98	1.3%	1.3%	1.3%	1.3%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	and Use Timeline - Tiers 3 and 4									Char	ige Beti	ween Y	ears
			Acr	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	142	342	0.0%	0.0%	2.2%	5.6%	0.0%	2.2%	3.4%	5.6%
	Flood	2,808	3,010	2,877	2,783	45.7%	50.5%	45.3%	45.6%	4.8%	-5.3%	0.3%	-0.1%
	Totals	2,808	3,010	3,019	3,125	45.7%	50.5%	47.5%	51.2%	4.8%	-3.0%	3.7%	5.5%

Reach C8

Non-Irrigated													
N	/lulti-Use	3,005	2,779	3,025	2,836	48.9%	46.7%	47.6%	46.4%	-2.2%	0.9%	-1.2%	-2.5%
н	lay/Pasture	333	167	313	148	5.4%	2.8%	4.9%	2.4%	-2.6%	2.1%	-2.5%	-3.0%
	Totals	3,338	2,946	3,338	2,985	54.3%	49.5%	52.5%	48.8%	-4.8%	3.0%	-3.7%	-5.5%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	9	Shrub (Acres	5)	Clos	ed Timber (A	Acres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.5	1.5	0.7	1.7	2.2	4.1	0.3	0.1	0.1	
Max	85.5	62.4	134.8	46.3	58.1	223.0	181.9	68.9	67.6	
Average	12.3	9.9	24.5	24.5	27.9	60.5	49.9	11.1	24.0	
Sum	209.6	177.5	220.4	293.4	417.8	604.5	349.5	178.3	120.0	
Riparian	Turnove	er			Riparian to Channel (acres) 81.5					
from cl	rsion of ripar nannel to ripa	arian areas to a	channel, or n the 1950's	annel, or the 1950's Channel to Ripariar			cres)	175.1		
and 20	and 2001 data set.			R	iparian Encr	oachment (a	: (acres) 93.6			
Riparian Recruitment 1950s Chan				nnel Mapped	as 2011 Ripa	179.3				
Creation of	- Creation of riparian areas	1950s Floodp	olain Mapped	as 2011 Cha	innel (Ac)	13.2				
between 1950s and 2001.		Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	192.5				

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	3.8	112.2	9.6	0.0	125.6
Acres/Valley Mile	0.6	18.7	1.6	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	43.41	0.93%	8.10	4.08	6.16	6.40	

Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region	Region	Region	Region Reach
Bigmouth buffalo	✓ ✓ Flathead chub	Northern redbelly dace	Stonecat
Black bullhead	Freshwater drum	Pallid sturgeon	Sturgeon chub
Black crappie	Goldeye	Pumpkinseed	Sucker species
Blue sucker	Green sunfish	Rainbow trout	Sunfish species
Bluegill	Lake chub	River carpsucker	V Walleye
Brook stickleback	Largemouth bass	Rock bass	Vestern silvery minnow
Brown trout	✓ ✓ Longnose dace	Sand shiner	White bass
Burbot	✓ ✓ Longnose sucker	Sauger	✓ ✓ White crappie
Catfish species	Minnow species	Shorthead redhorse	✓ ✓ White sucker
✓ ✓ Channel catfish	Mottled sculpin	Shortnose gar	✓ ✓ Yellow bullhead
Common carp	✓ ✓ Mountain sucker	Shovelnose sturgeon	Yellow perch
Creek chub	✓ ✓ Mountain whitefish	Sicklefin chub	
✓ ✓ Emerald shiner	Northern pike	✓ ✓ Smallmouth bass	
Fathead minnow	Northern plains killifish	Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat Scour Pool	Bankfull 118.7	Low Flow 58.2	% of Low Flow 7.7%
Rip Rap Bottom	78.8	48.8	6.5%
Bluff Pool	182.1	138.0	18.3%
Secondary Channel	52.4	28.8	3.8%
Secondary Channel (Seasonal)	56.3	67.3	8.9%
Channel Crossover	142.5	128.8	17.1%
Point Bar		41.3	5.5%
Side Bar		35.9	4.8%
Mid-channel Bar		34.2	4.5%
Island	122.7	131.6	17.5%
Dry Channel		40.6	5.4%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	✓ ✓ Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	✓ ✓ Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	☐ ✓ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	Venbird	Varbling Vireo
	Black-and-white Warbler	✓ ✓ Eastern Kingbird	Plumbeous Vireo	Vestern Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	🗌 🗹 Western Meadowlark
	Blue Jay	🖌 🖌 European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	Field Sparrow	Red Crossbill	□ ✓ White-breasted Nuthatch
	Brewer's Blackbird	🗌 🗹 Franklin's Gull	✓ ✓ Ring-necked Pheasant	☐ ✔ White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	🗌 🗹 Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Vood Duck
	Brown Thrasher	Great Blue Heron	Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	✓ ✓ Say's Phoebe	Yellow-headed Blackbird
	Chimney Swift	House Wren	Savannah Sparrow	Vellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

County	Rosebud
Classification	UA: Unconfined anabranching
General Location	Hammond Valley
General Comments	Hammond Valley

Upstream River Mile253.8Downstream River Mile243.1Length10.70 mi (17.22 km)

Narrative Summary

Reach C9 is 10.7 miles long and is located in the Hammond Valley upstream of Forsyth. The Hammond Valley is an unusually wide segment of the Yellowstone River corridor, similar to the Mission Valley near Hysham. These two valleys owe their shape to the presence of the Bearpaw Shale in the valley wall, which is relatively erodible and prone to mass failure. Because the Mission and Hammond Valleys are so wide, the river has developed a complex series of channels and an expansive riparian forest. These reaches are especially rich in terms of aquatic and riparian habitat extent, diversity, and geomorphic complexity. Reach C9 is an Unconfined Anabranching (UA) reach type, which is typically the most complex and dynamic reach type on the river.

Flow alterations in Reach C9 have been driven primarily by changes in flows on the Bighorn River and water use for irrigation. The 2year discharge, which is an important flow statistic because it approximately defines the channel capacity, has dropped by 14,400 cfs, or 23.5 percent, due to flow alterations on the river. That reduction in flow has been accompanied by a reduction in the bankfull channel area, or channel size, by 209 acres since 1950.

There are over 10,000 feet of rock riprap in Reach C9, as well as 1,100 feet of flow deflectors. This reach experienced severe bank erosion during the 2011 flood when some banks migrated several hundred feet. In response to that erosion, several thousand feet of bank armor were constructed after 2001, mostly on the south side of the river. This riprap represents both new projects and extensions on older projects. Some flow deflectors in the reach were flanked during the flood and now sit in the middle of the river. Other impacts in Reach C9 include almost four miles of side channel that have been blocked by dikes. This loss is due to the blockage of one very long side channel on the north side of the corridor that was clearly active in 1950, but by 1976 was plugged on its upper end.

The combination of bank armoring and reduced energy due to flow alterations has resulted in a reduced floodplain turnover rate in Reach C9 from 22.2 acres per year to 12.9 acres per year. The area of open bar habitat mapped under low flow conditions dropped by almost 100 acres since 1950, reflecting riparian expansion into the channel, reduced sediment recruitment from banks, and reduced sediment loading from the Bighorn River.

Over 40 percent of the land area that was historically inundated by a 5-year flood now remains dry during that frequency event. Most of these isolated areas currently typically flood irrigated fields, some of which were riparian forest in the 1950s. The vast majority of irrigated land in Reach C9 is under flood irrigation (3,900 acres) while 515 acres are under pivot. In the upstream end of the reach, pivots on either side of the river extend into the Channel Migration Zone. About 6 percent of the total CMZ has been restricted by physical features.

There are several animal handling facilities in Reach C9 that are adjacent to the main river channel or smaller side channels, tributaries, or swales. These are located at RM 252L (side channel), RM 248L (tributary), and RM 245R (main channel).

Reach C9 was sampled as part of the avian study. A total of 73 bird species were identified in the reach. Five bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) were found, the Black and White Warbler, Dickscissel, Plumbeous Vireo, Ovenbird, and Chimney Swift. Three Species of Concern (SOC) were identified, the Black-billed Cuckoo, Bobolink, and Red-headed Woodpecker. With the expansion of agriculture in the reach, the extent of forest at low risk of cowbird parasitism dropped from 108 acres per valley mile in 1950 to 64 acres per valley mile in 2001.

Reach C9 has 74 acres of mapped Russian olive, which appears to be concentrated on the banks of isolated side channels and sloughs, but also distributed through cottonwood forest in the downstream portion of the reach.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 24 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,720 cfs to 3,020 cfs with human development, a reduction of 36 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,150 cfs under unregulated conditions to 3,320 cfs under regulated conditions at Reach C10 downstream where the analysis begins, a reduction of 46 percent.

CEA-related observations in Reach C9 include:

•Reduced floodplain and riparian turnover rates due to flow alterations and bank armoring

- •Lost side channel extent due to side channel plugs
- •Expansion of Russian olive into abandoned side channels and riparian forest
- •5-year floodplain isolation due to agricultural dikes and flow alterations
- •Encroachment of pivot irrigation into Channel Migration Zone
- •Increased risk of cowbird parasitism with agricultural expansion

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C9 include: •Side channel reactivation at RM 252L

•Nutrient management associated with animal handling facilities at RM 252L, RM 248L, and RM 245R.

•Russian olive removal

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

-23.49%

-20.70%

-19.48%

Flood H	istory							Downstream	Upstream
Year	Date	Flow on Date	Return Interval			Gage No.		Gage 6309000	6214500
1974	Jun 22	75,400	10-25 yr			Location		Miles City	Billings
1997	Jun 15	83,300	10-25 yr			Period of Record		1929-2015	1929-2015
1943	Jun 26	83,700	10-25 yr					E0 1	110.6
2011	May 24	85,400	10-25	yr		Distance	e to (miles)	59.1	110.6
1944	Jun 19	96,300	50-100) yr					
1978	May 22	102,000	50-100) yr					
Dischar	ge							7Q10	95% Sum.
	1.0	1 Yr 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unreg	ulated	61,300	77,300	87,800	111,000	121,000	145,000	4,720	3,846
Regi	ulated	46,900	61,300	70,700	91,600	101,000	122,000	3,020	2,227

-17.48%

-16.53%

-15.86%

-36.02%

-42.10%

% Change

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	6/13/96 - 8/11/96 - 8/28/97	B/W		6295000	67900
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	07/12/2005	color	1-meter pixels	6309000	17500
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	8/11/2009	Color	1-meter pixels	6309000	12900
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/16/2011	Color	1-meter pixels	6309000	57900
2011	NAIP	7/15/2011	Color	1-meter pixels	6309000	58000
2013	NAIP	07/21/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	5,856	5.2%	10,284	9.1%	4,428
	Flow Deflectors	196	0.2%	356	0.3%	160
Between Flow Deflectors		757	0.7%	757	0.7%	0
	Feature Type Totals	6,809	6.0%	11,397	10.1%	4,587
Floodplain	Control					
	Floodplain Dike/Levee	3,364	3.0%	3,364	3.0%	0
	Feature Type Totals	3,364	3.0%	3,364	3.0%	0
	Reach Totals	10,173	9.0%	14,761	13.1%	4,587

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FDs		951	0	0	0	0	0	0	0
Rock RipRap		4,467	0	1,332	0	0	0	0	0
Т	otals	5,419	0	1,332	0	0	0	0	0
ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	58,235	84,622	2.45	1950 to 1976:	-0.20%
1976	59,221	85,771	2.45	1976 to 1995:	-16.37%
1995	62,527	65,495	2.05	1995 to 2001:	2.21%
2001	56,479	61,721	2.09	1950 to 2001:	-14.69%
Change 1950 - 2001	-1,756	-22,901	-0.36		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	19,348		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	183	2.9%			
Agriculture (generally relates to field boundaries)	13	0.2%			
Agriculture (isloated by canal or large ditch)	24	0.4%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	48	0.8%			
Transportation (Interstate and other roads)	33	0.5%			
Total Not Isolated (Ac)	6020		4103		
Total Floodplain Area (Ac)	6321		6149		
Total Isolated (Ac)	300	4.8%	2046	42.7%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	377	0	207	584

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 699	Erosion Buffer (ft) 1,398	Tot CM Acre 5,90	tal Restrict NZ CMZ age Acreag 52 333	ed % Restric Migratio e Area 6%	cted Tota on AHZ Acrea 54	I Restri Z AH ge Acre 0	Icted % Restricted IZ Avulsion age Area 0%
2011 Res	stricted Mig	ration A	rea Sun	nmary	Note that th	ese data refle	ct the observe	d conditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	2011 aerial Counties, C	COE for the res	NAIP for Park t of the river).	and Sweet Grass
RipRap								
	Other Infrast	ructure	39	0.6%				
	Irrigated		192	3.2%				
Flow Deflect	tors							
	Irrigated		39	0.6%				
Dike/Levee								
	Irrigated		63	1.1%				
		Totals	333	5.5%				
Land Us	es within th	e CMZ (/	Acres)	Flood Irrigation 1005.8	Sprinkler Irrigation 0.0	Pivot Irrigation 173.9	Urban/ ExUrban 0.0	Trans- portation 0.7

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Acı	res		% of Reach Area			a I
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	88	266	309	312	0.8%	2.3%	2.7%	2.7%
	Totals	88	266	309	312	0.8%	2.3%	2.7%	2.7%
Agricultural Lan	d								
	Non-Irrigated	4,126	4,275	4,887	4,445	35.8%	37.1%	42.4%	38.6%
	Irrigated	3,895	3,933	3,879	4,014	33.8%	34.1%	33.7%	34.8%
	Totals	8,021	8,208	8,767	8,459	69.6%	71.2%	76.1%	73.4%
Channel									
	Channel	3,295	2,913	2,300	2,618	28.6%	25.3%	20.0%	22.7%
	Totals	3,295	2,913	2,300	2,618	28.6%	25.3%	20.0%	22.7%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	12	29	16	0.0%	0.1%	0.3%	0.1%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	1	2	12	12	0.0%	0.0%	0.1%	0.1%
	Totals	1	15	41	27	0.0%	0.1%	0.4%	0.2%
Transportation									
	Public Road	63	63	63	64	0.5%	0.5%	0.6%	0.6%
	Interstate	0	4	4	4	0.0%	0.0%	0.0%	0.0%
	Railroad	53	53	37	37	0.5%	0.5%	0.3%	0.3%
	Totals	115	119	105	105	1.0%	1.0%	0.9%	0.9%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	meline - Tiers 3 a	ind 4								Char	ige Betv	veen Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	131	131	515	0.0%	1.6%	1.5%	6.1%	1.6%	-0.1%	4.6%	6.1%
	Flood	3,895	3,802	3,749	3,499	48.6%	46.3%	42.8%	41.4%	-2.2%	-3.6%	-1.4%	-7.2%
	Totals	3,895	3,933	3,879	4,014	48.6%	47.9%	44.3%	47.4%	-0.6%	-3.7%	3.2%	-1.1%

Reach C9

Non-I	rrigated	
-------	----------	--

Multi-Use	3,869	4,141	4,651	4,362	48.2%	50.5%	53.1%	51.6%	2.2%	2.6% -1.5%	3.3%
Hay/Pasture	257	134	236	83	3.2%	1.6%	2.7%	1.0%	-1.6%	1.1% -1.7%	-2.2%
Totals	4,126	4,275	4,887	4,445	51.4%	52.1%	55.7%	52.6%	0.6%	3.7% -3.2%	1.1%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	:	Shrub (Acres	5)	Closed Timber (Acres)				Open Timber (Acres)				
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001			
Min Max Average Sum	0.2 102.7 12.5 753.0	0.4 45.6 8.9 410.6	2.3 58.9 18.3 474.6	0.4 428.3 60.4 2,173.7	3.1 351.0 62.7 1,881.3	2.3 575.9 66.5 1,995.2	6.2 132.5 32.9 493.4	1.7 212.8 39.4 906.7	1.9 345.7 58.5 876.9			
Riparian TurnoverRiparian to ChannelConversion of riparian areas to channel, or from channel to riparian between the 1950's and 2001 data set.Riparian to ChannelRiparian EncroachmentRiparian Encroachment								540.7 925.3 384.6				
Riparian	Recruit	nent	1950s Cha	nnel Mapped	l as 2011 Ripa	arian (Ac)	933.6					
Creation of riparian areas 1950s Floodplain Mapped as 2011						nnel (Ac)	354.9					
between 1950s and 2001. Total Recruitment (1950s to 2011)(A						2011)(Ac)	1288.5					

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	29.2	308.5	244.4	0.0	582.1
Acres/Valley Mile	3.8	40.0	31.7	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	74.01	0.73%	3.86	0.78	21.73	20.39	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	485.2	318.5	13.8%
Rip Rap Bottom	49.0	39.4	1.7%
Bluff Pool	35.0	26.9	1.2%
Secondary Channel	12.5	20.4	0.9%
Secondary Channel (Seasonal)	468.3	254.6	11.1%
Channel Crossover	284.0	183.2	8.0%
Point Bar		172.4	7.5%
Side Bar		109.8	4.8%
Mid-channel Bar		53.2	2.3%
Island	965.8	965.8	42.0%
Dry Channel		155.6	6.8%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird Spe	cies Observed in Re	ach/Region	Species of Concern	Potential Species of Concern
Region Reach	Region Reach		Region	Region
Ameri	ican Robin	Chipping Sparrow	✓ ✓ Killdeer	Song Sparrow
Ameri	ican Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
Ameri	ican Goldfinch 🗸 🗸	Cliff Swallow	Lark Sparrow	Spotted Towhee
Ameri	ican Kestrel 🗸 🗸	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
Ameri	ican Redstart	Common Merganser	✓ ✓ Least Flycatcher	Swainson's Thrush
Bald I	Eagle 🗌 🗸	Common Nighthawk	Mallard	Sandhill Crane
✓ ✓ Baltin	nore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
Barn :	Swallow 🗸 🗸	Common Yellowthroat	Mourning Dove	Turkey Vulture
✓ ✓ Belter	d Kingfisher 🗸 🗸	Cooper's Hawk	✓ ✓ Northern Flicker	✓ ✓ Upland Sandpiper
Black	-billed Cuckoo	Dickcissel	✓ ✓ Orchard Oriole	✓ ✓ Vesper Sparrow
Black	-billed Magpie	Downy Woodpecker	Osprey	✓ ✓ Violet-green Swallow
Black	-capped Chickadee	Eastern Bluebird	V Vovenbird	✓ ✓ Warbling Vireo
Black	-and-white Warbler	Eastern Kingbird	✓ ✓ Plumbeous Vireo	Vestern Kingbird
Black	-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	Vestern Meadowlark
✓ ✓ Blue 、	Jay 🗸 🗸	European Starling	Red-naped Sapsucker	Vestern Wood-pewee
Bobol	link 🗸 🗸	Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
Brewe	er's Blackbird	Franklin's Gull	✓ ✓ Ring-necked Pheasant	✓ ✓ White-throated Swift
Brown	n-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Vild Turkey
Brown	n Creeper 🗸 🗸	Gray Catbird	Rock Dove	Vood Duck
Brown	n Thrasher	Great Blue Heron	Red-winged Blackbird	Yellow-bellied Sapsucker
✓ ✓ Bulloo	ck's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
Canac	da Goose 🗸 🗸	Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
Cedar	Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
Chimi	ney Swift 🗸 🗸	House Wren	Savannah Sparrow	V Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

Reach C10

County	Rosebud
Classification	PCM: Partially confined meandering
General Location	Forsyth
General Comments	Forsyth

Upstream River Mile243.1Downstream River Mile236.3Length6.80 mi (10.94 km)

Narrative Summary

Reach C10 is 6.8 miles long and is located at Forsyth. It is a Partially Confined Meandering reach type, as the river flows within a primary meandering thread that is partially confined by the northern bluff line at the Forsyth Bridge.

There is approximately three miles of rock riprap in the reach, 500 feet of which was built since 2001. About a mile of armor is protecting the active rail line on the south side of the river, and another 3,700 feet are protecting the city of Forsyth. Just below Cartersville Dam, a ~330 foot-long stretch of bank armor was flanked sometime between 2001 and 2011. The river has since migrated to the south about 50 feet past the abandoned armor. As of 2011 there were 1,600 feet of flow deflectors mapped in the reach. About 22 percent of the total bankline is armored by either rock riprap or flow deflectors. There is also about a mile of floodplain dikes/levees in the reach, which are located on the south bank at Forsyth.

Cartersville Dam is located at RM 238.5 in the town of Forsyth. This diversion dam was constructed in the early 1930's and consists of a rock rubble riprap core that is capped by concrete. The structure is 800 feet long, spanning the width of the Yellowstone River. The river flows within a single thread at the structure, flowing along the northern bluff line of the Yellowstone River valley. Because of its impacts on the Yellowstone River fishery, efforts have begun to develop suitable alternatives and bypass designs to promote fish passage at Cartersville.

About 20 percent of the total 100-year floodplain has become isolated due to human development. The isolation is due to a combination of floodplain dikes that protect the city of Forsyth and the active railroad. The 5-year floodplain is even more affected; 50 percent of the historic 5-year floodplain is no longer inundated at that frequency. Most of the isolated 5-year floodplain area is occupied by flood irrigated fields north of the river, and by urban development in Forsyth. At RM 238 the river is migrating northward, and has reached the toe of the abandoned Milwaukee Rail Line embankment. Migration through this grade will increase floodplain access on the north side of the river downstream of Cartersville Dam. As this is an urban reach, strategic floodplain reconnection in this area could be beneficial.

One ice jam was reported in Reach C10 in February of 1996. No damages were reported.

Land use is dominated by agriculture (~4,700 acres), with 280 acres of pivot irrigation development since 1950. There are about 850 acres of urban/exurban development in the reach. About 4 percent of the CMZ is restricted by physical features, and most of that area is in town.

There are 250 acres of Russian olive in the reach, most of which is dispersed in riparian areas. Russian olive densities are especially high downstream of Cartersville Diversion dam on the south bank of the river near the water treatment plant.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 24 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,730 cfs to 3,020 cfs with human development, a reduction of 36 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,150 cfs under unregulated conditions to 3,320 cfs under regulated conditions, a reduction of 46 percent.

CEA-Related observations in Reach C10 include:

•Floodplain isolation due to urban/exurban development.

•Extensive Russian olive colonization in urbanized reach

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C10 include:

•Floodplain reconnection at RM 238L behind abandoned Milwaukee rail line.

•Diversion structure management at Cartersville Dam

•Watercraft passage at Cartersville Dam

•Fish Passage at Cartersville Dam

•Flanked bank armor removal at RM 238.4R

Russian olive removal

PHYSICAL FEATURES MAP (2011)

Reach C10

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

FI	ood His	story				Downstream	Upstream
	Year	Date	Flow on Date	Return Interval	Gage No	Gage 6309000	Gage 6214500
	1974	Jun 22	75,400	10-25 yr	Location	Miles City	Billings
	1997	Jun 15	83,300	10-25 yr	Period of Record	1929-2015	1929-2015
	1943	Jun 26	83,700	10-25 yr	Distance To (miles)	52 3	121 3
	2011	May 24	85,400	10-25 yr	Distance To (innes)	52.5	121.5
	1944	Jun 19	96,300	50-100 yr			
	1978	May 22	102,000	50-100 yr			

Discharge

Jischarge	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	7Q10 Summer	95% Sum. Duration
Unregulated		61,300	77,300	87,900	111,000	121,000	145,000	4,730	6,150
Regulated		46,900	61,300	70,700	91,600	101,000	122,000	3,020	3,320
% Change		-23.49%	-20.70%	-19.57%	-17.48%	-16.53%	-15.86%	-36.15%	-46.02%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

			or manoatoa por	
Season		5%	50%	95%
Spring	Unregulated	60,000	22,400	5,930
	Regulated	46,500	13,600	4,330
	% Change	-23%	-39%	-27%
Summer	Unregulated	42,100	13,200	6,150
	Regulated	32,200	8,230	3,320
	% Change	-24%	-38%	-46%
Fall	Unregulated	9,030	5,460	2,280
	Regulated	10,400	6,800	3,590
	% Change	15%	25%	57%
Winter	Unregulated	11,400	4,850	1,990
	Regulated	12,000	5,940	3,230
	% Change	5%	22%	62%
Annual	Unregulated	44,900	7,770	2,760
	Regulated	33,800	7,280	3,580
	% Change	-25%	-6%	30%

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	11-Aug-96	B/W		6295000	7650
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	07/12/2005	color	1-meter pixels	6309000	17500
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	8/11/2009	Color	1-meter pixels	6309000	12900
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/15/2011	Color	1-meter pixels	6309000	58000
2013	NAIP	07/21/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 % of Length (ft) Bankline I		2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Stabilization						
	Rock RipRap	13,814	19.2%	14,306	19.8%	493
	Flow Deflectors	607	0.8%	345	0.5%	-262
	Between Flow Deflectors	1,302	1.8%	1,302	1.8%	0
	Feature Type Totals	15,723	21.8%	15,954	22.1%	231
Floodplain	Control					
	Floodplain Dike/Levee	4,861	6.7%	4,071	5.6%	-790
	Feature Type Totals	4,861	6.7%	4,071	5.6%	-790
	Reach Totals	20,584	28.6%	20,025	27.8%	-559

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FDs		1,725	0	0	0	0	0	0	0
Rock RipRap		0	0	0	722	0	5,054	3,720	0
Тс	otals	1,725	0	0	722	0	5,054	3,720	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

2/7/1996

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding	
1950	37,786	9,048	1.24	1950 to 1976:	3.26%	
1976	35,535	9,945	1.28	1976 to 1995:	6.47%	
1995	36,024	13,064	1.36	1995 to 2001:	5.39%	
2001	36,044	15,719	1.44	1950 to 2001:	15.87%	
Change 1950 - 2001	-1,742	6,671	0.20			
Length of Side		Pre-1950s (ft)	0			
Channels Blocked		Post-1950s (ft)	0			

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	44	1.4%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	338	10.8%			
Railroad	223	7.1%			
Abandoned Railroad	16	0.5%			
Transportation (Interstate and other roads)	15	0.5%			
Total Not Isolated (Ac)	2507		1753		
Total Floodplain Area (Ac)	3143		2872		
Total Isolated (Ac)	636	20.2%	1119	49.9%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	29	0	21	50

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tot CN Acre	tal IZ age	Restricted CMZ Acreage	% Restric Migratic Area	ted ⁻ on Ac	Total AHZ creage	Restricted AHZ Acreage	I % Restricted Avulsion Area
	210	420	1,34	44	67	5%		501	0	0%
2011 Restricted Migration Area Sur					У	Note that th	ese data i	eflect the	e observed co	nditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	Counties, COE for the rest of the river).				Sweet Grass
RipRap/Flo	w Deflectors									
	Irrigated		19	1.	0%					
RipRap										
	Urban Resid	ential	11	0.	6%					
Dike/Levee	Urban Resid	ential	43	2	3%					
		Totals	73	3.	.9%					
Land Us	es within th	e CMZ (/	Acres)	F Irri	lood gation 39.4	Sprinkler Irrigation 0.0	Pivo Irrigati 2.5	t L on Ex	Jrban/ kUrban p 70.8	Trans- portation 1.6

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		% of Reach Area						
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	29	72	101	104	0.4%	1.1%	1.5%	1.5%
	Totals	29	72	101	104	0.4%	1.1%	1.5%	1.5%
Agricultural Lan	d								
	Non-Irrigated	4,488	3,771	3,602	3,565	67.0%	56.3%	53.8%	53.2%
	Irrigated	904	1,138	1,166	1,152	13.5%	17.0%	17.4%	17.2%
	Totals	5,392	4,909	4,768	4,717	80.5%	73.3%	71.2%	70.4%
Channel									
	Channel	684	736	706	758	10.2%	11.0%	10.5%	11.3%
	Totals	684	736	706	758	10.2%	11.0%	10.5%	11.3%
ExUrban						•			
	ExUrban Other	0	26	26	26	0.0%	0.4%	0.4%	0.4%
	ExUrban Undeveloped	0	0	21	0	0.0%	0.0%	0.3%	0.0%
	ExUrban Industrial	0	18	18	18	0.0%	0.3%	0.3%	0.3%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	1	76	97	0.0%	0.0%	1.1%	1.5%
	Totals	0	45	142	142	0.0%	0.7%	2.1%	2.1%
Transportation									
	Public Road	36	56	57	57	0.5%	0.8%	0.9%	0.9%
	Interstate	0	153	153	153	0.0%	2.3%	2.3%	2.3%
	Railroad	72	72	37	37	1.1%	1.1%	0.6%	0.6%
	Totals	107	281	248	248	1.6%	4.2%	3.7%	3.7%
Urban									
	Urban Other	102	70	106	102	1.5%	1.0%	1.6%	1.5%
	Urban Residential	270	365	390	390	4.0%	5.5%	5.8%	5.8%
	Urban Commercial	41	80	97	97	0.6%	1.2%	1.4%	1.4%
	Urban Undeveloped	66	44	41	41	1.0%	0.7%	0.6%	0.6%
	Urban Industrial	4	93	97	97	0.1%	1.4%	1.4%	1.5%
	Totals	484	652	732	728	7.2%	9.7%	10.9%	10.9%

Land Use Ti	meline - Tiers 3 ar	nd 4								Char	ige Betv	veen Y	ears
			Acr	res		%	of Rea	ch Area	l I	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	206	263	278	0.0%	4.2%	5.5%	5.9%	4.2%	1.3%	0.4%	5.9%
	Flood	904	932	904	874	16.8%	19.0%	18.9%	18.5%	2.2%	0.0%	-0.4%	1.8%
	Totals	904	1,138	1,166	1,152	16.8%	23.2%	24.5%	24.4%	6.4%	1.3%	0.0%	7.7%

Reach CI0

Non-	Irrigated
	0

Multi-Use	4,015	3,577	3,585	3,557	74.4%	72.9%	75.2%	75.4%	-1.6%	2.3%	0.2%	1.0%
Hay/Pasture	474	194	17	8	8.8%	4.0%	0.4%	0.2%	-4.8%	-3.6%	-0.2%	-8.6%
Totals	4,488	3,771	3,602	3,565	83.2%	76.8%	75.5%	75.6%	-6.4%	-1.3%	0.0%	-7.7%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (Acres)			Clos	ed Timber (A	(cres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.4	1.9	0.9	0.9	1.7	2.4	5.6	3.6	18.3
Max	294.3	241.2	171.7	241.2	281.1	163.9	232.9	115.9	116.4
Average	36.5	33.0	27.6	49.1	58.3	33.1	54.4	29.7	76.1
Sum	474.5	296.9	386.5	736.7	815.9	694.5	435.0	267.4	380.3
Riparian	Turnove	er			Riparian t	o Channel (a	cres)	87.1	
Conver from ch	rsion of ripar nannel to ripa	ian areas to o arian betweer	channel, or h the 1950's		Channel t	cres)	119.1		
and 20	01 data set.			R	iparian Encre	cres)	32.0		
Riparian Recruitment 1950s Channel				nnel Mapped	as 2011 Ripa	128.0			
Creation of	Creation of riparian areas			lain Mapped	as 2011 Cha	nnel (Ac)	12.3		
between 1950s and 2001.			Tota	Total Recruitment (1950s to 2011)(Ac)					

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	11.6	89.6	30.1	0.0	131.2
Acres/Valley Mile	1.9	14.8	5.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	250.55	5.68%	6.77	2.27	15.11	1.46

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	g 2001 (Acres)				
Habitat Scour Pool	Bankfull 180.9	Low Flow 105.4	% of Low Flow 14.9%		
Rip Rap Bottom	31.5	21.8	3.1%		
Rip Rap Margin	122.2	100.7	14.3%		
Secondary Channel	28.5	22.9	3.2%		
Secondary Channel (Seasonal)	71.5	41.6	5.9%		
Channel Crossover	110.0	102.7	14.5%		
Point Bar		55.3	7.8%		
Side Bar		14.8	2.1%		
Mid-channel Bar		28.2	4.0%		
Island	76.1	76.1	10.8%		
Dry Channel		51.4	7.3%		
Dam Influenced	85.2	85.1	12.1%		

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

Reach CII

County	Rosebud	Upstream River Mile	236.3
Classification	PCM/I: Partially confined meandering/islands	Downstream River Mile	225
General Location	Forsyth to Cartersville Bridge	Length	11.30 mi (18.19 km)
General Comments	Reach C11 is located upstream of Cartersiville Bridge and pro	vides a good example of e	xtensive floodplain

nments Reach C11 is located upstream of Cartersiville Bridge and provides a good example of extensive floodplain encroachments on both sides of the river due to both active and abandoned rail lines, as well as side channel loss due to diking.

Narrative Summary

Reach C11 is located in Rosebud County, just downstream from the community of Forsyth. The reach is an 11.3 mile long Partially Confined Meandering channel type, extending from RM 225.0 to RM 236.3. The partial confinement is imposed by bedrock bluffs south of the river. The floodplain area north of the river has become isolated by about 9 miles of abandoned railroad grade. Rosebud Creek enters the Yellowstone River in the lowermost end of the reach from the south, and Little Porcupine Creek and Horse Creek flow in from the north. The Far West fishing access is located on the north bank at the downstream end of the reach. Reach C11 is relatively dynamic with most erosion and bank migration occurring on the downstream limbs of major meanders.

In Reach C11, the river commonly runs along the southern bluff line that is made up of Cretaceous age Lance Formation and Hell Creek Formation. The BNSF line follows this edge of the valley, and as a result much of the bluff line is armored. According to Womack (2001), the Hell Creek Formation in this area consists of resistant cemented sandstone that forms a 12 foot cap over claystone, which is subject to small slumps on the very steep slope below the rail line, thus driving the need for bank armor. Bank migration is also very active in the reach; at RM 229 for example, the river has migrated almost 700 feet southward since 1950 and is now within 100 feet of the rail line.

As of 2011 there were over 4.5 miles of bank armor protecting about 20 percent of the total bankline in Reach C11, and almost all of that armor is rock riprap protection against the active rail line. Since 2001, about 1,500 feet of flow deflectors have been built in the reach as well to protect irrigated fields on the north bank. Physical features mapping indicates the loss of 500 feet of car bodies between 2001 and 2011 at RM 230.1L where the bank has eroded behind the car bodies which are now up to 70 feet out in the river. A ~500 foot-long stretch of rock riprap on the north side of the river at RM 226.6R is currently protecting flood irrigated land, but is becoming flanked on its upstream end.

Reach C11 has seen major losses of side channels due to small floodplain dikes. Since 1950, 4.3 miles of side channel have been blocked. Three major side channels have dikes blocking them; at RM 232R across from the mouth of Porcupine Creek, at RM 230L below the mouth of Horse Creek, and at RM 229R. All of these channels appear to have good potential for reactivation. There are other older dikes that block swales that could also be potentially reactivated (e.g. RM 234R).

Similar to other reaches downstream of the Bighorn River confluence, the river channel has become smaller in Reach C11 since 1950. In 2001, the bankfull footprint was about 130 acres smaller than it was in 1950, and riparian mapping shows over 200 acres of riparian encroachment into old channel areas. Floodplain turnover rates are also lower; from 1950-1975 the average annual rate of floodplain turnover was 9.3 acres per year, and since 1975 it has been 6.4 acres per year.

On the north side of the river, the abandoned Milwaukee rail line isolates extensive historic floodplain area. At the 100 year event, 767 acres of contiguous area is isolated by the old rail line embankment, accounting for 17 percent of the mapped 100-year floodplain area. Just upstream of the mouth of Horse Creek, however, the river has migrated through the embankment. That erosion through the embankment will continue as the river is actively flanking rock riprap at the mouth of Horse Creek. The active BNSF line also isolates pockets of historic floodplain on the south side of the river.

A total of 328 acres of land that would normally be in the river's natural Channel Migration Zone (CMZ) have become restricted by physical features, which represents about 9 percent of the total CMZ area.

Land uses in Reach C11 are predominantly agricultural, with some conversion from flood irrigation to pivot since 1950. As of 2011 there were about 450 acres under pivot irrigation in the reach, and 76 of those acres are within the 5-year floodplain. Pivot irrigation has also encroached into the CMZ; about 65 acres that were developed for pivot are within the CMZ footprint. This area under pivot is at RM 227.5R, where a large pivot field has been developed in the core of a major meander. Irrigation development included riparian clearing; between 1950 and 2011 about 124 acres of riparian area was cleared for irrigation, which is 8 percent of the total 1950s riparian area.

Reach C11 hosts a relatively dense concentration of wetlands; there are almost 40 acres of wetland per valley mile in the reach, most of which is emergent marshes and wet meadows. There are also 183 acres of mapped Russian olive in the reach, which is distributed throughout the riparian zone and locally concentrated in blocked side channels.

Reach C11 was sampled as part of the fisheries study. A total of 27 species were sampled in the reach, including Sauger and Blue Sucker, both of which have been identified as Species of Concern by the Montana Natural Heritage Program.

Reach C11 was also sampled as part of the avian study. A total of 42 bird species were identified in the reach, including three Species of Concern: The Chimney Swift, Ovenbird, and Plumbeous Vireo. Reach C11 has seen a reduction in the extent of riparian forest considered at low risk of cowbird parasitism. In 1950, there were 31.3 acres of such forest per valley mile, and by 2001 that forest extent had dropped to 19.8 acres per valley mile.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 24 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,820 cfs to 3,060 cfs with human development, a reduction of 37 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,300 cfs under unregulated conditions to 3,370 cfs under regulated conditions, a reduction of 47 percent.

Fall and winter base flows have increased in Reach C11 by about 60 percent.

CEA-Related observations in Reach C11 include:

- •Extensive floodplain isolation by the abandoned Milwaukee rail line on the north bank.
- •Extensive blocking of side channels
- •A regionally high extent of Russian olive possibly associated with the loss of side channels.
- •Extensive armoring with CMZ encroachment
- •Flanking of car bodies
- Active flanking of riprap

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C11 include: •Removal of car bodies in river at RM 230.1L

- •Side channel reactivation at RM 232R, RM 230L, and RM 229 R.
- •Floodplain reconnection behind abandoned railroad grade RM 231L

•Russian olive removal

PHYSICAL FEATURES MAP (2011)

Weit 94 Floodplain Dike/Levee Flow Deflector Rock RipRap Concrete RipRap Flow Deflectors Out-or Physical Features Other nterstate Highway JS or State Route econdary Road Reach Breaks **River Miles** Counties Legend

Reach CII

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

Flood His	story				Downstream	Upstream
Year	Date	Flow on Date	Return Interval	Gage No	Gage 6309000	Gage 6214500
1974	Jun 22	75,400	10-25 yr	Location	Miles City	Billings
1997	Jun 15	83,300	10-25 yr	Period of Record	1929-2015	1929-2015
1943	Jun 26	83,700	10-25 yr		41.0	100 1
2011	May 24	85,400	10-25 yr	Distance To (innes)	41.0	120.1
1944	Jun 19	96,300	50-100 yr			
1978	May 22	102,000	50-100 yr			

Discharge

Jischarge	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	7Q10 Summer	95% Sum. Duration
Unregulated		61,800	77,700	88,000	111,000	120,000	143,000	4,820	6,300
Regulated		47,200	61,600	70,900	90,700	99,000	118,000	3,060	3,370
% Change		-23.62%	-20.72%	-19.43%	-18.29%	-17.50%	-17.48%	-36.51%	-46.51%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Season		5%	50%	95%
Spring	Unregulated	60,500	22,600	6,060
	Regulated	46,800	13,700	4,410
	% Change	-23%	-39%	-27%
Summer	Unregulated	42,600	13,400	6,300
	Regulated	32,500	8,310	3,370
	% Change	-24%	-38%	-47%
Fall	Unregulated	9,120	5,530	2,300
	Regulated	10,500	6,880	3,630
	% Change	15%	24%	58%
Winter	Unregulated	11,700	4,930	2,010
	Regulated	12,300	6,020	3,260
	% Change	5%	22%	62%
Annual	Unregulated	45,400	7,900	2,790
	Regulated	34,100	7,370	3,620
	% Change	-25%	-7%	30%

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	8/11/1996 - 8/7/96	B/W		6295000	7650
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	07/29/2005	color	1-meter pixels	6309000	7070
2005	NAIP	07/12/2005	color	1-meter pixels	6309000	17500
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	8/11/2009	Color	1-meter pixels	6309000	12900
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/15/2011	Color	1-meter pixels	6309000	58000
2013	NAIP	07/21/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Lenath (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization	- J - (-7		5 - ()		
	Rock RipRap	21,792	18.2%	22,608	18.8%	816
	Flow Deflectors	0	0.0%	239	0.2%	239
	Car Bodies	504	0.4%	0	0.0%	-504
	Between Flow Deflectors	0	0.0%	1,273	1.1%	1,273
	Feature Type Totals	22,296	18.6%	24,119	20.1%	1,823
Floodplain	Control					
	Transportation Encroachment	10,162	8.5%	10,162	8.5%	0
	Floodplain Dike/Levee	2,700	2.3%	2,700	2.3%	0
	Feature Type Totals	12,861	10.7%	12,861	10.7%	0
	Reach Totals	35,157	29.3%	36,981	30.8%	1,823

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Car Bodies		505	0	0	0	0	0	0	0
Rock RipRap		2,257	0	0	0	0	23,898	0	0
	Totals	2,762	0	0	0	0	23,898	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)			Bankfull		
	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Braiding Parameter		% Change in Braiding
1950	60,103	72,434	2.21	1950 to 1976:	-14.95%
1976	60,623	53,080	1.88	1976 to 1995:	-15.72%
1995	61,684	35,828	1.58	1995 to 2001:	5.18%
2001	59,992	39,762	1.66	1950 to 2001:	-24.60%
Change 1950 - 2001	-110	-32,672	-0.54		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	22,745		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	217	4.8%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	24	0.5%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	115	2.5%			
Abandoned Railroad	767	16.9%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	3415		2422		
Total Floodplain Area (Ac)	4539		3711		
Total Isolated (Ac)	1124	24.8%	1290	51.2%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	149	0	76	224

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 330	Erosion Buffer (ft) 661	To CN Acre 3,3	tal Rest IZ C age Acr 71 3	tricted MZ reage 327	% Restric Migratio Area 10%	ted T on A Ac	Fotal AHZ preage 173	Restricted AHZ Acreage 0	I % Restricted Avulsion Area 0%
2011 Res	stricted Mia	ration A	rea Sun	nmarv		Note that the	ese data r	eflect the	e observed co	nditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ		2011 aerial Counties, Counties, Co	photograp OE for the	hy (NAIF rest of t	^o for Park and he river).	Sweet Grass
Road/Railro	oad Prism									
	Public Road		17	0.5%						
RipRap										
	Railroad		184	5.2%						
	Irrigated		104	2.9%						
Dike/Levee										
	Railroad		24	0.7%						
		Totals	328	9.3%						
Land Us	es within the	e CMZ (/	Acres)	Flood Irrigation 408.7	n I	Sprinkler rrigation 0.0	Pivot Irrigatio 65.3	on Ex	Irban/ «Urban p 0.0	Trans- portation 19.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	68	108	99	87	0.6%	1.0%	0.9%	0.8%
	Totals	68	108	99	87	0.6%	1.0%	0.9%	0.8%
Agricultural Lan	d								
	Non-Irrigated	4,989	5,181	5,744	5,630	47.6%	49.5%	54.9%	53.8%
	Irrigated	3,056	3,066	3,038	3,107	29.2%	29.3%	29.0%	29.7%
	Totals	8,046	8,247	8,782	8,738	76.8%	78.8%	83.9%	83.4%
Channel						•			
	Channel	2,208	1,949	1,466	1,522	21.1%	18.6%	14.0%	14.5%
	Totals	2,208	1,949	1,466	1,522	21.1%	18.6%	14.0%	14.5%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%
Transportation									
	Public Road	50	51	51	51	0.5%	0.5%	0.5%	0.5%
	Interstate	0	17	17	17	0.0%	0.2%	0.2%	0.2%
	Railroad	99	98	56	56	0.9%	0.9%	0.5%	0.5%
	Totals	149	166	124	124	1.4%	1.6%	1.2%	1.2%
Urban						•			
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	2	2	2	2	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	2	2	2	2	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 and	4								Char	ige Betv	veen Y	ears
			Acr	res		%	of Rea	ch Area	l I	(% 0	f Agricul	tural La	and)
Feature Class Feature Type			1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	95	451	0.0%	0.0%	1.1%	5.2%	0.0%	1.1%	4.1%	5.2%
	Flood	3,056	3,066	2,943	2,656	38.0%	37.2%	33.5%	30.4%	-0.8%	-3.7%	-3.1%	-7.6%
	Totals	3,056	3,066	3,038	3,107	38.0%	37.2%	34.6%	35.6%	-0.8%	-2.6%	1.0%	-2.4%

Reach CII

Multi-Use	4,564	4,741	5,347	5,247	56.7%	57.5%	60.9%	60.0%	0.8%	3.4%	-0.8%	3.3%
Hay/Pasture	425	440	398	383	5.3%	5.3%	4.5%	4.4%	0.1%	-0.8%	-0.1%	-0.9%
Totals	4,989	5,181	5,744	5,630	62.0%	62.8%	65.4%	64.4%	0.8%	2.6%	-1.0%	2.4%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	;	Shrub (Acres	s) Closed Timbe			(cres)	Ор	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.1	0.6	0.4	0.5	0.6	1.4	1.6	3.2	1.7	
Max	65.1	55.0	37.9	349.3	271.1	152.5	140.3	137.5	290.3	
Average	7.9	12.5	12.5	35.9	25.9	32.0	24.1	34.9	64.9	
Sum	291.9	350.0	237.2	1,076.0	827.3	895.5	384.8	313.7	649.4	
Riparian Turnover					Riparian t	to Channel (a	cres)	215.0		
from cl	rsion of ripar hannel to rip	arian areas to a	n the 1950's		Channel t	to Riparian (a	cres)	426.6		
and 20	01 data set.			Ri	parian Encr	oachment (a	cres)	211.6		
Riparian	Recruitr	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	438.3			
Creation of	Creation of riparian areas 19			950s Floodplain Mapped as 2011 Channel (Ac)						
between 1950s and 2001.			Tota	I Recruitmer	nt (1950s to 2	2011)(Ac)	494.6			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	51.2	230.5	75.1	0.0	356.8
Acres/Valley Mile	5.8	26.1	8.5	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	182.60	2.27%	15.11	2.72	51.43	55.53
Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region Reach		Region	Region	Region
	Bigmouth buffalo	✓ ✓ Flathead chub	Northern redbelly dace	Stonecat
	Black bullhead	Freshwater drum	Pallid sturgeon	Sturgeon chub
~	Black crappie	Goldeye	Pumpkinseed	Sucker species
~	Blue sucker	✓ ✓ Green sunfish	Rainbow trout	Sunfish species
	Bluegill	Lake chub	River carpsucker	V Walleye
~	Brook stickleback	Largemouth bass	Rock bass	Vestern silvery minnow
	Brown trout	✓ ✓ Longnose dace	Sand shiner	White bass
~	Burbot	✓ ✓ Longnose sucker	Sauger	White crappie
	Catfish species	Minnow species	Shorthead redhorse	V White sucker
~	Channel catfish	Mottled sculpin	Shortnose gar	Vellow bullhead
~	Common carp	✓ ✓ Mountain sucker	✓ ✓ Shovelnose sturgeon	Yellow perch
	Creek chub	Mountain whitefish	Sicklefin chub	
~	Emerald shiner	Northern pike	Smallmouth bass	
	Fathead minnow	✓ ✓ Northern plains killifish	Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat Scour Pool	Bankfull 327.8	Low Flow 205.2	% of Low Flow 14.0%
Rip Rap Bottom	201.6	131.1	8.9%
Rip Rap Margin	141.8	96.6	6.6%
Terrace Pool	11.4	6.8	0.5%
Secondary Channel	110.7	123.3	8.4%
Secondary Channel (Seasonal)	104.6	125.2	8.5%
Channel Crossover	292.4	207.2	14.1%
Point Bar		80.4	5.5%
Side Bar		73.3	5.0%
Mid-channel Bar		100.9	6.9%
Island	275.5	215.9	14.7%
Dry Channel		99.8	6.8%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	✓ ✓ Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	✓ ✓ Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	✓ ✓ Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	✓ ✓ Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	☐ ✓ Vesper Sparrow
	Black-billed Magpie	✓ ✓ Downy Woodpecker	Osprey	☑ ✓ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	V Vovenbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	✓ ✓ Eastern Kingbird	✓ ✓ Plumbeous Vireo	✓ ✓ Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	✓ ✓ Western Meadowlark
	Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	✓ ✓ Western Wood-pewee
	Bobolink	☐ ✓ Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
	Brewer's Blackbird	Franklin's Gull	✓ ✓ Ring-necked Pheasant	☐ ✔ White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	☐ ✔ Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	V Wood Duck
	Brown Thrasher	✓ ✓ Great Blue Heron	✓ ✓ Red-winged Blackbird	Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Yellow-billed Cuckoo
	Canada Goose	Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Vellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	✓ ✓ Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

CountyRosebudClassificationPCM/I: Partially confined meandering/islandsGeneral LocationRosebudGeneral CommentsRosebud; numerous meander cutoffs

Upstream River Mile	225
Downstream River Mile	214.8
Length	10.20 mi (16.42 km)

Reach CI2

Narrative Summary

Reach C12 is 10.2 miles long and extends from the Rosebud Bridge at RM 225 downstream to RM 215. The reach classified as Partially Confined Meandering with Islands (PCM/I), indicating some influence of the valley wall, a main meandering channel thread, and numerous meander cutoffs that have generated large islands. The reach is relatively dynamic; at RM 221.5 for example the river has migrated over 900 feet to the northwest since 1950. At RM 217.2R, the river migrated over 300 feet between 2001 and 2011. Most of the rapid migration is on the outer edges (apices) and downstream limbs of large meanders.

As of 2011 there were 4,700 feet of bank armor protecting about 4 percent of the total bankline in Reach C12, and almost all of that armor is rock riprap. About one half of the armor was built between 2001 and 2011. One short section (200 feet) of flow deflectors was also built between 2001 and 2011. The bank armor is protecting agricultural land and the active rail line. Almost 2,000 feet of the mapped bank armor is north of the town of Rosebud on a channel that has been largely abandoned. This channel abandonment has focused flows in the south channel, which currently flows against the town of Rosebud which has minimal erosion protection.

Prior to 1950, about ½ miles of side channel in Reach C12 were blocked. One short channel is just upstream of the town of Rosebud, and a much longer channel is on the south side of the river at RM 219R.

Similar to other reaches downstream of the Bighorn River confluence, the river channel has become smaller in Reach C12 since 1950. In 1950, the bankfull footprint was about 56 acres larger than it was in 2001, and riparian mapping shows over 211 acres of riparian encroachment into old channel areas. Some of that encroachment has been onto mid-channel bars; there was a net loss of 36 acres of open bars since 1950. Floodplain turnover rates are also lower; from 1950-1975 the average annual rate of floodplain turnover was 8.9 acres per year, and since 1975 it has been 5.8 acres per year.

Over a thousand acres of the 100-year floodplain has become isolated from the river, most of which is north of the abandoned rail line. Several pockets of historic 100-year floodplain have also been isolated on the south side of the river between the rail line and bluff area. In total, 29 percent of the entire historic 100-year floodplain has become isolated. Isolation of the 5-year floodplain has been even more substantial; 1,340 acres or 47 percent of the 5-year floodplain has become isolated at that event. Much of this isolated 5year floodplain is on flood irrigated fields north of the river.

A total of 216 acres of land that would normally be in the river's natural Channel Migration Zone (CMZ) have become restricted by physical features, which represents about 6 percent of the total CMZ area. At Rosebud, 59 acres of urban/exurban land has been mapped within the CMZ.

Land uses in Reach C12 are predominantly agricultural, with some conversion from flood irrigation to pivot since 1950. As of 2011 there were about 430 acres under pivot irrigation in the reach, and 197 of those acres are within the 5-year floodplain. Pivot irrigation has also encroached into the CMZ; about 200 acres that were developed for pivot are within the CMZ footprint. Irrigation development largely occurred prior to 1950, but additional development since then has included riparian clearing; between 1950 and 2011 about 45 acres of riparian area was cleared for irrigation, which is 5 percent of the total 1950s riparian area.

One animal handling facility was mapped at RM 222L that extends to the river bank.

There are 206 acres of mapped Russian olive in the reach, which is distributed throughout the riparian zone.

Reach C12 was sampled as part of the fisheries study. A total of 37 species were sampled in the reach, including Sauger and Blue Sucker, both of which have been identified as Species of Concern by the Montana Natural Heritage Program.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 100year flood has dropped by 17 percent and the 2-year flood, which strongly influences overall channel form, has dropped by 24 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,830 cfs to 3,060 cfs with human development, a reduction of 37 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,310 cfs under unregulated conditions to 3,380 cfs under regulated conditions, a reduction of 46 percent.

Fall and winter base flows have increased in Reach C12 by about 60 percent.

CEA-Related observations in Reach C12 include:

•Extensive floodplain isolation by the abandoned Milwaukee rail line on the north bank.

•Blocking of side channels

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C12 include: •Side channel reactivation at RM 219 R.

•Floodplain reconnection behind abandoned railroad grade RM 220L

•Nutrient management at Animal Handling Facility at RM 222L •Russian olive removal

Reach C12

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

Flood History		Downstream	Upstream
Year Date Flow on Date Return Interval	Gage No	Gage 6309000	Gage 6214500
1974 Jun 22 75,400 10-25 yr	Location	Miles City	Billings
1997 Jun 15 83,300 10-25 yr Period	d of Record	1929-2015	1929-2015
1943 Jun 26 83,700 10-25 yr	To (mileo)	20.9	120 /
2011 May 24 85,400 10-25 yr	Distance To (miles)		139.4
1944 Jun 19 96,300 50-100 yr			
1978 May 22 102,000 50-100 yr			

Discharge

Jischarge	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	7Q10 Summer	95% Sum. Duration
Unregulated		61,900	77,800	88,100	111,000	120,000	143,000	4,830	6,310
Regulated		47,300	61,700	70,900	90,600	98,900	118,000	3,060	3,380
% Change		-23.59%	-20.69%	-19.52%	-18.38%	-17.58%	-17.48%	-36.65%	-46.43%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

			er mensen per	
Season		5%	50%	95%
Spring	Unregulated	60,500	22,600	6,070
	Regulated	46,900	13,700	4,410
	% Change	-22%	-39%	-27%
Summer	Unregulated	42,700	13,400	6,310
	Regulated	32,500	8,320	3,380
	% Change	-24%	-38%	-46%
Fall	Unregulated	9,130	5,540	2,300
	Regulated	10,500	6,880	3,630
	% Change	15%	24%	58%
Winter	Unregulated	11,700	4,940	2,010
	Regulated	12,300	6,020	3,260
	% Change	5%	22%	62%
Annual	Unregulated	45,400	7,910	2,790
	Regulated	34,100	7,380	3,620
	% Change	-25%	-7%	30%

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	7/12/96 - 9/11/96 - 8/7/96	B/W		6295000	27600
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	07/29/2005	color	1-meter pixels	6309000	7070
2005	NAIP	07/08/2005	color	1-meter pixels	6309000	18800
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	8/11/2009	Color	1-meter pixels	6309000	12900
2009	NAIP	7/17/2009	Color	1-meter pixels	6309000	23300
2009	NAIP	7/15/2009	Color	1-meter pixels	6309000	26400
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/15/2011	Color	1-meter pixels	6309000	58000
2013	NAIP	07/21/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	2,677	2.5%	4,510	4.2%	1,833
	Flow Deflectors	0	0.0%	192	0.2%	192
	Car Bodies	46	0.0%	46	0.0%	0
	Feature Type Totals	2,723	2.6%	4,748	4.5%	2,025
Floodplain	Control					
	Transportation Encroachment	21,018	19.8%	21,018	19.8%	0
	Feature Type Totals	21,018	19.8%	21,018	19.8%	0
	Reach Totals	23,740	22.3%	25,765	24.2%	2,025

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Car Bodies		0	0	0	0	0	0	46	0
Rock RipRap		666	843	0	0	0	305	0	0
	Totals	666	843	0	0	0	305	46	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	52,003	40,222	1.77	1950 to 1976:	-5.93%
1976	52,642	35,178	1.67	1976 to 1995:	-5.98%
1995	52,942	30,099	1.57	1995 to 2001:	11.74%
2001	53,165	40,014	1.75	1950 to 2001:	-1.17%
Change 1950 - 2001	1,162	-209	-0.02		
Lenath of Side		Pre-1950s (ft)	9,079		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	100-Year 5-Ye blated % of Isolated		/ear
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)	148	3.5%		
Agriculture (generally relates to field boundaries)	0	0.0%		
Agriculture (isloated by canal or large ditch)	0	0.0%		
Levee/Riprap (protecting agricultural lands)	0	0.0%		
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%		
Railroad	235	5.6%		
Abandoned Railroad	823	19.4%		
Transportation (Interstate and other roads)	32	0.7%		
Total Not Isolated (Ac)	2998		2555	
Total Floodplain Area (Ac)	4235		3894	
Total Isolated (Ac)	1237	29.2%	1340	46.8%

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	143	0	197	340

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 562	Erosion Buffer (ft) 1,124	To CM Acre 3,7	tal AZ eage 03	Restricted CMZ Acreage 184	% Restricte Migration Area 5%	ed Tota AHZ Acreac 78	l Res ge Ac	tricted AHZ reage 0	% Restricted Avulsion Area 0%
2011 Res	stricted Migr	ation A	rea Sun	nmai	y	Note that the	se data reflec	ct the obser	ved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	2011 aerial pl Counties, CO	notography (E for the res	NAIP for Pa t of the rive	ark and S r).	Sweet Grass
Road/Railro	ad Prism									
	Railroad		35	0	.9%					
	Public Road		1	0	.0%					
RipRap										
	Railroad		0	0	.0%					
	Non-Irrigated		58	1	.5%					
	Irrigated		41	1.	.1%					
Dike/Levee										
	Railroad		81	2	.1%					
		Totals	216	5	.7%					
Land Us	es within the	e CMZ (A	Acres)	F Irri 8	Flood igation 345.2	Sprinkler Irrigation 0.0	Pivot Irrigation 198.7	Urban/ ExUrbar 59.4	ד pc ו	Frans- ortation 36.7

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	Acres			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	76	116	132	128	0.9%	1.3%	1.5%	1.5%
	Totals		116	132	128	0.9%	1.3%	1.5%	1.5%
Agricultural Lan	d								
	Non-Irrigated	3,205	3,502	3,791	3,756	36.5%	39.9%	43.2%	42.8%
	Irrigated	3,834	3,488	3,306	3,296	43.7%	39.8%	37.7%	37.6%
	Totals	7,038	6,991	7,097	7,052	80.2%	79.7%	80.9%	80.4%
Channel									
	Channel	1,435	1,424	1,347	1,395	16.4%	16.2%	15.4%	15.9%
	Totals	1,435	1,424	1,347	1,395	16.4%	16.2%	15.4%	15.9%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	2	2	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	2	2	0.0%	0.0%	0.0%	0.0%
Transportation									
	Public Road	68	68	68	68	0.8%	0.8%	0.8%	0.8%
	Interstate	0	20	20	20	0.0%	0.2%	0.2%	0.2%
	Railroad	95	95	49	49	1.1%	1.1%	0.6%	0.6%
	Totals	163	183	137	137	1.9%	2.1%	1.6%	1.6%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	40	42	42	42	0.5%	0.5%	0.5%	0.5%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	18	13	13	13	0.2%	0.1%	0.1%	0.1%
	Urban Industrial	2	4	4	4	0.0%	0.1%	0.1%	0.1%
	Totals	61	59	59	59	0.7%	0.7%	0.7%	0.7%

Land Use Tir	neline - Tiers 3 and	4								Char	ige Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	429	0.0%	0.0%	0.0%	6.1%	0.0%	0.0%	6.1%	6.1%
	Flood	3,834	3,488	3,306	2,867	54.5%	49.9%	46.6%	40.6%	-4.6%	-3.3%	-5.9%	-13.8%
	Totals	3,834	3,488	3,306	3,296	54.5%	49.9%	46.6%	46.7%	-4.6%	-3.3%	0.2%	-7.7%

Reach CI2

Non-l	rrigated
	J

Multi-Use	2,880	3,188	3,553	3,491	40.9%	45.6%	50.1%	49.5%	4.7%	4.5%	-0.6%	8.6%
Hay/Pasture	325	314	237	265	4.6%	4.5%	3.3%	3.8%	-0.1%	-1.1%	0.4%	-0.9%
Totals	3,205	3,502	3,791	3,756	45.5%	50.1%	53.4%	53.3%	4.6%	3.3%	-0.2%	7.7%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (Acres)			Clos	ed Timber (A	(cres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min Max Average Sum	0.2 43.5 8.5 264.3	0.7 82.2 16.7 300.0	0.9 150.0 19.7 374.8	0.3 113.2 28.5 597.9	2.9 101.4 30.8 646.9	2.4 109.1 30.9 617.8	2.4 75.9 24.2 266.7	1.0 89.3 19.9 258.1	0.7 126.7 24.7 346.0
Riparian Conver from ch and 20	Turnove rsion of ripar nannel to rip 01 data set.	er ian areas to e arian betwee	channel, or n the 1950's	R	Riparian t Channel t iparian Encre	o Channel (a o Riparian (a oachment (a	icres) icres) i cres)	147.5 358.8 211.3	
Riparian	Recruit	nent	1950s Chai	nnel Mapped	as 2011 Ripa	arian (Ac)	368.8		
Creation of riparian areas 1950s Floodplair				lain Mapped	as 2011 Cha	nnel (Ac)	90.9		
Total Re					nt (1950S to 2	2011)(AC)	459.6		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	23.3	122.7	84.4	0.0	230.4
Acres/Valley Mile	2.9	15.3	10.6	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	205.60	2.85%	25.22	1.65	42.31	39.28

Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region	Region Reach	Region	Region Reach
✓ ✓ Bigmouth buffalo	✓ ✓ Flathead chub	Northern redbelly dace	Stonecat
✓ ✓ Black bullhead	Freshwater drum	Pallid sturgeon	Sturgeon chub
Black crappie	Goldeye	Pumpkinseed	Sucker species
✓ ✓ Blue sucker	Green sunfish	Rainbow trout	Sunfish species
✓ ✓ Bluegill	Lake chub	River carpsucker	V Walleye
Brook stickleback	Largemouth bass	Rock bass	Vestern silvery minnow
Brown trout	✓ ✓ Longnose dace	Sand shiner	White bass
✓ ✓ Burbot	✓ ✓ Longnose sucker	Sauger	V White crappie
Catfish species	Minnow species	Shorthead redhorse	✓ ✓ White sucker
✓ ✓ Channel catfish	Mottled sculpin	Shortnose gar	Yellow bullhead
Common carp	Mountain sucker	Shovelnose sturgeon	Yellow perch
Creek chub	✓ ✓ Mountain whitefish	Sicklefin chub	
Emerald shiner	✓ ✓ Northern pike	Smallmouth bass	
✓ ✓ Fathead minnow	🗸 🖌 Northern plains killifish	✓ ✓ Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat Scour Pool	Bankfull	Low Flow	% of Low Flow
Scoul Pool	405.9	270.U	20.8%
	03.0	55.5	4.0%
	30.4	40.1	3.0%
	400.0	20.8	1.5%
	108.6	76.3	5.7%
Secondary Channel (Seasonal)	145.6	109.7	8.1%
Deint Ber	231.4	190.9	14.2%
Politi Bar		94.8	7.0%
Side Bai		03.0	0.2%
	301.1	313.7	2.0%
	501.1	A7 Q	3.6%
Dry Ondrinoi		47.3	0.070

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

County	Rosebud
Classification	PCM/I: Partially confined meandering/islands
General Location	Hathaway
General Comments	Valley bottom crossover

Upstream River Mile214.8Downstream River Mile208.1Length6.70 mi (10.78 km)

Narrative Summary

Reach C13 is 6.7 miles long and extends from RM 215 to RM 208 in Rosebud County. The reach classified as Partially Confined Meandering with Islands (PCM/I), indicating some influence of the valley wall, a main meandering channel thread, and numerous meander cutoffs that have generated large islands. Within this reach the river crosses the valley bottom from the southern bluff line in the upper portion of the reach to the northern bluff line downstream. The length of river between bluff lines is about three miles. Reach C13 locally exhibits very rapid meander migration; at RM 211 for example, the river has migrated 960 feet to the northwest over the last 50 years. At this location the river is now within 65 feet of the abandoned Milwaukee rail line which forms a defacto flood control levee on the north side of the river.

As of 2011 there were about three miles of riprap and flow deflectors protecting 26 percent of the total bankline in Reach C13, including 13,400 feet of rock riprap, 750 feet of concrete riprap, and 4,600 feet of flow deflectors. Most of the rock riprap is protecting the rail line on the south bluff line and the abandoned rail line on the north bluff line. Another 1,350 feet of bankline is protected by old car bodies at RM 201R. All of the flow deflectors that were mapped at RM 212.3R were evidently destroyed. It is difficult to tell from the imagery alone whether all of these flow deflectors were flanked, however at RM 212.0, flow deflectors are sitting in the river about 60 feet off the bank.

Since 1950, a side channel that is about 4,600 feet long was blocked at RM 211.5R. This channel cuts through the core of a large meander, and appears to be naturally reactivating as the bendway translates down the river valley.

Similar to other reaches downstream of the Bighorn River confluence, the river channel has become smaller in Reach C13 since 1950. In 1950, the bankfull footprint was about 76 acres larger than it was in 2001, and riparian mapping shows about 120 acres of riparian encroachment into old channel areas. Floodplain turnover rates are also slightly lower; from 1950-1975 the average annual rate of floodplain turnover was 5.0 acres per year, and since 1975 it has been 4.1 acres per year.

Over 600 acres of the 100-year floodplain has become isolated from the river due to flow alterations, agricultural development, and the abandoned railroad grade. In total, 20 percent of the entire historic 100-year floodplain has become isolated. Isolation of the 5-year floodplain has been even more substantial; 921 acres or 45 percent of the 5-year floodplain has become isolated at that frequency event. Much of this isolated 5-year floodplain is on flood irrigated fields both north and south of the river.

One ice jam was reported in the reach as a break-up event that occurred on March 15, 2011. No damages were reported.

A total of 221 acres of land that would normally be in the river's natural Channel Migration Zone (CMZ) have become restricted by physical features, which represents about 11 percent of the total CMZ area.

Land uses in Reach C13 are predominantly agricultural, with some conversion from flood irrigation to pivot since 1950. As of 2011 there were about 330 acres under pivot irrigation in the reach. Irrigation development largely occurred prior to 1950, but additional development since then has included riparian clearing; between 1950 and 2011 about 133 acres of riparian area was cleared for irrigation, which is 11 percent of the total 1950s riparian area.

There are 216 acres of mapped Russian olive in the reach, which is notably concentrated in abandoned side channels. Reach C13 also has fairly extensive mapped wetlands; there are over 32 mapped wetland acres per valley mile in the reach, most of which is emergent marsh and wet meadows in floodplain swales.

Reach C13 was sampled as part of the fisheries study. A total of 27 species were sampled in the reach, including Sauger and Blue Sucker, both of which have been identified as Species of Concern by the Montana Natural Heritage Program.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 100year flood has dropped by 18 percent and the 2-year flood, which strongly influences overall channel form, has dropped by 24 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,840 cfs to 3,070 cfs with human development, a reduction of 37 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,320 cfs under unregulated conditions to 3,380 cfs under regulated conditions, a reduction of 47 percent.

Fall and winter base flows have increased in Reach C13 by about 60 percent.

CEA-Related observations in Reach C13 include:

•Floodplain isolation by the abandoned Milwaukee rail line on the north bank.

Blocking of side channels

•Post-1950s riparian clearing for irrigation development

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C13 include:

•Removal of flanked barb at RM 212. •Side channel reactivation at RM 211.6 R.

•CMZ Management due to extent of CMZ restriction (11 percent)

PHYSICAL FEATURES MAP (2011)

94 0 Floodplain Dike/Levee Flow Deflector Rock RipRap Concrete RipRap Flow Deflectors OSEBUD Physical Features Other nterstate Highway **US or State Route** Secondary Road 7z Reach Breaks **River Miles** Counties Legend

Reach CI3

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

FI	ood His	story				Downstream	Upstream
	Year	Date	Flow on Date	Return Interval	Gage No	Gage 6309000	Gage 6214500
	1974	Jun 22	75,400	10-25 yr	Location	Miles City	Billings
	1997	Jun 15	83,300	10-25 yr	Period of Record	1929-2015	1929-2015
	1943	Jun 26 83,700		10-25 yr	Distance To (miles)	24 1	149 6
	2011	May 24	85,400	10-25 yr	Distance To (inites)	27.1	140.0
	1944	Jun 19	96,300	50-100 yr			
	1978	May 22	102,000	50-100 yr			

Discharge

Jischarge	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	7Q10 Summer	95% Sum. Duration
Unregulated		61,900	77,800	88,100	110,000	120,000	142,000	4,840	6,320
Regulated		47,300	61,700	70,900	90,600	98,800	118,000	3,070	3,380
% Change		-23.59%	-20.69%	-19.52%	-17.64%	-17.67%	-16.90%	-36.57%	-46.52%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Season		5%	50%	95%
Spring	Unregulated	60,600	22,700	6,070
	Regulated	46,900	13,700	4,420
	% Change	-23%	-40%	-27%
Summer	Unregulated	42,700	13,400	6,320
	Regulated	32,500	8,320	3,380
	% Change	-24%	-38%	-47%
Fall	Unregulated	9,130	5,540	2,300
	Regulated	10,500	6,890	3,640
	% Change	15%	24%	58%
Winter	Unregulated	11,700	4,940	2,020
	Regulated	12,300	6,030	3,260
	% Change	5%	22%	61%
Annual	Unregulated	45,400	7,920	2,790
	Regulated	34,100	7,380	3,630
	% Change	-25%	-7%	30%

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	8/7/96 - 7/12/96	B/W		6295000	27600
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	07/08/2005	color	1-meter pixels	6309000	18800
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	7/17/2009	Color	1-meter pixels	6309000	23300
2009	NAIP	7/15/2009	Color	1-meter pixels	6309000	26400
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/15/2011	Color	1-meter pixels	6309000	58000
2013	NAIP	07/20/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	bilization					
	Rock RipRap	13,404	18.8%	13,404	18.8%	0
	Flow Deflectors	1,753	2.5%	1,327	1.9%	-426
	Concrete RipRap	744	1.0%	744	1.0%	0
	Car Bodies	1,354	1.9%	1,354	1.9%	0
	Between Flow Deflectors	6,783	9.5%	3,240	4.6%	-3,543
	Feature Type Totals	24,038	33.8%	20,069	28.2%	-3,969
	Reach Totals	24,038	33.8%	20,069	28.2%	-3,969

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type	Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Car Bodies	1,355	0	0	0	0	0	0	0
Concrete RipRap	745	0	0	0	0	0	0	0
Flow Deflectors/Between FDs	7,111	0	0	0	0	1,312	0	0
Rock RipRap	0	0	0	0	0	8,226	0	0
Totals	9,210	0	0	0	0	9,538	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

3/15/2011

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	35,504	14,748	1.42	1950 to 1976:	19.54%
1976	35,672	24,681	1.69	1976 to 1995:	0.71%
1995	35,586	25,047	1.70	1995 to 2001:	-4.39%
2001	35,591	22,387	1.63	1950 to 2001:	15.09%
Change 1950 - 2001	88	7,639	0.21		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	4,575		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-Year			
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain		
Non-Structural (hydrology, geomorphic, etc.)	142	4.5%				
Agriculture (generally relates to field boundaries)	378	11.9%				
Agriculture (isloated by canal or large ditch)	0	0.0%				
Levee/Riprap (protecting agricultural lands)	0	0.0%				
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%				
Railroad	0	0.0%				
Abandoned Railroad	120	3.8%				
Transportation (Interstate and other roads)	0	0.0%				
Total Not Isolated (Ac)	2550		1821			
Total Floodplain Area (Ac)	3191		2742			
Total Isolated (Ac)	641	20.1%	921	45.3%		

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	185	0	0	185

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tot CN Acre	tal IZ age	Restricted CMZ Acreage	% Restricte Migration Area	ed Tota AHZ Acrea	al Re Z Ige A	stricted AHZ creage	% Restricted Avulsion Area
	396	793	1,94	41	222	11%	115	5	0	0%
2011 Res	stricted Migr	ation A	rea Sun	nmai	у	Note that the	se data refle	ct the obse	erved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	Counties, CC	E for the res	st of the riv	er).	Sweet Grass
RipRap/Flo	w Deflectors									
	Irrigated		67	3	.2%					
RipRap										
	Non-Irrigated		0	0	.0%					
	Irrigated		20	1.	.0%					
Flow Deflect	tors									
	Railroad		59	2	.9%					
	Irrigated		76	3	.7%					
		Totals	222	10	.8%					
Land Us	es within the	e CMZ (/	Acres)	F Irri	igation	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban ExUrba 0.0	ן n pc	Frans- ortation 7.9

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3		% of Reach Area						
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	60	141	144	133	0.8%	1.8%	1.8%	1.7%
	Totals	60	141	144	133	0.8%	1.8%	1.8%	1.7%
Agricultural Lan	d								
	Non-Irrigated	3,328	3,486	3,865	3,881	42.0%	43.9%	48.7%	48.9%
	Irrigated	3,571	3,114	2,750	2,739	45.0%	39.3%	34.7%	34.5%
	Totals	6,900	6,600	6,615	6,620	87.0%	83.2%	83.4%	83.5%
Channel									
	Channel	868	892	907	913	10.9%	11.2%	11.4%	11.5%
	Totals	868	892	907	913	10.9%	11.2%	11.4%	11.5%
ExUrban									
	ExUrban Other	0	24	24	24	0.0%	0.3%	0.3%	0.3%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	24	24	24	0.0%	0.3%	0.3%	0.3%
Transportation									
	Public Road	39	48	48	48	0.5%	0.6%	0.6%	0.6%
	Interstate	0	160	160	160	0.0%	2.0%	2.0%	2.0%
	Railroad	65	67	34	34	0.8%	0.8%	0.4%	0.4%
	Totals	105	275	242	242	1.3%	3.5%	3.1%	3.1%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 and	4								Char	ige Betv	veen Y	ears
			Acr	es		%	of Rea	ch Area	1	(% 0	f Agricul	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	328	328	0.0%	0.0%	5.0%	4.9%	0.0%	5.0%	0.0%	4.9%
	Flood	3,571	3,114	2,423	2,412	51.8%	47.2%	36.6%	36.4%	-4.6%	-10.6%	-0.2%	-15.3%
	Totals	3,571	3,114	2,750	2,739	51.8%	47.2%	41.6%	41.4%	-4.6%	-5.6%	-0.2%	-10.4%

Reach CI3

Non-l	rrigated
	nigatoa

Multi-Use	3,183	3,413	3,319	3,700	46.1%	51.7%	50.2%	55.9%	5.6%	-1.5%	5.7%	9.7%
Hay/Pasture	145	73	546	181	2.1%	1.1%	8.3%	2.7%	-1.0%	7.2%	-5.5%	0.6%
Totals	3,328	3,486	3,865	3,881	48.2%	52.8%	58.4%	58.6%	4.6%	5.6%	0.2%	10.4%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (Acres)			Clos	Closed Timber (Acres)			Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.2	0.7	1.3	0.3	1.0	1.0	6.1	0.1	3.0
Max	87.6	77.2	32.2	376.6	197.6	155.3	90.7	74.5	98.6
Average	12.8	13.6	10.3	60.4	34.6	34.0	30.9	19.1	27.8
Sum	295.3	326.1	153.8	844.9	760.8	781.6	154.7	152.5	194.5
Riparian Turnover							cres)	121.3	
Conversion of riparian areas to channel, or from channel to riparian between the 1950's					Channel t	cres)	238.3		
and 20	01 data set.			R	iparian Encre	oachment (a	cres)	117.1	
Riparian	Recruit	nent	1950s Channel Mapped as 2011 Riparian (Ac) 243.1						
Creation of	f riparian are	as	1950s Floodp	lain Mapped	as 2011 Cha	nnel (Ac)	77.9		
between 1	1950s and 2001. Total Recruitment (1950s			nt (1950s to 2	2011)(Ac)	321.0			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	21.1	134.3	54.1	0.0	209.6
Acres/Valley Mile	3.5	22.5	9.1	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	215.78	3.79%	10.28	9.98	29.74	7.23

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region	Region	Region	Region Reach
Bigmouth buffalo	✓ ✓ Flathead chub	Northern redbelly dace	Stonecat
Black bullhead	Freshwater drum	Pallid sturgeon	Sturgeon chub
Black crappie	Goldeye	Pumpkinseed	Sucker species
✓ ✓ Blue sucker	Green sunfish	Rainbow trout	Sunfish species
Bluegill	Lake chub	River carpsucker	Walleye
Brook stickleback	Largemouth bass	Rock bass	Vestern silvery minnow
Brown trout	✓ ✓ Longnose dace	Sand shiner	White bass
✓ ✓ Burbot	✓ ✓ Longnose sucker	✓ ✓ Sauger	White crappie
Catfish species	Minnow species	Shorthead redhorse	✓ ✓ White sucker
✓ ✓ Channel catfish	Mottled sculpin	🗌 🔄 Shortnose gar	Yellow bullhead
✓ ✓ Common carp	✓ ✓ Mountain sucker	Shovelnose sturgeon	Yellow perch
Creek chub	Mountain whitefish	Sicklefin chub	
Emerald shiner	Northern pike	Smallmouth bass	
Fathead minnow	V Northern plains killifish	✓ ✓ Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat Scour Pool	Bankfull 88.5	Low Flow 66.4	% of Low Flow 7.3%
Rip Rap Bottom	200.9	152.6	16.8%
Rip Rap Margin	124.6	93.0	10.2%
Secondary Channel		8.8	1.0%
Secondary Channel (Seasonal)	143.5	115.7	12.8%
Channel Crossover	149.9	91.9	10.1%
Point Bar		41.8	4.6%
Side Bar		33.6	3.7%
Mid-channel Bar		16.0	1.8%
Island	199.8	199.8	22.0%
Dry Channel		87.5	9.6%

Species of Concern

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

County	Rosebud
Classification	PCM/I: Partially confined meandering/islands
General Location	Sheffield
General Comments	Series of meander bends

Upstream River Mile	208.1
Downstream River Mile	195.9
Length	12.20 mi (19.63 km)

Narrative Summary

Reach C14 is 12.2 miles long and is located near Sheffield, which is about 15 miles upstream of Miles City. The reach straddles the Rosebud/Custer County Line. The reach is characterized by a dominant main thread that shows a distinct meandering pattern, with several islands persisting where meander bends have historically cut off. The river intermittently flows along the south valley wall. As a result it is classified as Partially Confined Meandering with Islands (PCM/I). In this section of river the valley bottom is consistently about 1.8 miles wide, and bound by Tertiary-age Fort Union Formation. The active meanderbelt of the Yellowstone River is about 3,000 feet wide.

The large meander features in Reach C14 have experienced significant migration since 1950 and also in recent years; one site at RM 204.5 migrated 977 feet southward between 1950 and 2001, and then over the next ten years continued to migrate another 400 feet so that it is now at the toe of the active rail line. At RM 200.5, the river has migrated 700 feet northward since 2001; eroding out irrigated lands and threatening structures.

As of 2011 there were about four miles of armor protecting 17 percent of the total bankline in Reach C14, including 15,087 feet of rock riprap and 6,300 feet of flow deflectors. Most of the rock riprap is protecting the rail line as it flows along the south bluff of Fort Union Formation, whereas flow deflectors are more commonly used to protect agricultural land. Between 2001 and 2011, about 3,000 feet of flow deflectors were evidently destroyed. Barbs can be seen in the river at RM 205.3R; the bank behind has since been partially armored with rock riprap. Another barb was flanked at RM 204.7L, and the river has migrated over 200 feet behind that structure towards the rail line. Another series of barbs were flanked at RM 203.6L and have since been replaced by rock riprap. Those flanked rock structures are visible on the 2011 air photos almost 200 feet out into the channel. At RM 200.8L, new riprap was built after older armor scoured out in 2011, which was followed by hundreds of feet of northward bank migration during the 2011 flood. Some of the new riprap appears to be trenched behind the bank. About 1,300 feet of rock riprap mapped in 2001 on the left bank at RM 196.9 has been flanked, and is now up to 70 feet out in the river.

Prior to 1950, about 3 miles of side channels were blocked in Reach C14. Chute channels formed through meander tabs have been blocked by small dikes such as at RM 198. Several historic anabranching channels appear to have been blocked prior to 1950 such as at RM 207.8. These areas provide excellent restoration/mitigation opportunities for side channel re-activation.

Similar to other reaches downstream of the Bighorn River confluence, the river channel has become smaller in Reach C14 since 1950. In 1950, the bankfull footprint was about 38 acres larger than it was in 2001, and riparian mapping shows about 208 acres of riparian encroachment into old channel areas. Floodplain turnover rates are also slightly lower; from 1950-1975 the average annual rate of floodplain turnover was 15.6 acres per year, and since 1975 it has been 12.5 acres per year.

Over two thousand acres of the 100-year floodplain has become isolated from the river due to flow alterations, agricultural development, and the abandoned railroad grade. In total, 40 percent of the entire historic 100-year floodplain has become isolated. Most of the isolation is associated with agricultural land development (29 percent of the historic floodplain), with another 10 percent of the isolation due to the abandoned rail grade. Isolation of the 5-year floodplain has been even more substantial; 2,321 acres or 59 percent of the 5-year floodplain has become isolated at that frequency event. Much of this isolated 5-year floodplain is on flood irrigated fields north of the river.

Bank armor on the north side of the river commonly narrows the natural meanderbelt of the river, which has resulted in large extents of the CMZ being restricted to migration. About 740 acres which represents 16 percent of the total CMZ has become restricted by physical features.

Four ice jams have been reported in the reach, including February of 1996, 1997, and 1998, and March of 2003. All of the ice jams in the 1990s were associated with lowland flooding.

One dump site was mapped on the left bank at RM 196.3.

Reach C14 has seen extensive riparian clearing since 1950s. Typically, riparian clearing for agriculture occurred prior to 1950 along the Yellowstone River. In this reach, however, 760 acres of riparian area were cleared since 1950, which represents 30 percent of the total 1950s riparian corridor. In several cases, this includes riparian clearing on large meander tabs. With this clearing, the reach has seen a substantial loss of forest area considered at low risk of cowbird parasitism. In 1950, the reach had 91.8 acres of such forest per valley mile and by 2001 that forest extent had dropped to 51.4 acres per valley mile.

Reach C14 has fairly extensive mapped wetland area; there are over 45 acres of mapped wetlands per valley mile, most of which is emergent marsh and wet meadow. A total of 22 acres of Russian olive were mapped in the reach, which reflects an abrupt reduction in Russian olive extent relative to upstream, where Reaches C10 through C13 have on the order of 200 acres of RO over similar valley distances.

Reach C14 was sampled as part of the fisheries study. A total of 36 species were sampled in the reach, including Sauger which has
been identified as Species of Concern by the Montana Natural Heritage Program.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 100year flood has dropped by 18 percent and the 2-year flood, which strongly influences overall channel form, has dropped by 24 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,850 cfs to 3,070 cfs with human development, a reduction of 37 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,330 cfs under unregulated conditions to 3,390 cfs under regulated conditions, a reduction of 47 percent.

Fall and winter base flows have increased in Reach C14 by about 60 percent.

CEA-Related observations in Reach C14 include: •Passive side channel abandonment due to flow alterations •Flanking of barb structures on migrating meander bends •Extensive floodplain isolation by agricultural dikes and abandoned railroad grade •Pre-1950s blocking of side channels by agricultural dikes •Armoring of bluff pool habitat against active railroad •Floodplain isolation by the abandoned Milwaukee rail line on the north bank •Post-1950s riparian clearing for irrigation development

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C14 include: •Removal of flanked barb at RM 205.3

•Side channel reactivation at RM 208L

•CMZ Management due to extent of CMZ restriction (11 percent)

Dump removal on left bank at RM 196.3L

•Russian olive removal

Reach CI4

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

FI	ood His	story				Downstream	Upstream
	Year	Date	Flow on Date	Return Interval	Gage No	Gage 6309000	Gage 6214500
	1974	Jun 22	75,400	10-25 yr	Location	Miles City	Billings
	1997	Jun 15	83,300	10-25 yr	Period of Record	1929-2015	1929-2015
	1943	Jun 26	83,700	10-25 yr	Distance To (miles)	11 0	156 3
	2011	May 24	85,400	10-25 yr	Distance ro (innes)	11.5	100.0
	1944	Jun 19	96,300	50-100 yr			
	1978	May 22	102,000	50-100 yr			

Discharge

Jischarge	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	7Q10 Summer	95% Sum. Duration
Unregulated		61,900	77,800	88,100	110,000	120,000	142,000	4,850	6,330
Regulated		47,300	61,700	70,900	90,500	98,600	118,000	3,070	3,390
% Change		-23.59%	-20.69%	-19.52%	-17.73%	-17.83%	-16.90%	-36.70%	-46.45%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

			er mensen per	
Season		5%	50%	95%
Spring	Unregulated	60,600	22,700	6,090
	Regulated	46,900	13,700	4,430
	% Change	-23%	-40%	-27%
Summer	Unregulated	42,800	13,500	6,330
	Regulated	32,500	8,330	3,390
	% Change	-24%	-38%	-46%
Fall	Unregulated	9,140	5,550	2,300
	Regulated	10,500	6,890	3,640
	% Change	15%	24%	58%
Winter	Unregulated	11,700	4,950	2,020
	Regulated	12,300	6,030	3,260
	% Change	5%	22%	61%
Annual	Unregulated	45,500	7,940	2,790
	Regulated	34,100	7,390	3,630
	% Change	-25%	-7%	30%

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	7/7/96 - 8/7/96	B/W		6295000	39800
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	07/08/2005	color	1-meter pixels	6309000	18800
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	7/17/2009	Color	1-meter pixels	6309000	23300
2009	NAIP	7/15/2009	Color	1-meter pixels	6309000	26400
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/16/2011	Color	1-meter pixels	6309000	57900
2011	NAIP	7/15/2011	Color	1-meter pixels	6309000	58000
2013	NAIP	07/21/2013	color	1-meter pixels	6309000	
2013	NAIP	07/20/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	13,314	10.4%	15,087	11.7%	1,773
	Flow Deflectors	1,821	1.4%	1,638	1.3%	-184
	Between Flow Deflectors	7,431	5.8%	4,657	3.6%	-2,774
	Feature Type Totals	22,567	17.6%	21,382	16.6%	-1,185
Floodplain	Control			'		
	Transportation Encroachment	4,433	3.5%	4,433	3.5%	0
	Floodplain Dike/Levee	14,808	11.5%	14,882	11.6%	73
	Feature Type Totals	19,241	15.0%	19,315	15.0%	73
	Reach Totals	41,808	32.5%	40,697	31.7%	-1,111

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type	Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FDs	4,257	2,286	0	0	0	1,761	0	0
Rock RipRap	4,562	0	0	0	0	11,110	0	0
Tot	als 8,820	2,286	0	0	0	12,871	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

2/7/1996

2/20/1997

2/3/1998

3/15/2003

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	66,789	44,239	1.66	1950 to 1976:	16.56%
1976	61,868	58,008	1.94	1976 to 1995:	-7.30%
1995	64,341	51,220	1.80	1995 to 2001:	-22.77%
2001	64,232	24,859	1.39	1950 to 2001:	-16.56%
Change 1950 - 2001	-2,557	-19,380	-0.28		
Length of Side		Pre-1950s (ft)	14,986		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year			
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain		
Non-Structural (hydrology, geomorphic, etc.)	27	0.5%				
Agriculture (generally relates to field boundaries)	0	0.0%				
Agriculture (isloated by canal or large ditch)	0	0.0%				
Levee/Riprap (protecting agricultural lands)	1474	29.0%				
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%				
Railroad	52	1.0%				
Abandoned Railroad	495	9.7%				
Transportation (Interstate and other roads)	0	0.0%				
Total Not Isolated (Ac)	3039		2922			
Total Floodplain Area (Ac)	5088		5243			
Total Isolated (Ac)	2049	40.3%	2321	59.1%		

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	269	0	0	269

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal //Z eage	Restricted CMZ Acreage	% Restric Migratio Area	ted To on Al Acre	tal IZ eage	Restricted AHZ Acreage	% Restricted Avulsion Area
	575	1,150	4,4	32	737	17%	30)6	0	0%
2011 Res	stricted Mig	ration A	rea Sun	nmai	ry	Note that the	ese data ref	lect the	observed con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc	cent of MZ	Counties, C	OE for the r	est of the	e river).	Sweet Grass
Road/Railro	oad Prism									
	Railroad		63	1	.3%					
RipRap/Flo	w Deflectors									
	Irrigated		250	5	.3%					
RipRap										
	Railroad		41	0	.9%					
	Non-Irrigated	ł	45	1	.0%					
Flow Deflect	ctors									
	Other Infrast	ructure	17	0	.4%					
	Non-Irrigated	ł	77	1	.6%					
Dike/Levee										
	Irrigated		247	5	.2%					
		Totals	739	15	5.6%					
Land Us	es within th	e CMZ (A	Acres)	F Irr 1	Flood igation 015.0	Sprinkler Irrigation 0.0	Pivot Irrigation 112.6	Ur I Exl	ban/ 1 Jrban po 3.9	Frans- ortation 23.9

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		% of Reach Area						
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	77	141	109	106	0.7%	1.3%	1.0%	0.9%
	Totals	77	141	109	106	0.7%	1.3%	1.0%	0.9%
Agricultural Lan	d								
	Non-Irrigated	6,908	5,532	5,146	4,958	61.7%	49.4%	45.9%	44.3%
	Irrigated	2,517	3,507	3,982	4,058	22.5%	31.3%	35.5%	36.2%
	Totals	9,425	9,040	9,128	9,017	84.1%	80.7%	81.5%	80.5%
Channel									
	Channel	1,569	1,806	1,786	1,901	14.0%	16.1%	15.9%	17.0%
	Totals	1,569	1,806	1,786	1,901	14.0%	16.1%	15.9%	17.0%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	6	6	0.0%	0.0%	0.1%	0.1%
	Totals	0	0	6	6	0.0%	0.0%	0.1%	0.1%
Transportation									
	Public Road	35	47	47	47	0.3%	0.4%	0.4%	0.4%
	Interstate	0	66	66	66	0.0%	0.6%	0.6%	0.6%
	Railroad	95	101	58	58	0.9%	0.9%	0.5%	0.5%
	Totals	131	214	171	171	1.2%	1.9%	1.5%	1.5%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	meline - Tiers 3 and	4								Change Between Years			
						% of Reach Area				(% of Agricultural Land)			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	154	345	660	0.0%	1.7%	3.8%	7.3%	1.7%	2.1%	3.5%	7.3%
	Flood	2,517	3,353	3,637	3,398	26.7%	37.1%	39.8%	37.7%	10.4%	2.7%	-2.2%	11.0%
	Totals	2,517	3,507	3,982	4,058	26.7%	38.8%	43.6%	45.0%	12.1%	4.8%	1.4%	18.3%

Reach CI4

Non-	Irrigated

Multi-Use	6,439	5,123	4,666	4,531	68.3%	56.7%	51.1%	50.2%	-11.7%	-5.6%	-0.9%	-18.1%
Hay/Pasture	469	410	481	428	5.0%	4.5%	5.3%	4.7%	-0.4%	0.7%	-0.5%	-0.2%
Totals	6,908	5,532	5,146	4,958	73.3%	61.2%	56.4%	55.0%	-12.1%	-4.8%	-1.4%	-18.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (A			5)	Clos	ed Timber (A	Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.5	0.5	1.6	0.3	1.1	1.9	2.5	2.8	5.3
Max	87.1	38.7	28.2	471.6	149.2	189.5	82.1	98.0	63.9
Average	17.9	7.4	9.5	58.3	34.3	37.1	29.0	24.0	22.7
Sum	554.6	376.6	218.7	1,632.8	1,133.0	1,112.4	464.0	359.6	317.1
Riparian	Turnove	er Sinn onnon to s			Riparian t	to Channel (a	cres)	412.8	
from cl	nannel to rip	arian betwee	n the 1950's		Channel t	o Riparian (a	cres)	620.5	
and 20	01 data set.			R	iparian Encre	oachment (a	cres)	207.7	
Riparian	Recruit	nent	1950s Cha	innel Mapped	as 2011 Ripa	arian (Ac)	642.4		
Creation o	f riparian are	as	1950s Flood	plain Mapped	as 2011 Cha	innel (Ac)	130.2		
between 1950s and 2001.			Total Recruitment (1950s to 2011)(Ac) 772.5						

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	48.6	292.7	121.6	0.0	462.9
Acres/Valley Mile	5.0	30.0	12.5	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	21.65	0.24%	0.57	0.94	3.05	0.36

Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region	Region	Region Reach	Region Reach
V Bigmouth buffa	Io 🔽 🖌 Flathead chub	Northern redbelly	dace 🖌 🖌 Stonecat
Black bullhead	✓ ✓ Freshwater drum	Pallid sturgeon	Sturgeon chub
Black crappie	Goldeye	Pumpkinseed	Sucker species
Blue sucker	Green sunfish	Rainbow trout	Sunfish species
✓ ✓ Bluegill	Lake chub	River carpsucker	Walleye
Brook stickleba	ck 🗌 🗹 Largemouth bass	Rock bass	🖌 🖌 Western silvery minnow
Brown trout	✓ ✓ Longnose dace	Sand shiner	White bass
V Burbot	🖌 🖌 Longnose sucker	Sauger	Vhite crappie
Catfish species	Minnow species	Shorthead redhor	se 🖌 🖌 White sucker
✓ ✓ Channel catfish	Mottled sculpin	🗌 📄 Shortnose gar	Yellow bullhead
Common carp	✓ ✓ Mountain sucker	Shovelnose sturg	eon Yellow perch
Creek chub	🗌 🖌 Mountain whitefish	Sicklefin chub	
Emerald shiner	✓ ✓ Northern pike	🖌 🖌 Smallmouth bass	
Fathead minnov	w 🔽 🔽 Northern plains kill	ifish 🛛 🖌 🖌 Smallmouth buffa	llo

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat Bankfull Low Flow % of Low Flow Scour Pool 281.9 12.1% 215.6 **Rip Rap Bottom** 278.9 168.1 9.4% 83.7 60.1 3.4% Rip Rap Margin 67.4 95.2 Secondary Channel 5.3% 8.0% Secondary Channel (Seasonal) 182.6 143.0 **Channel Crossover** 384.3 216.9 12.1% Point Bar 146.2 8.2% Side Bar 68.1 3.8% Mid-channel Bar 75.6 4.2% Island 507.2 507.2 28.4% 90.0 5.0% Dry Channel

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

County	Custer
Classification	PCS: Partially confined straight
General Location	Horton Siding
General Comments	Very low riparian vegetation

Upstream River Mile	195.9
Downstream River Mile	192.3
Length	3.60 mi (5.79 km)

Narrative Summary

Reach C15 is located in Custer County at Horton Siding, about seven miles upstream of Miles City. It is 3.6 miles long and classified as a Partially Confined Straight (PCS) reach type, as the river has low sinuosity and flows along the south valley wall.

As of 2011 there were about 7,600 feet of armor protecting 19 percent of the total bankline in Reach C15, the vast majority of which is rock riprap protecting the rail line as it flows along the south bluff of Fort Union Formation. There are also minor amounts of flow deflectors (80 feet) and car bodies (150 feet) in the reach.

About 17 percent of the historic 100-year floodplain has become isolated. Isolation of the 5-year floodplain has been even more substantial; 298 acres or 61 percent of the 5-year floodplain has become isolated at that frequency event. Floodplain isolation appears to be mostly due to flow alterations, although there are 35 acres if isolated 100-year floodplain behind the abandoned Milwaukee rail line embankment.

Reach C15 has lost approximately 3,000 feet of side channel length since 1950; although there is no indication that side channels were intentionally blocked.

There has been about 1,200 acres of pivot irrigation development in Reach C15 since 1950, and most of that expansion has occurred since 2001. Pivot irrigation is more extensive than flood irrigation in this area, which is somewhat unusual in the Yellowstone River valley. About 10 percent (115 acres) of the land under pivot irrigation is within the Channel Migration Zone (CMZ) of the river, making it especially prone to threats of river erosion.

Reach C15 has seen relatively extensive riparian clearing since 1950s. Typically, riparian clearing for agriculture occurred prior to 1950 along the Yellowstone River. In this reach, however, 48 acres of riparian area were cleared since 1950, which represents 20 percent of the total 1950s riparian corridor. With this clearing, the reach has seen a substantial loss of forest area considered at low risk of cowbird parasitism. In 1950, the reach had 51.3 acres of such forest per valley mile and by 2001 that forest extent had dropped to 37.2 acres per valley mile.

A total of 8 acres of Russian olive have been mapped in Reach C15.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 100year flood has dropped by 18 percent and the 2-year flood, which strongly influences overall channel form, has dropped by 24 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,850 cfs to 3,070 cfs with human development, a reduction of 37 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,340 cfs under unregulated conditions to 3,390 cfs under regulated conditions, a reduction of 47 percent.

Fall and winter base flows have increased in Reach C15 by over 60 percent.

CEA-Related observations in Reach C15 include: •Passive side channel abandonment due to flow alterations •Extensive pivot irrigation development since 2001

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C15 include: •Russian olive removal

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

Flood His	story				Downstream	Upstream
Year	Date	Flow on Date	Return Interval	Gage No	Gage 6309000	Gage 6214500
1974	Jun 22	75,400	10-25 yr	Location	Miles City	Billings
1997	Jun 15	83,300	10-25 yr	Period of Record	1929-2015	1929-2015
1943	Jun 26	83,700	10-25 yr	Distance To (miles)	0.2	160 E
2011	May 24	85,400	10-25 yr	Distance To (innes)	0.3	100.5
1944	Jun 19	96,300	50-100 yr			
1978	May 22	102,000	50-100 yr			

Discharge

Jischarge	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	7Q10 Summer	95% Sum. Duration
Unregulated		62,000	77,800	88,100	110,000	120,000	142,000	4,850	6,340
Regulated		47,300	61,700	70,900	90,400	98,600	117,000	3,070	3,390
% Change		-23.71%	-20.69%	-19.52%	-17.82%	-17.83%	-17.61%	-36.70%	-46.53%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Season		5%	50%	95%
Spring	Unregulated	60,700	22,700	6,090
	Regulated	46,900	13,700	4,430
	% Change	-23%	-40%	-27%
Summer	Unregulated	42,800	13,500	6,340
	Regulated	32,600	8,330	3,390
	% Change	-24%	-38%	-47%
Fall	Unregulated	9,150	5,550	2,300
	Regulated	10,500	6,900	3,640
	% Change	15%	24%	58%
Winter	Unregulated	11,700	4,950	2,020
	Regulated	12,400	6,040	3,260
	% Change	6%	22%	61%
Annual	Unregulated	45,500	7,940	2,800
	Regulated	34,200	7,400	3,630
	% Change	-25%	-7%	30%

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	7-Jul-96	B/W		6295000	39800
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	07/08/2005	color	1-meter pixels	6309000	18800
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	7/17/2009	Color	1-meter pixels	6309000	23300
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/16/2011	Color	1-meter pixels	6309000	57900
2013	NAIP	07/19/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	7,814	19.8%	7,578	19.2%	-235
	Flow Deflectors	0	0.0%	80	0.2%	80
	Car Bodies	152	0.4%	152	0.4%	0
	Feature Type Totals	7,965	20.2%	7,810	19.8%	-155
	Reach Totals	7,965	20.2%	7,810	19.8%	-155

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Car Bodies		141	0	0	0	0	0	0	0
Rock RipRap		236	0	0	0	0	7,488	0	0
	Totals	377	0	0	0	0	7,488	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan.	Anab. Ch.	Bankfull Braiding Parameter		% Change in Braiding
1950	19,497	5,895	1.30	1950 to 1976:	-12.15%
1976	19,522	2,815	1.14	1976 to 1995:	0.93%
1995	19,711	3,051	1.15	1995 to 2001:	-0.57%
2001	19,711	2,920	1.15	1950 to 2001:	-11.84%
Change 1950 - 2001	214	-2,975	-0.15		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	122	12.5%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	12	1.2%			
Abandoned Railroad	35	3.6%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	805		560		
Total Floodplain Area (Ac)	973		859		
Total Isolated (Ac)	168	17.3%	298	60.5%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	4	0	0	4

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal Restrict MZ CMZ age Acreag	ed % Restric Migrati e Area	cted Tota on AHZ Acrea	ll Rest Z Al ge Acro	ricted % Re HZ Av eage /	estricted ulsion Area
	180	360	72	0 14	2%	248	()	0%
2011 Res	stricted Mig	gration A	rea Sun	nmary	Note that the	nese data refle	ct the observ	ed conditions	in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, C	COE for the res	st of the river)	k and Sweet (Grass
RipRap			10	1.00/					
	Railroad		16	1.6%					
		Totals	16	1.6%					
Land Us	es within tl	ne CMZ (A	Acres)	Flood Irrigation 14.0	Sprinkler Irrigation 0.0	Pivot Irrigation 114.9	Urban/ ExUrban 0.0	Trans- portation 4.5	n

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	6	23	42	54	0.2%	0.5%	1.0%	1.3%
	Totals	6	23	42	54	0.2%	0.5%	1.0%	1.3%
Agricultural Lan	d								
	Non-Irrigated	3,447	2,292	1,746	1,789	81.9%	54.5%	41.5%	42.5%
	Irrigated	324	1,471	2,002	1,941	7.7%	35.0%	47.6%	46.1%
	Totals	3,771	3,763	3,748	3,729	89.6%	89.4%	89.1%	88.6%
Channel									
	Channel	391	382	390	396	9.3%	9.1%	9.3%	9.4%
	Totals	391	382	390	396	9.3%	9.1%	9.3%	9.4%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%
Transportation									
	Public Road	7	7	7	7	0.2%	0.2%	0.2%	0.2%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	33	34	22	22	0.8%	0.8%	0.5%	0.5%
	Totals	40	41	29	29	1.0%	1.0%	0.7%	0.7%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 and -	4								Char	ige Betw	veen Y	ears
			Acr	es		%	of Rea	ch Area	1	(% 0	f Agricul	tural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '(01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	267	1,244	0.0%	0.0%	7.1%	33.4%	0.0%	7.1%	26.2%	33.4%
	Flood	324	1,471	1,735	696	8.6%	39.1%	46.3%	18.7%	30.5%	7.2% -	-27.6%	10.1%
	Totals	324	1,471	2,002	1,941	8.6%	39.1%	53.4%	52.0%	30.5%	14.3%	-1.4%	43.4%

Reach CI5

Non	hotenin
11011-1	Ingaleu

Multi-Use	3,281	2,252	1,652	1,591	87.0%	59.9%	44.1%	42.7%	-27.2%	-15.8%	-1.4%	-44.4%
Hay/Pasture	165	39	94	198	4.4%	1.0%	2.5%	5.3%	-3.3%	1.5%	2.8%	0.9%
Totals	3,447	2,292	1,746	1,789	91.4%	60.9%	46.6%	48.0%	-30.5%	-14.3%	1.4%	-43.4%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Clos	ed Timber (A	(cres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	2.2	1.0	4.8	8.2	0.4	2.7	1.7	7.4	0.5	
Max	37.6	30.5	24.7	82.1	82.6	26.2	58.9	7.4	62.8	
Average	12.4	9.7	11.3	31.5	16.4	8.3	17.5	7.4	11.0	
Sum	74.5	87.2	90.7	189.2	196.3	57.9	87.5	7.4	121.5	
Riparian	Turnove	er			Riparian t	o Channel (a	cres)	30.5		
Conver from ch	rsion of ripar nannel to rip	ian areas to arian betwee	channel, or n the 1950's		Channel t	o Riparian (a	cres)	43.2		
and 20	01 data set.			R	iparian Encr	oachment (a	cres)	12.7		
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	54.8			
Creation of	f riparian are	eas	1950s Floodp	olain Mapped	as 2011 Cha	innel (Ac)	16.9			
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	71.7			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	7.0	25.5	14.4	0.0	46.9
Acres/Valley Mile	1.9	7.1	4.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	7.95	0.31%	0.70	0.02	1.03	0.19

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

2001 (
Bankfull 105.0	Low Flow 79.0	% of Low Flow 20.3%
94.1	87.4	22.4%
28.3	26.7	6.8%
15.3	19.4	5.0%
123.0	78.2	20.1%
	44.4	11.4%
	6.8	1.7%
23.9	23.9	6.1%
	23.9	6.1%
	2001 (Bankfull 105.0 94.1 28.3 15.3 123.0 23.9	2001 (Acres) Bankfull Low Flow 105.0 79.0 94.1 87.4 28.3 26.7 15.3 19.4 123.0 78.2 44.4 6.8 23.9 23.9

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

Reach CI6

County	Custer
Classification	PCM/I: Partially confined meandering/islands
General Location	to Miles City
General Comments	to Miles City

Upstream River Mile	192.3
Downstream River Mile	185
Length	7.30 mi (11.75 km)

Narrative Summary

Reach C16 is 7.32 miles long and is located just upstream of Miles City. The downstream limit of the reach is the mouth of the Tongue River at RM 185. The reach is characterized by a dominant main thread that shows a distinct meandering pattern, with several islands persisting where meander bends have historically cut off. The river intermittently flows along the valley wall. As a result it is classified as Partially Confined Meandering with Islands (PCM/I).

As of 2011 there were about two miles of armor protecting 14 percent of the total bankline in Reach C16, including 7,000 feet of rock riprap, 2,200 feet of concrete riprap, and 1,550 feet of flow deflectors. All of the concrete armor is protecting urban areas around the water treatment plant in Miles City. The flow deflectors protect non-irrigated agricultural land, and the rock riprap is protecting agricultural land (irrigated and non-irrigated), roads, and the rail line. A ~550 foot-long stretch of armor at RM 190.5R has been flanked since 2001, and erosion behind the armor now threatens a road; the river has locally eroded into the road embankment. There were also several miles of transportation encroachments and floodplain levees mapped in the reach.

About 13 percent (308 acres) of the 100-year floodplain has become isolated from the river in Reach C16, meaning it is no longer inundated at what was historically a 100-year flood event. Isolation can be due to flow changes and/or physical features that block overflows from reaching floodplain areas. Most of the 100-year floodplain isolation (185 acres) is due to the active rail line. Isolation of the 5-year floodplain has been even more substantial, with 62 percent (721 acres) of the historic 5-year floodplain no longer inundated at what was historically a 5-year flood event.

Three ice jams have been reported in the reach, including February of 2011, and March of 2003 and 2012. No damages were recorded in the ice jam database.

At RM 186.6 a steel trestle bridge built for the now abandoned Milwaukee Railroad crosses the river where it is about 1,000 feet wide. There are several very large barbs on the right bank of the river upstream of the bridge that extend about 100 feet off of the bank, and there is riprap directly under the structure.

About 210 acres which represents 9 percent of the total CMZ have become restricted by physical features. Areas that have become restricted to channel migration include the water treatment plant just upstream of the mouth of the Tongue River, behind the railroad grade at RM 191.5, and locally behind stretches of bank armor protecting irrigated and non-irrigated fields.

Mapped land uses in Reach C16 range from agricultural to urban to transportation infrastructure. The total acreage of flood irrigated land in the reach has dropped from 1,000 acres in 1950 to 830 acres in 2001; and during that time about 300 acres were developed for pivot. All of the pivot development occurred prior to 1976. Pivot irrigation has encroached into the active river corridor; approximately 27 acres of pivot-irrigated land is within the natural Channel Migration Zone (CMZ) of the river, making it especially susceptible to threats of river erosion. This pivot is at RM 190R, where a ~300 acre pivot field extends to within 150 feet of the river bank.

Reach C16 shows an increase in forest area considered to be at low risk of cowbird parasitism. In 1950, the reach had 54.5 acres of such forest per valley mile and by 2001 that forest extent had increased to 66.7 acres per valley mile.

A total of 170 acres of Russian olive were mapped in the reach, which is an abrupt increase relative to the two reaches upstream. The Russian olive is distributed throughout the riparian corridor but becomes more prolific in the downstream direction towards Miles City.

Reach C16 was sampled as part of the fisheries study. A total of 32 fish species were sampled in the reach, including Blue Sucker and Sauger, which have been identified as Species of Concern (SOC) by the Montana Natural Heritage Program.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 100year flood has dropped by 18 percent and the 2-year flood, which strongly influences overall channel form, has dropped by 24 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,850 cfs to 3,070 cfs with human development, a reduction of 37 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,340 cfs under unregulated conditions to 3,390 cfs under regulated conditions, a reduction of 47 percent.

Fall and winter base flows have increased in Reach C16 by about 60 percent.

CEA-Related observations in Reach C16 include: •Pivot irrigation encroachment into CMZ

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C16 include: •Russian olive removal

•Removal of flanked rock riprap at RM 190.5R to prevent accelerated erosion behind

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

Flood History						Downstream	Upstream
	Year	Date	Flow on Date	Return Interval	Gage No	Gage 6309000	Gage 6214500
	1974	Jun 22	75,400	10-25 yr	Location	Miles City	Billings
	1997	Jun 15	83,300	10-25 yr	Period of Record	1929-2015	1929-2015
	1943	Jun 26	83,700	10-25 yr	Distanco To (milos)	1.0	172 1
	2011	May 24	85,400	10-25 yr	Distance To (innes)	1.0	172.1
	1944	Jun 19	96,300	50-100 yr			
	1978	May 22	102,000	50-100 yr			

Discharge

Jischarge	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	7Q10 Summer	95% Sum. Duration
Unregulated		62,000	77,900	88,100	110,000	120,000	142,000	4,850	6,340
Regulated		47,300	61,700	70,900	90,400	98,500	117,000	3,070	3,390
% Change		-23.71%	-20.80%	-19.52%	-17.82%	-17.92%	-17.61%	-36.70%	-46.53%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

		0/10000000	or maloatoa por	
Season		5%	50%	95%
Spring	Unregulated	60,700	22,700	6,100
	Regulated	46,900	13,700	4,430
	% Change	-23%	-40%	-27%
Summer	Unregulated	42,800	13,500	6,340
	Regulated	32,600	8,340	3,390
	% Change	-24%	-38%	-47%
Fall	Unregulated	9,150	5,550	2,300
	Regulated	10,500	6,900	3,640
	% Change	15%	24%	58%
Winter	Unregulated	11,700	4,960	2,020
	Regulated	12,400	6,040	3,260
	% Change	6%	22%	61%
Annual	Unregulated	45,500	7,950	2,800
	Regulated	34,200	7,400	3,630
	% Change	-25%	-7%	30%

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	7/7/96 - 7/10/98	B/W		6295000	39800
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6295000	3500
2005	NAIP	08/05/2005	color	1-meter pixels	6309000	5620
2005	NAIP	07/08/2005	color	1-meter pixels	6309000	18800
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	7/17/2009	Color	1-meter pixels	6309000	23300
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/16/2011	Color	1-meter pixels	6309000	57900
2013	NAIP	07/19/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization	0 ()		0 ()		Ũ
	Rock RipRap	6,789	8.9%	7,009	9.2%	221
	Flow Deflectors	601	0.8%	491	0.6%	-110
	Concrete RipRap	2,192	2.9%	2,192	2.9%	0
	Between Flow Deflectors	1,009	1.3%	1,064	1.4%	55
	Feature Type Totals	10,590	13.9%	10,756	14.1%	166
Floodplain	Control					
	Transportation Encroachment	26,981	35.3%	26,981	35.3%	0
	Floodplain Dike/Levee	4,960	6.5%	4,960	6.5%	0
	Feature Type Totals	31,940	41.8%	31,940	41.8%	0
	Reach Totals	42,531	55.7%	42,696	55.9%	166

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type	Irrig	gated	Non-Irrig.	Ag. Infrastr	. Road	Interstat	e Railroad	Urban	Exurban
Concrete RipRap		0	0	0	0	0	0	2,191	0
Flow Deflectors/Between FDs		0	1,610	0	0	0	0	0	0
Rock RipRap	1	,735	380	0	295	0	5,120	0	0
То	tals 1	,735	1,991	0	295	0	5,120	2,191	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

3/7/2012

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	38,597	49,582	2.28	1950 to 1976:	-4.95%
1976	38,461	45,055	2.17	1976 to 1995:	-4.17%
1995	38,125	41,208	2.08	1995 to 2001:	0.92%
2001	38,194	42,010	2.10	1950 to 2001:	-8.08%
Change 1950 - 2001	-403	-7,572	-0.18		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	53	2.2%			
Agriculture (generally relates to field boundaries)	42	1.7%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	14	0.6%			
Railroad	185	7.6%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	13	0.5%			
Total Not Isolated (Ac)	2139		1282		
Total Floodplain Area (Ac)	2447		2003		
Total Isolated (Ac)	308	12.6%	721	62.0%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	0	0	0
CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal /IZ eage	Restricted CMZ Acreage	% Restric Migratic Area	ted Toton AH Acre	tal I IZ age	Restricted AHZ Acreage	% Restricted Avulsion Area
	332	663	2,0	33	195	10%	21	4	0	0%
2011 Res	stricted Migr	ation A	rea Sur	nma	ry	Note that th	ese data refl	ect the ot	oserved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Pero	cent of CMZ	Counties, C	DE for the re	est of the	r Park and s river).	Sweet Grass
Road/Railro	oad Prism									
	Railroad		35	1	.5%					
	Public Road		18	0	.8%					
	Non-Irrigated		8	0	.4%					
RipRap										
	Urban Industr	ial	50	2	.2%					
	Railroad		7	0	.3%					
	Non-Irrigated		15	0	.7%					
	Irrigated		49	2	.2%					
Flow Deflect	ctors									
	Non-Irrigated		30	1	.3%					
		Totals	210	9	.3%					
Land Us	es within the	e CMZ (Acres)	l Irr	Flood igation	Sprinkler Irrigation	Pivot Irrigation	Urba ExUr	an/ 1 ban po	Frans- ortation
					38.5	0.0	27.0	21	.1	4.9

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	92	158	159	159	1.2%	2.0%	2.1%	2.1%	
	Totals	92	158	159	159	1.2%	2.0%	2.1%	2.1%	
Agricultural Lan	d									
	Non-Irrigated	5,180	4,894	4,895	4,877	66.8%	63.1%	63.1%	62.9%	
	Irrigated	1,004	1,199	1,131	1,131	12.9%	15.5%	14.6%	14.6%	
	Totals	6,184	6,093	6,026	6,008	79.8%	78.6%	77.7%	77.5%	
Channel										
	Channel	1,176	1,111	1,107	1,125	15.2%	14.3%	14.3%	14.5%	
	Totals	1,176	1,111	1,107	1,125	15.2%	14.3%	14.3%	14.5%	
ExUrban										
	ExUrban Other	74	0	0	0	1.0%	0.0%	0.0%	0.0%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	4	4	4	0.0%	0.0%	0.0%	0.0%	
	Totals	74	4	4	4	1.0%	0.0%	0.0%	0.0%	
Transportation									-	
	Public Road	54	16	10	10	0.7%	0.2%	0.1%	0.1%	
	Interstate	0	48	48	48	0.0%	0.6%	0.6%	0.6%	
	Railroad	63	63	32	32	0.8%	0.8%	0.4%	0.4%	
	Totals	118	128	91	91	1.5%	1.6%	1.2%	1.2%	
Urban										
	Urban Other	102	173	200	200	1.3%	2.2%	2.6%	2.6%	
	Urban Residential	0	0	37	37	0.0%	0.0%	0.5%	0.5%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	8	39	39	0.0%	0.1%	0.5%	0.5%	
	Urban Industrial	6	78	90	90	0.1%	1.0%	1.2%	1.2%	
	Totals	108	259	366	366	1.4%	3.3%	4.7%	4.7%	

Land Use Tir	meline - Tiers 3 and	d 4								Char	nge Betv	ween Y	ears
			Acr	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	'01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	304	304	304	0.0%	5.0%	5.0%	5.1%	5.0%	0.1%	0.0%	5.1%
	Flood	1,004	895	827	827	16.2%	14.7%	13.7%	13.8%	-1.5%	-1.0%	0.0%	-2.5%
	Totals	1,004	1,199	1,131	1,131	16.2%	19.7%	18.8%	18.8%	3.4%	-0.9%	0.1%	2.6%

Reach CI6

Non-	Irrigated

Multi-Use	3,531	4,643	4,806	4,751	57.1%	76.2%	79.8%	79.1%	19.1%	3.5%	-0.7%	22.0%
Hay/Pasture	1,649	250	89	126	26.7%	4.1%	1.5%	2.1%	-22.6%	-2.6%	0.6%	-24.6%
Totals	5,180	4,894	4,895	4,877	83.8%	80.3%	81.2%	81.2%	-3.4%	0.9%	-0.1%	-2.6%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (A			3)	Clos	ed Timber (A	(cres)	Open Timber (Acres			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.8	0.3	0.9	0.0	0.8	0.7	6.3	1.7	1.0	
Max	84.1	74.1	29.0	61.8	68.9	71.3	62.0	81.1	84.9	
Average	10.9	8.7	7.4	15.0	14.3	16.0	18.1	18.8	21.3	
Sum	347.5	234.2	177.6	346.1	315.4	336.9	217.2	225.6	320.2	
Riparian	Turnove	er			Riparian t	o Channel (a	cres)	119.9		
Conver from ch	rsion of ripar nannel to rip	ian areas to o arian betwee	channel, or h the 1950's		Channel t	cres)	174.4			
and 20	01 data set.			R	Riparian Encroachment (acres) 54.5					
Riparian	Recruit	nent	1950s Chai	nnel Mapped	as 2011 Ripa	arian (Ac)	175.1			
Creation of	f riparian are	as	1950s Floodp	lain Mapped	as 2011 Cha	innel (Ac)	26.8			
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	201.9			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	21.2	94.7	23.1	0.0	139.1
Acres/Valley Mile	3.2	14.3	3.5	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	170.16	3.72%	41.91	4.03	53.93	17.93

Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region Reach	Region Reach		Region Reach		Region Reach	
J Bigmout	h buffalo 🔽 🗸	Flathead chub		Northern redbelly dace		Stonecat
Black bu	illhead 🗸 🗸	Freshwater drum		Pallid sturgeon		Sturgeon chub
Black cra	appie 🗸 🗸	Goldeye		Pumpkinseed		Sucker species
✓ ✓ Blue suc	ker 🗸 🗸	Green sunfish		Rainbow trout		Sunfish species
V Bluegill		Lake chub		River carpsucker		Walleye
Brook st	ickleback	Largemouth bass		Rock bass		Western silvery minnow
Brown tr	out 🗸 🗸	Longnose dace		Sand shiner		White bass
V Burbot		Longnose sucker		Sauger		White crappie
Catfish s	species 🗸 🗸	Minnow species		Shorthead redhorse		White sucker
Channel	catfish	Mottled sculpin		Shortnose gar		Yellow bullhead
	n carp 🗸 🗸	Mountain sucker		Shovelnose sturgeon		Yellow perch
Creek ch	nub 🗌 🔽	Mountain whitefish		Sicklefin chub		
Emerald	shiner 🗌 🗸	Northern pike		Smallmouth bass		
✓ ✓ Fathead	minnow 🗸 🗸	Northern plains killifish		Smallmouth buffalo		

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	234.3	102.3	9.2%
Rip Rap Bottom	58.7	44.9	4.1%
Rip Rap Margin	52.3	47.5	4.3%
Bluff Pool	97.8	86.3	7.8%
Terrace Pool	6.8		
Secondary Channel	88.3	114.0	10.3%
Secondary Channel (Seasonal)	109.6	87.6	7.9%
Channel Crossover	187.8	120.1	10.9%
Point Bar		24.5	2.2%
Side Bar		59.4	5.4%
Mid-channel Bar		59.1	5.3%
Island	269.2	266.2	24.1%
Dry Channel		93.1	8.4%
Confluence Area	1.6	1.6	0.1%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

CountyCusterClassificationPCS: Partially confined straightGeneral LocationMiles City; Tongue River confluenceGeneral CommentsMiles City; Tongue River

Upstream River Mile	185
Downstream River Mile	180.5
Length	4.50 mi (7.24 km)

Reach C17

Narrative Summary

Reach C17 is 4.5 miles long and is in Miles City. Through town the Yellowstone River is a Partially Confined Reach type as the river flows on the north edge of town against high bluffs of the Fort Union Formation.

As of 2011 there were just under two miles of armor protecting 21 percent of the total bankline in Reach C17, including 7,300 feet of rock riprap, 2,400 feet of concrete riprap, and less than a hundred feet of flow deflectors. Over 2,700 feet of rock riprap has been constructed in the reach since 2001. Most of the armor is on the right bank through town. The rock riprap is protecting either urban areas (2,540 feet) the railroad (2,040 feet), or agricultural lands (2,400 feet). The concrete riprap is all protecting agricultural land. Reach C17 also has over three miles of mapped floodplain dikes and levees, much of which is the Miles City Levee that is on the right bank of the river through town.

Prior to 1950, about 1,500 feet of side channel was blocked in Reach C17. This channel was actually the lowermost part of the Tongue River, which was re-routed to the Yellowstone and abandoned through what is now Miles City.

Ice jams have been a major issue in Miles City. The ice jam database records 24 ice jams in Reach C17 between 1934 and 2011. Most of the jams occurred in March, with a few in February and one in April in 1950. Damages associated with the jams include damages to the Miles City dike, damaged water gages, flooding, and evacuations.

The levees in Miles City coupled with flow alterations have isolated 683 acres, or 74 percent of the 100-year floodplain in the reach. Isolation of the 5-year floodplain has been similar; 286 acres or 78 percent of the 5-year floodplain has become isolated at that frequency event. Most of the 5-year floodplain isolation is along the historic Tongue River channel that has been cut off from the river.

Bank armor and levees on the south side of the river has narrowed the natural Channel Migration Zone of the river. About 540 acres which represents 40 percent of the total CMZ has become restricted by physical features.

One dump site was mapped on the right bank just below the Highway 59 Bridge at RM 184.

As an urban reach, the riparian corridor had already been largely impacted by 1950. Since then, however, almost 100 acres of additional riparian area has been cleared, representing 23 percent of the entire 1950s riparian footprint. With this clearing, the reach has seen a substantial loss of forest area considered at low risk of cowbird parasitism. In 1950, the reach had 9.1 acres of such forest per valley mile and by 2001 that forest extent had dropped to 0 acres per valley mile.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 100year flood has dropped by 19 percent and the 2-year flood, which strongly influences overall channel form, has dropped by 24 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 5,100 cfs to 3,180 cfs with human development, a reduction of 37 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,730 cfs under unregulated conditions to 3,530 cfs under regulated cond8itions, a reduction of 48 percent.

Fall and winter base flows have increased in Reach C17 by about 60 percent.

CEA-Related observations in Reach C17 include: •Side channel blockage with urbanization •Extensive armoring with urbanization

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C17 include: •CMZ Management due to extent of CMZ restriction (41 percent) •Dump removal on right bank at RM 184R •Russian olive removal PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

Flood His	story				Downstream	Upstream
Year	Date	Flow on Date	Return Interval	Gage No	Gage 6329500	Gage 6309000
1974	Jun 22	75,400	10-25 yr	Location	Sidney	Miles City
1997	Jun 15	83,300	10-25 yr	Period of Record	1911-2015	1929-2015
1943	Jun 26	83,700	10-25 yr		140 7	1.0
2011	May 24	85,400	10-25 yr	Distance To (miles)	149.7	-1.0
1944	Jun 19	96,300	50-100 yr			
1978	May 22	102,000	50-100 yr			

Discharge

Jischarge	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	7Q10 Summer	95% Sum. Duration
Unregulated		63,400	78,900	88,600	109,000	117,000	136,000	5,100	6,730
Regulated		48,200	62,700	71,300	88,000	94,400	108,000	3,180	3,530
% Change		-23.97%	-20.53%	-19.53%	-19.27%	-19.32%	-20.59%	-37.65%	-47.55%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

		0/10000000		
Season		5%	50%	95%
Spring	Unregulated	62,000	23,300	6,430
	Regulated	47,800	13,900	4,640
	% Change	-23%	-40%	-28%
Summer	Unregulated	44,200	14,000	6,730
	Regulated	33,300	8,550	3,530
	% Change	-25%	-39%	-48%
Fall	Unregulated	9,390	5,740	2,340
	Regulated	10,800	7,100	3,750
	% Change	15%	24%	60%
Winter	Unregulated	12,400	5,170	2,080
	Regulated	13,100	6,240	3,330
	% Change	6%	21%	60%
Annual	Unregulated	46,700	8,300	2,870
	Regulated	34,900	7,640	3,740
	% Change	-25%	-8%	30%

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	8/25/97 - 7/10/98	B/W		6309000	15400
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6309000	3500
2005	NAIP	08/05/2005	color	1-meter pixels	6309000	5620
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	7/17/2009	Color	1-meter pixels	6309000	23300
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/16/2011	Color	1-meter pixels	6309000	57900
2013	NAIP	07/19/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	4,580	9.7%	7,294	15.5%	2,714
	Flow Deflectors	0	0.0%	92	0.2%	92
	Concrete RipRap	2,401	5.1%	2,398	5.1%	-3
	Feature Type Totals	6,981	14.8%	9,784	20.8%	2,803
Floodplain	Control					
	Transportation Encroachment	4,563	9.7%	4,563	9.7%	0
	Floodplain Dike/Levee	19,101	40.6%	19,101	40.6%	0
	Feature Type Totals	23,664	50.3%	23,664	50.3%	0
	Reach Totals	30,645	65.2%	33,448	71.1%	2,803

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap		833	954	610	0	0	0	0	0
Rock RipRap		0	0	0	0	0	2,040	2,539	0
	Totals	833	954	610	0	0	2,040	2,539	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

Jam Date	Jam Type	River Mile	Damages
3/10/1934	NA	184	?
3/22/1939	NA	184	?
3/23/1941	NA	184	?
3/26/1943	NA	184	?
3/20/1944	NA	184	Flooding and evacuations
3/2/1946	Break-up	184	?
3/20/1947	Break-up	184	?
3/26/1949	NA	184	?
4/6/1950	NA	184	?
3/26/1951	NA	184	?
3/26/1956	NA	184	?
2/21/1958	NA	184	?
3/13/1959	NA	184	?
3/19/1960	NA	184	?
2/17/1962	NA	184	?
2/1/1971	Break-up	184	Levee threatened by erosion
3/1/1972	Break-up	184	Dike damage
3/8/1994	NA	184	Miles City dike damaged
2/8/1996	Break-up	184	Damaged water gauges
2/18/1997	NA	184	Flooding in low-lands, dike damaged
3/5/2009	Break-up		
3/16/2010	Break-up		
3/12/2011	Break-up		
3/13/2011			

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	23,304	16,353	1.70	1950 to 1976:	7.47%
1976	23,247	19,269	1.83	1976 to 1995:	-4.93%
1995	23,408	17,291	1.74	1995 to 2001:	-2.59%
2001	23,507	16,305	1.69	1950 to 2001:	-0.48%
Change 1950 - 2001	202	-48	-0.01		
Length of Side		Pre-1950s (ft)	1,466		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year			
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain		
Non-Structural (hydrology, geomorphic, etc.)	47	5.1%				
Agriculture (generally relates to field boundaries)	0	0.0%				
Agriculture (isloated by canal or large ditch)	0	0.0%				
Levee/Riprap (protecting agricultural lands)	0	0.0%				
Levee/Riprap (protecting urban, industrial, etc.)	636	69.1%				
Railroad	0	0.0%				
Abandoned Railroad	0	0.0%				
Transportation (Interstate and other roads)	0	0.0%				
Total Not Isolated (Ac)	237		529			
Total Floodplain Area (Ac)	919		788			
Total Isolated (Ac)	683	74.3%	259	77.9%		

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	0	0	0

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 145	Erosion Buffer (ft) 291	To CM Acre 93	tal R MZ eage M	estricted CMZ Acreage 146	% Restrict Migration Area 16%	ed Tota n AHZ Acreas 407	l Res 2 A ge Aci	tricted AHZ reage 394	% Restricted Avulsion Area 97%
2011 Do	atriated Mig	ration A				Note that the	se data refle	ct the obser	ved con	ditions in the
ZUITRE	stricted wig	ration A	lea Sul	illiary		2011 aerial n	botography (NAIP for Pa	rk and S	Sweet Grass
Reason for Restriction	eason for Land Use RM estriction Protected Act		RMA Acres	Percent of CMZ		Counties, CC	DE for the res	t of the rive	r).	
RinRan										
i upi up	Irrigated		58	4.3%	, D					
Dike/Levee	-									
2	Urban Resid	ential	482	35.9%	%					
		Totals	540	40.3%	%					
Land Us	es within th	e CMZ (/	Acres)	Floo Irriga	od tion	Sprinkler Irrigation	Pivot Irrigation	Urban/ ExUrban	т ро	rans- ortation
				64.	1	0.0	0.0	294.4	-	2.6

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3		Acı	res		% of Reach Area				
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	structure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	31	60	63	65	0.8%	1.5%	1.6%	1.6%	
	Totals	31	60	63	65	0.8%	1.5%	1.6%	1.6%	
Agricultural Land	1									
	Non-Irrigated	1,186	1,056	983	930	29.3%	26.1%	24.3%	23.0%	
	Irrigated	825	705	655	609	20.4%	17.4%	16.2%	15.0%	
	Totals	2,011	1,762	1,638	1,539	49.7%	43.5%	40.5%	38.0%	
Channel										
	Channel	713	710	691	694	17.6%	17.5%	17.1%	17.1%	
	Totals	713	710	691	694	17.6%	17.5%	17.1%	17.1%	
ExUrban										
	ExUrban Other	0	0	23	23	0.0%	0.0%	0.6%	0.6%	
	ExUrban Undeveloped	0	0	7	7	0.0%	0.0%	0.2%	0.2%	
	ExUrban Industrial	0	38	87	87	0.0%	0.9%	2.1%	2.1%	
	ExUrban Commercial	16	16	17	17	0.4%	0.4%	0.4%	0.4%	
	ExUrban Residential	15	212	250	344	0.4%	5.2%	6.2%	8.5%	
	Totals	30	266	384	477	0.7%	6.6%	9.5%	11.8%	
Transportation										
	Public Road	35	36	36	36	0.9%	0.9%	0.9%	0.9%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	52	52	25	25	1.3%	1.3%	0.6%	0.6%	
	Totals	87	87	61	61	2.1%	2.2%	1.5%	1.5%	
Urban										
	Urban Other	19	19	51	51	0.5%	0.5%	1.2%	1.2%	
	Urban Residential	738	719	767	767	18.2%	17.8%	18.9%	18.9%	
	Urban Commercial	164	164	165	165	4.0%	4.0%	4.1%	4.1%	
	Urban Undeveloped	129	31	0	0	3.2%	0.8%	0.0%	0.0%	
	Urban Industrial	128	233	230	230	3.2%	5.7%	5.7%	5.7%	
	Totals	1,177	1,165	1,212	1,212	29.1%	28.8%	29.9%	29.9%	

Land Use Til	meline - Tiers 3	and 4								Char	nge Betv	ween Y	ears
			Aci	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	'01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	825	705	655	609	41.0%	40.0%	40.0%	39.6%	-1.0%	0.0%	-0.4%	-1.4%
	Totals	825	705	655	609	41.0%	40.0%	40.0%	39.6%	-1.0%	0.0%	-0.4%	-1.4%

Reach CI7

Non-Irrigated													
	Multi-Use	1,139	935	873	781	56.6%	53.1%	53.3%	50.8%	-3.5%	0.2%	-2.5%	-5.9%
	Hay/Pasture	47	121	111	149	2.4%	6.9%	6.7%	9.7%	4.5%	-0.1%	2.9%	7.3%
	Totals	1,186	1,056	983	930	59.0%	60.0%	60.0%	60.4%	1.0%	0.0%	0.4%	1.4%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Statistic Min	;	Shrub (Acres)			ed Timber (A	Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	1.0	0.0	0.0	1.2	0.2	0.3	4.5	3.2	3.2
Max	14.7	13.0	10.4	83.0	49.5	38.0	90.5	76.8	66.6
Average	5.4	4.0	4.3	20.5	11.5	13.1	34.7	20.5	19.8
Sum	27.2	36.4	25.8	225.5	173.0	221.9	173.3	122.8	119.0
Riparian	Turnove	er			Riparian t	to Channel (a	cres)	19.0	
from cl	rsion of ripar nannel to rip	rian areas to arian betwee	channel, or n the 1950's		Channel to Riparian (acres) 69.1				
and 2001 data set.				Riparian Encroachment (acres) 50.1					
Riparian	Recruit	ment	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	69.7		
Creation o	f riparian are	eas	1950s Floodp	olain Mapped	as 2011 Cha	nnel (Ac)	8.7		
between 1950s and 2001.		01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	78.4		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	18.5	48.4	0.7	0.0	67.6
Acres/Valley Mile	4.6	12.0	0.2	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	66.49	2.63%	26.91	12.61	19.55	20.45	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	ng 2001 (Acres)					
Habitat Scour Pool	Bankfull 37.2	Low Flow 34.2	% of Low Flow 4.9%			
Rip Rap Bottom	44.9	28.3	4.1%			
Bluff Pool	196.2	173.0	25.0%			
Secondary Channel	13.0	15.0	2.2%			
Secondary Channel (Seasonal)	59.9	30.8	4.5%			
Channel Crossover	102.2	91.2	13.2%			
Point Bar		2.3	0.3%			
Side Bar		29.7	4.3%			
Mid-channel Bar		25.4	3.7%			
Island	236.6	236.6	34.2%			
Dry Channel		23.4	3.4%			
Confluence Area	1.0	1.0	0.1%			

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

Reach C18

County	Custer
Classification	PCS: Partially confined straight
General Location	Downstream of Miles City
General Comments	Channel follows left valley wall

Upstream River Mile180.5Downstream River Mile177.3Length3.20 mi (5.15 km)

Narrative Summary

Reach C18 is 3.2 miles long and is located just downstream of Miles City. It is a Partially Confined Straight reach type, as the river flows over steep bedrock shelves that create a series of rapids between Miles City and a few miles above Kinsey Bridge. The river flows along the north bluff line through the whole reach, and has consistently maintained this course since at least 1950.

Reach C18 has no mapped bank armor which is indicative of the natural stability provided to this reach by erosion-resistant bedrock. The 2001 physical features inventory identified 1,742 feet of bedrock outcrop in the reach. A total of three discreet sets of rapids were mapped in the reach, all of which have been described as part of the Buffalo Shoals (RM 180, RM 179.9, and RM 178.2).

Between 1950 and 2001 there was about 26 net acres of riparian encroachment into the channel, and the bankfull channel area decreased by ~30 acres, indicating a diminishing river size over the last half-century. This trend is common below the mouth of the Bighorn River, where flow alterations have reduced peak flows and cause the active river channel to shrink. Consumptive water uses, primarily associated with irrigation, have contributed to the reduced flows.

Prior to 1950, a side channel that was just over 1,000 feet long appears to have been blocked at RM 179. There are currently several blockages across this old channel, including two roads that access a large gravel pit on the right bank of the river. This gravel pit at RM 178.4 is partly within the Channel Migration Zone (CMZ) of the river. Although the channel showed clear expression in the 1950s imagery, it is not very visible in the 2011 imagery, suggesting that restoring this feature may be difficult.

About 20 percent of the total 100-year floodplain has become isolated due to human development, and most of the isolation appears to be due to flow alterations rather than floodplain dikes. The 5-year floodplain is even more affected; 59 percent of the historic 5-year floodplain is no longer inundated at that frequency.

Land use is dominated by flood irrigation with additional gravel pit development (mapped as exurban industrial) and transportation infrastructure. There is one Fishing Access Site at Kinsey Bridge. There are two animal handling facilities north of the river that are within several hundred feet of the streambank; both are downstream of Kinsey Bridge, at RM 166.2 and RM 167.8.

There are 65 acres of Russian olive in the reach, most of which is on the south side of the river away from the bluff line to the north. Over half of the low-flow fish habitat in this reach is bluff pool, potentially making it important for fish with bluff pool habitat preferences.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 100year flood has dropped by 19 percent. The 2-year flood, which strongly influences overall channel form, has dropped by 24 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 5,100 cfs to 3,180 cfs with human development, a reduction of 38 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,730 cfs under unregulated conditions to 3,530 cfs under regulated conditions, a reduction of 48 percent.

CEA-Related observations in Reach C18 include: •Natural channel stability provided by bedrock •Minimal bank armoring

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C18 include: •Russian olive removal PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

Flood His	story				Downstream	Upstream	
Year	Date	Flow on Date	Return Interval	Gage No	Gage 6329500	Gage 6309000	
1974	Jun 22	75,400	10-25 yr	Location	Sidney	Miles City	
1997	Jun 15	83,300	10-25 yr	Period of Record	1911-2015	1929-2015	
1943	Jun 26	83,700	10-25 yr		146.5	3.5	
2011	May 24	85,400	10-25 yr	Distance To (miles)			
1944	Jun 19	96,300	50-100 yr				
1978	May 22	102,000	50-100 yr				

Discharge

Jischarge	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	7Q10 Summer	95% Sum. Duration
Unregulated		63,400	78,900	88,600	109,000	117,000	136,000	5,100	6,730
Regulated		48,200	62,700	71,300	88,000	94,400	108,000	3,180	3,530
% Change		-23.97%	-20.53%	-19.53%	-19.27%	-19.32%	-20.59%	-37.65%	-47.55%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Season		5%	50%	95%
Spring	Unregulated	62,000	23,300	6,430
	Regulated	47,800	13,900	4,640
	% Change	-23%	-40%	-28%
Summer	Unregulated	44,200	14,000	6,730
	Regulated	33,300	8,550	3,530
	% Change	-25%	-39%	-48%
Fall	Unregulated	9,390	5,740	2,340
	Regulated	10,800	7,100	3,750
	% Change	15%	24%	60%
Winter	Unregulated	12,400	5,170	2,080
	Regulated	13,100	6,240	3,330
	% Change	6%	21%	60%
Annual	Unregulated	46,700	8,300	2,870
	Regulated	34,900	7,640	3,740
	% Change	-25%	-8%	30%

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	8/25/97 - 6/13/96	B/W		6309000	15400
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6309000	3500
2005	NAIP	08/05/2005	color	1-meter pixels	6309000	5620
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	7/17/2009	Color	1-meter pixels	6309000	23300
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/16/2011	Color	1-meter pixels	6309000	57900
2013	NAIP	07/19/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Other In C	Channel					
	Bedrock Outcrop	1,742	5.1%	1,742	5.1%	0
	Feature Type Totals	1,742	5.1%	1,742	5.1%	0
	Reach Totals	1,742	5.1%	1,742	5.1%	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	16,929	• • • •	1.00	1950 to 1976:	0.00%
1976	17,030		1.00	1976 to 1995:	27.63%
1995	17,048	4,711	1.28	1995 to 2001:	-21.65%
2001	17,106		1.00	1950 to 2001:	0.00%
Change 1950 - 2001	177		0.00		
Length of Side		Pre-1950s (ft)	1,052		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	59	20.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	237		390		
Total Floodplain Area (Ac)	297		457		
Total Isolated (Ac)	59	20.0%	67	59.5%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	0	0	0

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tot CN Acre	al Restricte IZ CMZ age Acreage	d % Restric Migratio Area	ted Tota n AHZ Acrea	I Restri AH ge Acre	icted % Res IZ Avu age Ar	stricted Ision rea
	118	236	46	6 1	0%	45	0	0	1%
2011 Res	stricted Mig	gration A	rea Sun	nmary	Note that the	ese data reflec	ot the observe	ed conditions in	n the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	2011 aerial photography (NAIP for Park and Swe Counties, COE for the rest of the river).				1855
RipRap									
	Irrigated		1	0.3%					
		Totals	1	0.3%					
Land Us	es within th	ne CMZ (A	Acres)	Flood Irrigation 2.8	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 6.9	Trans- portation 0.0	

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Acı	res		% of Reach Area			à
Feature Class	Feature Type	1950	1976	2001	2011	1950 1976 2001			2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	29	55	81	85	1.1%	2.0%	2.9%	3.1%
	Totals	29	55	81	85	1.1%	2.0%	2.9%	3.1%
Agricultural Lan	d								
	Non-Irrigated	1,071	938	924	985	38.5%	33.7%	33.2%	35.4%
	Irrigated	1,319	1,369	1,370	1,305	47.4%	49.2%	49.3%	46.9%
	Totals	2,391	2,307	2,294	2,290	86.0%	82.9%	82.5%	82.3%
Channel									
	Channel	336	362	354	349	12.1%	13.0%	12.7%	12.5%
	Totals	336	362	354	349	12.1%	13.0%	12.7%	12.5%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	18	18	23	0.0%	0.6%	0.6%	0.8%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	4	18	18	18	0.1%	0.7%	0.7%	0.7%
	Totals	4	36	36	42	0.1%	1.3%	1.3%	1.5%
Transportation									
	Public Road	12	12	12	12	0.4%	0.4%	0.4%	0.4%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	9	9	4	4	0.3%	0.3%	0.2%	0.2%
	Totals	21	21	16	16	0.8%	0.8%	0.6%	0.6%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	meline - Tiers 3	and 4								Char	nge Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Flood	1,319	1,369	1,370	1,305	55.2%	59.3%	59.7%	57.0%	4.2%	0.4%	-2.7%	1.8%
	Totals	1,319	1,369	1,370	1,305	55.2%	59.3%	59.7%	57.0%	4.2%	0.4%	-2.7%	1.8%

Reach C18

Non-Irrigated													
	Multi-Use	1,071	933	914	930	44.8%	40.4%	39.8%	40.6%	-4.4%	-0.6%	0.8%	-4.2%
	Hay/Pasture	0	5	10	55	0.0%	0.2%	0.4%	2.4%	0.2%	0.2%	2.0%	2.4%
	Totals	1,071	938	924	985	44.8%	40.7%	40.3%	43.0%	-4.2%	-0.4%	2.7%	-1.8%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	:	Shrub (Acres	3)	Close	Closed Timber (Acres)			Open Timber (Ac		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.5	0.2	0.4	0.6	0.8	1.2	10.8	11.8	8.1	
Max	15.4	29.8	30.9	205.1	75.1	38.5	10.8	12.4	18.4	
Average	7.7	8.2	12.5	69.1	12.9	13.3	10.8	12.1	12.7	
Sum	54.0	73.7	87.3	207.2	102.8	119.5	10.8	24.2	38.2	
Riparian	Turnove	er			Riparian 1	to Channel (a	cres)	14.0		
Conversion of riparian areas to channel, or from channel to riparian between the 1950's					Channel t	cres)	40.0			
and 20	01 data set.			Ri	iparian Encr	oachment (a	cres)	26.0		
Riparian Recruitment 1950s Channel Mapped as 2011 Riparian (Ac)						arian (Ac)	40.4			
Creation of	f riparian are	as	1950s Floodp	olain Mapped	as 2011 Cha	nnel (Ac)	16.8			
between 19	950s and 20	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	57.2			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	5.7	21.8	0.0	0.0	27.5
Acres/Valley Mile	1.8	7.0	0.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	65.37	5.05%	23.84	0.00	12.16	1.29

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (
Habitat Scour Pool	Bankfull 41.4	Low Flow 24.1	% of Low Flow 6.8%
Bluff Pool	262.4	186.4	52.7%
Secondary Channel (Seasonal)	13.9	10.8	3.1%
Channel Crossover	24.7	45.7	12.9%
Point Bar		13.9	3.9%
Side Bar		40.9	11.6%
Mid-channel Bar		0.4	0.1%
Island	11.1	11.1	3.1%
Dry Channel		20.3	5.7%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.
Reach C19

County	Custer	Upst
Classification	CS: Confined straight	Dowr
General Location	Kinsey Bridge	Leng
General Comments	Confined	

Jpstream River Mile177.3Downstream River Mile166.2Length11.10 mi (17.86 km)

Narrative Summary

Reach C19 is 11.1 miles long and is located downstream of Miles City at Kinsey Bridge. It is a Confined Straight reach type, as the river flows over steep bedrock shelves that create a series of rapids between Miles City and a few miles below Kinsey Bridge.

There are approximately 4,000 feet of rock riprap in the reach, about one third of which was built since 2001. All of the armor is protecting the rail line on the south side of the river. By 1950 over three miles of side channels had been blocked off by small floodplain dikes in Reach C19. These old side channels are on both sides of the river just upstream of Kinsey Bridge. Bank migration rates are very low in the reach, and as a result the Channel Migration Zone (CMZ) is unusually narrow.

The Kinsey Main Canal diversion and pump station are located on the left bank at RM 175. The site consists of a rock diversion that extends about 200 feet into the river at an upstream angle to deflect flows into an excavated approach channel and pumping station. Kinsey Bridge is located at RM 172.1 and consists of a Steel multi-beam structure that was built in 1907 for the Milwaukee Railroad, but now supports County Road 62. It is just over 1,000 feet long and has four spans.

The 2001 physical features inventory also identified 7,200 feet of bedrock outcrop in the reach. A total of five discreet sets of rapids were mapped in the reach, including Buffalo Shoals (RM 176 and RM 177), Matthew Rapids (RM 174.5), and two unnamed rapids upstream and downstream of Kinsey Bridge at RM 172.5 and RM 171, respectively.

On the downstream end of the reach, an 8-inch Cenex pipeline that carries petroleum products flows parallel to the river on the landward side of the active BNSF rail line. The pipeline is about 400 feet away from the active riverbank at RM 166.5, but the fact that the rail line sits between the pipeline and the river suggests that its risk of exposure is low.

Between 1950 and 2001 there was about 89 net acres of riparian encroachment into the channel, and the bankfull channel area decreased by ~100 acres, indicating a diminishing river size over the last half-century. This trend is common below the mouth of the Bighorn River, where flow alterations have reduced peak flows and cause the active river channel to shrink. Consumptive water uses, primarily associated with irrigation, have contributed to the reduced flows.

About 13 percent of the total 100-year floodplain has become isolated due to human development, and most of the isolation appears to be due to flow alterations rather than floodplain dikes. The 5-year floodplain is even more affected; 55 percent of the historic 5-year floodplain is no longer inundated at that frequency.

Two ice jams have been reported in Reach C19; one in March of 1994 at RM 168 and the other in February of 1997 at RM 174. No damages were reported.

Land use is dominated by agriculture (~4,700 acres), with 326 acres of pivot irrigation development since 1950. There is one Fishing Access Site at Kinsey Bridge. There are two animal handling facilities north of the river that are within several hundred feet of the streambank; both are downstream of Kinsey Bridge, at RM 166.2 and RM 167.8.

There are 254 acres of Russian olive in the reach, most of which is on the north side of the river away from the bluff line to the south. Russian olive comprises almost 30 percent of all of the mapped shrubs in the reach. There are notably high concentrations of Russian olive in one of the abandoned side channels that is located on the left bank just downstream from the Kinsey Main Canal diversion.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 24 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 5,080 cfs to 3,150 cfs with human development, a reduction of 38 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,740 cfs under unregulated conditions to 3,510 cfs under regulated conditions, a reduction of 48 percent.

CEA-Related observations in Reach C19 include: •Side channel blockages pre-1950

•Russian olive colonization, especially in blocked side channels

•Armoring needs by the railroad on the south bluff line

·Low natural rates of bank movement in reach with extensive bedrock exposure and rapids

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C19 include: •Side channel reactivation at RM 175L and RM 174R

•Russian olive removal

•Nutrient management at animal handling facilities at RM 166.2L and RM 167.8L

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

FI	ood His	story				Downstream	Upstream
	Year	Date	Flow on Date	Return Interval	Gage No	Gage 6329500	Gage 6309000
	1974	Jun 22	75,400	10-25 yr	Location	Sidney	Miles City
	1997	Jun 15	83,300	10-25 yr	Period of Record	1911-2015	1929-2015
	1943	Jun 26	83,700	10-25 yr		405.4	07
	2011	May 24	85,400	10-25 yr	Distance To (miles)	135.4	6.7
	1944	Jun 19	96,300	50-100 yr			
	1978	May 22	102,000	50-100 yr			

Discharge

Jischarge	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	7Q10 Summer	95% Sum. Duration
Unregulated		63,700	79,500	89,400	110,000	119,000	138,000	5,080	6,740
Regulated		48,500	63,300	72,100	89,400	96,100	110,000	3,150	3,510
% Change		-23.86%	-20.38%	-19.35%	-18.73%	-19.24%	-20.29%	-37.99%	-47.92%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Season		5%	50%	95%
Spring	Unregulated	62,300	23,400	6,460
	Regulated	48,000	14,000	4,660
	% Change	-23%	-40%	-28%
Summer	Unregulated	44,400	14,000	6,740
	Regulated	33,400	8,570	3,510
	% Change	-25%	-39%	-48%
Fall	Unregulated	9,410	5,750	2,320
	Regulated	10,800	7,120	3,740
	% Change	15%	24%	61%
Winter	Unregulated	12,500	5,180	2,080
	Regulated	13,200	6,250	3,340
	% Change	6%	21%	61%
Annual	Unregulated	46,900	8,330	2,870
	Regulated	35,000	7,660	3,740
	% Change	-25%	-8%	30%

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	8/1/96 - 8/25/97	B/W		6309000	15400
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6309000	3500
2005	NAIP	08/05/2005	color	1-meter pixels	6309000	5620
2005	NAIP	08/04/2005	color	1-meter pixels	6309000	5550
2005	NAIP	07/08/2005	color	1-meter pixels	6309000	18800
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	7/17/2009	Color	1-meter pixels	6309000	23300
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/16/2011	Color	1-meter pixels	6309000	57900
2013	NAIP	07/19/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	2,569	2.2%	4,043	3.4%	1,475
	Feature Type Totals	2,569	2.2%	4,043	3.4%	1,475
Other In C	Channel					
	Bedrock Outcrop	7,237	6.2%	7,237	6.2%	0
	Feature Type Totals	7,237	6.2%	7,237	6.2%	0
	Reach Totals	9,806	8.3%	11,280	9.6%	1,475

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		0	0	0	0	0	2,568	0	0
	Totals	0	0	0	0	0	2,568	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

3/5/1994

2/19/1997

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	58,436	4,394	1.08	1950 to 1976:	4.37%
1976	58,444	7,142	1.12	1976 to 1995:	0.97%
1995	58,737	7,818	1.13	1995 to 2001:	5.77%
2001	58,737	11,656	1.20	1950 to 2001:	11.46%
Change 1950 - 2001	301	7,262	0.12		
Length of Side		Pre-1950s (ft)	17,355		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	86	13.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	573		1254		
Total Floodplain Area (Ac)	659		1370		
Total Isolated (Ac)	86	13.0%	116	54.7%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	0	0	0

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal Restricte MZ CMZ eage Acreage	d % Restric Migratic Area	ted Tota on AHZ Acrea	ll Rest 2 A ge Acr	ricted HZ eage	% Restricted Avulsion Area
	93	186	1,6	70 3	0%	467		0	0%
2011 Res	stricted Mig	gration A	rea Sun	nmary	Note that th	ese data refle	ct the observ	ved condi	itions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, C	OE for the res	at of the river).	veet Grass
Road/Railro	oad Prism								
	Railroad		3	0.1%					
		Totals	3	0.1%					
Land Us	es within tl	ne CMZ (/	Acres)	Flood Irrigation 53.5	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 1.8	Tr por	ans- tation 5.1

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	179	283	371	363	1.6%	2.5%	3.2%	3.2%
	Totals	179	283	371	363	1.6%	2.5%	3.2%	3.2%
Agricultural Lan	d								
	Non-Irrigated	5,367	5,300	5,058	5,141	47.0%	46.4%	44.3%	45.0%
	Irrigated	4,385	4,374	4,544	4,451	38.4%	38.3%	39.8%	38.9%
	Totals	9,753	9,674	9,601	9,592	85.3%	84.7%	84.0%	83.9%
Channel									
	Channel	1,284	1,242	1,193	1,210	11.2%	10.9%	10.4%	10.6%
	Totals	1,284	1,242	1,193	1,210	11.2%	10.9%	10.4%	10.6%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	12	12	0.0%	0.0%	0.1%	0.1%
	Totals	0	0	12	12	0.0%	0.0%	0.1%	0.1%
Transportation									
	Public Road	84	100	131	131	0.7%	0.9%	1.1%	1.1%
	Interstate	0	0	56	56	0.0%	0.0%	0.5%	0.5%
	Railroad	129	129	65	65	1.1%	1.1%	0.6%	0.6%
	Totals	213	229	252	252	1.9%	2.0%	2.2%	2.2%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

and Use Timeline - Tiers 3 and 4										Char	ige Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	171	326	0.0%	0.0%	1.8%	3.4%	0.0%	1.8%	1.6%	3.4%
	Flood	4,385	4,374	4,373	4,125	45.0%	45.2%	45.5%	43.0%	0.2%	0.3%	-2.5%	-2.0%
	Totals	4,385	4,374	4,544	4,451	45.0%	45.2%	47.3%	46.4%	0.2%	2.1%	-0.9%	1.4%

Reach CI9

Non-	Irrigated
	ingateu

Multi-Use	4,461	5,138	4,972	5,026	45.7%	53.1%	51.8%	52.4%	7.4%	-1.3%	0.6%	6.7%
Hay/Pasture	906	162	85	115	9.3%	1.7%	0.9%	1.2%	-7.6%	-0.8%	0.3%	-8.1%
Totals	5,367	5,300	5,058	5,141	55.0%	54.8%	52.7%	53.6%	-0.2%	-2.1%	0.9%	-1.4%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (Acres)			Close	ed Timber (A	(cres)	Оре	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.0	0.5	0.9	1.2	0.9	0.5	0.7	1.2	2.3	
Max	85.1	143.2	157.7	57.0	12.1	10.7	51.6	20.4	11.4	
Average	11.7	14.8	16.9	23.2	5.1	3.9	11.1	5.0	6.8	
Sum	408.9	489.7	573.5	139.5	56.1	78.8	165.9	55.2	61.4	
Riparian	Turnove	er			Riparian t	to Channel (a	acres)	17.9		
from ch	rsion of ripar	arian areas to a	n the 1950's		Channel to Riparian (acres) 106.8					
and 20	01 data set.			Ri	iparian Encr	oachment (a	cres)	88.9		
Riparian	Recruit	nent	1950s Char	nnel Mapped	as 2011 Ripa	arian (Ac)	159.2			
Creation of	f riparian are	as	1950s Floodp	lain Mapped	as 2011 Cha	innel (Ac)	22.6			
between 1950s and 2001.			Tota	I Recruitmer	nt (1950s to 2	2011)(Ac)	181.8			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	16.1	165.2	12.2	0.0	193.5
Acres/Valley Mile	1.5	15.4	1.1	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	254.13	4.98%	128.46	0.73	24.24	1.27	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	381.7	350.0	29.3%
Rip Rap Margin	109.0	97.2	8.1%
Bluff Pool	212.0	144.5	12.1%
Secondary Channel	25.2	25.2	2.1%
Secondary Channel (Seasonal)	50.1	49.1	4.1%
Channel Crossover	376.7	265.0	22.2%
Point Bar		50.5	4.2%
Side Bar		100.2	8.4%
Mid-channel Bar		31.2	2.6%
Island	38.1	38.1	3.2%
Dry Channel		41.8	3.5%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

County	Custer
Classification	CS: Confined straight
General Location	Shirley
General Comments	Confined

Upstream River Mile166.2Downstream River Mile158.7Length7.50 mi (12.07 km)

Narrative Summary

Reach C20 is 7.5 miles long and is located in lowermost Custer County at Shirley. The Bonfield Fishing Access Site is located at RM 161 on the left bank. It is a Confined Straight reach type, as the river flows through the confining geology of the Fort Union Formation sandstones. Small tributaries that enter Reach C20 include Hay Creek (RM 165), Harris Creek (RM 164), Cabin and Cottonwood Creeks (RM 162) and Saugus Creek (RM 160.2). Bank migration rates are very low in the reach, and as a result the Channel Migration Zone (CMZ) is unusually narrow.

There is just over a mile of bank armor in the reach that covers about 8 percent of the total bankline. As of 2011 there was 6,059 feet of rock riprap in reach C20, and 1,650 feet of that armor was built between 2001 and 2011. Most of the rock riprap is protecting the abandoned Milwaukee Rail line on the north side of the river where it runs in the edge of the bluff line. The new armor is protecting the Shirley Pump Station at RM 165.3R. There are also 131 feet of flow deflectors across the river from the Bonfield Fishing Access Site.

Between 1950 and 2001 there was about 50 net acres of riparian encroachment into the channel, and the bankfull channel area decreased by ~58 acres, indicating a diminishing river size over the last half-century. This trend is common below the mouth of the Bighorn River, where flow alterations have reduced peak flows and cause the active river channel to shrink. Consumptive water uses, primarily associated with irrigation, have contributed to the reduced flows.

About 13 percent of the total 100-year floodplain has become isolated due to human development, and most of the isolation appears to be due to flow alterations rather than floodplain dikes. The 5-year floodplain is even more affected; 55 percent of the historic 5-year floodplain is no longer inundated at that frequency.

Land use is dominated by agriculture (~6,200 acres), with 327 acres of pivot irrigation development since 1950. Irrigated fields extend to the active streambank through much of the reach.

There are 84 acres of Russian olive in the reach. The Russian olive is concentrated on tributaries and in riparian areas colonizing old river swales, mostly in the upstream portion of the reach.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The magnitude of 100-year flood has dropped by 19 percent due to flow alterations associated with human development. The 2-year flood, which strongly influences overall channel form, has dropped by 24 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 5,080 cfs to 3,150 cfs with human development, a reduction of 38 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,750 cfs under unregulated conditions to 3,510 cfs under regulated conditions, a reduction of 48 percent.

CEA-Related observations in Reach C20 include: •Irrigated land encroachment in reach stabilized by bedrock •Bank armor on abandoned rail line on northern bluff

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C20 include: •Russian olive removal

PHYSICAL FEATURES MAP (2011)

Reach C20

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

Flood His	story				Downstream	Upstream
Year	Date	Flow on Date	Return Interval	Gage No	Gage 6329500	Gage 6309000
1974	Jun 22	75,400	10-25 yr	Location	Sidney	Miles City
1997	Jun 15	83,300	10-25 yr	Period of Record	1911-2015	1929-2015
1943	Jun 26	83,700	10-25 yr		107.0	47.0
2011	May 24	85,400	10-25 yr	Distance To (miles)	127.9	17.8
1944	Jun 19	96,300	50-100 yr			
1978	May 22	102,000	50-100 yr			

Discharge

Jischarge	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	7Q10 Summer	95% Sum. Duration
Unregulated		63,800	79,600	89,500	110,000	119,000	139,000	5,080	6,750
Regulated		48,600	63,400	72,300	89,700	96,400	111,000	3,150	3,510
% Change		-23.82%	-20.35%	-19.22%	-18.45%	-18.99%	-20.14%	-37.99%	-48.00%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Season		5%	50%	95%
Spring	Unregulated	62,400	23,400	6,460
	Regulated	48,100	14,000	4,670
	% Change	-23%	-40%	-28%
Summer	Unregulated	44,400	14,100	6,750
	Regulated	33,400	8,570	3,510
	% Change	-25%	-39%	-48%
Fall	Unregulated	9,410	5,750	2,320
	Regulated	10,800	7,120	3,740
	% Change	15%	24%	61%
Winter	Unregulated	12,500	5,180	2,080
	Regulated	13,200	6,260	3,340
	% Change	6%	21%	61%
Annual	Unregulated	46,900	8,340	2,870
	Regulated	35,100	7,660	3,730
	% Change	-25%	-8%	30%

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6309000	3620
1976	USCOE	29-Sep-76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	7/9/96 - 8/1/96	B/W		6309000	35000
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6309000	3500
2005	NAIP	07/08/2005	color	1-meter pixels	6309000	18800
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	7/17/2009	Color	1-meter pixels	6309000	23300
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/16/2011	Color	1-meter pixels	6309000	57900
2013	NAIP	07/19/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	4,410	5.5%	6,059	7.6%	1,650
	Flow Deflectors	0	0.0%	76	0.1%	76
	Between Flow Deflectors	0	0.0%	55	0.1%	55
	Feature Type Totals	4,410	5.5%	6,191	7.8%	1,781
	Reach Totals	4,410	5.5%	6,191	7.8%	1,781

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		0	0	0	0	0	3,414	0	0
	Totals	0	0	0	0	0	3,414	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)			Bankfull		
	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Parameter		% Change in Braiding
1950	40,718	3,954	1.10	1950 to 1976:	6.78%
1976	40,017	6,863	1.17	1976 to 1995:	-4.31%
1995	39,899	4,828	1.12	1995 to 2001:	0.00%
2001	39,899	4,828	1.12	1950 to 2001:	2.18%
Change 1950 - 2001	-819	874	0.02		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	48	12.6%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	336		818		
Total Floodplain Area (Ac)	385		914		
Total Isolated (Ac)	48	12.6%	95	55.2%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	1	0	0	1

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal Restricto MZ CMZ eage Acreag	ed % Restric Migratic e Area	ted Tota on AHZ Acrea	ll Rest 2 Al ge Acro	ricted % Restric HZ Avulsic eage Area	cted on
	83	166	1,0	71 0	0%	59	() 0%	
2011 Res	stricted Mig	gration A	rea Sun	nmary	Note that th	ese data refle	ct the observ	ed conditions in th	e
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, COE for the rest of the river).				5
RipRap/Flo	w Deflectors								
	Irrigated		2	0.1%					
		Totals	2	0.1%					
Land Us	es within tl	ne CMZ (/	Acres)	Flood Irrigation 28.4	Sprinkler Irrigation 0.0	Pivot Irrigation 3.1	Urban/ ExUrban 1.9	Trans- portation 1.2	

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Acı	res		% of Reach Area			a l
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	43	120	168	158	0.6%	1.7%	2.4%	2.2%
	Totals	43	120	168	158	0.6%	1.7%	2.4%	2.2%
Agricultural Lan	d								
	Non-Irrigated	3,391	3,066	3,057	2,955	47.6%	43.1%	42.9%	41.5%
	Irrigated	2,725	2,924	2,947	3,041	38.3%	41.1%	41.4%	42.7%
	Totals	6,116	5,990	6,004	5,996	85.9%	84.1%	84.3%	84.2%
Channel									
	Channel	849	812	762	781	11.9%	11.4%	10.7%	11.0%
	Totals	849	812	762	781	11.9%	11.4%	10.7%	11.0%
ExUrban									
	ExUrban Other	0	0	2	2	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	2	2	0.0%	0.0%	0.0%	0.0%
Transportation									
	Public Road	45	34	60	60	0.6%	0.5%	0.8%	0.8%
	Interstate	0	95	95	95	0.0%	1.3%	1.3%	1.3%
	Railroad	68	70	29	29	1.0%	1.0%	0.4%	0.4%
	Totals	113	200	184	184	1.6%	2.8%	2.6%	2.6%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	meline - Tiers 3 a	and 4								Char	ige Beti	ween Y	ears
			Acı	res		%	of Rea	ch Area	a	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	'01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	327	0.0%	0.0%	0.0%	5.5%	0.0%	0.0%	5.5%	5.5%
	Flood	2,725	2,924	2,946	2,714	44.6%	48.8%	49.1%	45.3%	4.3%	0.3%	-3.8%	0.7%
	Totals	2,725	2,924	2,947	3,041	44.6%	48.8%	49.1%	50.7%	4.3%	0.3%	1.6%	6.2%

Reach C20

Multi-Use	3,327	2,864	2,848	2,775	54.4%	47.8%	47.4%	46.3%	-6.6%	-0.4%	-1.2%	-8.1%
Hay/Pasture	64	203	209	180	1.1%	3.4%	3.5%	3.0%	2.3%	0.1%	-0.5%	1.9%
Totals	3,391	3,066	3,057	2,955	55.4%	51.2%	50.9%	49.3%	-4.3%	-0.3%	-1.6%	-6.2%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	;	Shrub (Acres	s)	Clos	ed Timber (A	Acres)	Open Timber		(Acres)	
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.3	1.6	0.8	0.2	1.6	1.3	1.4	1.1	1.4	
Max	28.8	91.1	99.8	26.7	20.4	30.3	18.3	37.4	54.6	
Average	6.9	12.9	11.4	6.3	7.3	5.8	6.1	11.1	18.0	
Sum	137.6	206.4	193.5	43.9	58.6	69.1	42.4	77.8	89.8	
Riparian Conve	Turnove	er Tian areas to (channel. or		Riparian	to Channel (a	acres)	22.8		
from cl	nannel to rip	arian betwee	n the 1950's		Channel	to Riparian (a	acres)	73.1		
and 20	01 data set.			R	iparian Encr	oachment (a	acres)	50.3		
Riparian	Recruit	nent	1950s Char	nnel Mapped	l as 2011 Ripa	arian (Ac)	110.0			
Creation o	Creation of riparian areas 1950s Flo			lain Mapped	as 2011 Cha	annel (Ac)	17.9			
between 1	950s and 20	01.	Total	Recruitme	nt (1950s to :	2011)(Ac)	127.9			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	5.7	49.2	1.6	0.0	56.5
Acres/Valley Mile	0.8	6.7	0.2	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	83.74	1.99%	6.56	0.00	11.92	2.85	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	337.4	189.3	24.8%
Rip Rap Margin	142.9	96.4	12.7%
Terrace Pool	62.7	61.4	8.1%
Secondary Channel		13.6	1.8%
Secondary Channel (Seasonal)	41.5	52.9	6.9%
Channel Crossover	156.1	122.0	16.0%
Point Bar		52.7	6.9%
Side Bar		58.1	7.6%
Mid-channel Bar		44.1	5.8%
Island	31.7	31.7	4.2%
Dry Channel		39.9	5.2%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

County	Custer
Classification	CM: Confined meandering
General Location	To Powder River confluence
General Comments	To Powder River; confined

Upstream River Mile158.7Downstream River Mile149.2Length9.50 mi (15.29 km)

Narrative Summary

Reach C21 is 9.5 miles long and extends from River Mile (RM) 158.7 downstream to the mouth of the Powder River at RM 149.2. It is a Confined Meandering (CM) reach type, as the river flows down a sinuous course that is highly confined by Fort Union Formation sandstones and younger erosion–resistant terraces.

Reach C21 has just over 4,000 feet of rock riprap and 71 feet of mapped flow deflectors, which collectively armor 4.1 percent of the total stream bank. About one half of the armor is protecting road embankments, and the other half is protecting the railroad.

Bear Rapids forms two distinct shoals as bedrock shelves in the river between RM 153 and RM 154 near the mouth of Camp Creek.

Between 1950 and 2001 there was about 53 net acres of riparian encroachment into the channel, and the bankfull channel area decreased by ~58 acres, indicating a diminishing river size over the last half-century. This trend is common below the mouth of the Bighorn River, where flow alterations have reduced peak flows and cause the active river channel to shrink. Consumptive water uses, primarily associated with irrigation, have contributed to the reduced flows.

Land use is dominated by agriculture with 164 acres of the ~7,000 acre mapping footprint occupied by transportation-related land uses. There is one ~0.6 acre series of corrals near the mouth of Mack Creek at RM 157.2R that are within 200 feet of the river. There are also several acres of corrals within 300 feet of the river on the left bank at RM 154.9L. At RM 153.3R there is another much larger series of corrals that are within 500 feet of Camp Creek.

There are 49 acres of Russian olive in the reach, which appears to dominate riparian areas.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 100year flood has dropped by 19 percent. The 2-year flood, which strongly influences overall channel form, has dropped by 24 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 5,080 cfs to 3,140 cfs with human development, a reduction of 38 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,730 cfs under unregulated conditions to 3,510 cfs under regulated conditions, a reduction of 48 percent.

CEA-Related observations in Reach C21 include: •Natural channel stability provided by bedrock •Minimal bank armoring

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach C21 include: •Russian olive removal •Nutrient management at corrals at RM 157.2R and RM 153.2R, and 154.9L PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Miles City

FI	ood His	story				Downstream	Upstream
	Year	Date	Flow on Date	Return Interval	Gage No	Gage 6329500	Gage 6309000
	1974	Jun 22	75,400	10-25 yr	Location	Sidney	Miles City
	1997	Jun 15	83,300	10-25 yr	Period of Record	1911-2015	1929-2015
	1943	Jun 26	83,700	10-25 yr		140.4	05.0
	2011	May 24	85,400	10-25 yr	Distance To (miles)	118.4	25.3
	1944	Jun 19	96,300	50-100 yr			
	1978	May 22	102,000	50-100 yr			

Discharge

Jischarge	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	7Q10 Summer	95% Sum. Duration
Unregulated		63,900	79,700	89,700	111,000	119,000	139,000	5,080	6,750
Regulated		48,600	63,500	72,500	90,000	96,800	111,000	3,140	3,510
% Change		-23.94%	-20.33%	-19.18%	-18.92%	-18.66%	-20.14%	-38.19%	-48.00%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

		0/10000000	or maloatoa por	
Season		5%	50%	95%
Spring	Unregulated	62,400	23,400	6,470
	Regulated	48,100	14,000	4,670
	% Change	-23%	-40%	-28%
Summer	Unregulated	44,400	14,100	6,750
	Regulated	33,400	8,580	3,510
	% Change	-25%	-39%	-48%
Fall	Unregulated	9,420	5,760	2,320
	Regulated	10,800	7,130	3,740
	% Change	15%	24%	61%
Winter	Unregulated	12,600	5,180	2,080
	Regulated	13,300	6,260	3,340
	% Change	6%	21%	61%
Annual	Unregulated	46,900	8,350	2,870
	Regulated	35,100	7,670	3,730
	% Change	-25%	-8%	30%

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	???	B/W	1:14,800	6309000	
1976	USCOE	9/29/1976 - 10/9/76	B/W	1:24,000	6309000	9520
1995	USGS DOQQ	9-Jul-96	B/W		6309000	35000
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6309000	3500
2005	NAIP	08/04/2005	color	1-meter pixels	6309000	5550
2005	NAIP	07/08/2005	color	1-meter pixels	6309000	18800
2007	Woolpert	10/15/2007 - 11/2/0007	Color			
2009	NAIP	8/11/2009	Color	1-meter pixels	6309000	12900
2009	NAIP	7/17/2009	Color	1-meter pixels	6309000	23300
2011	USCOE	October 2012	color	1-ft pixel	6309000	8100
2011	NAIP	7/16/2011	Color	1-meter pixels	6309000	57900
2013	NAIP	07/19/2013	color	1-meter pixels	6309000	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	4,066	4.1%	4,025	4.0%	-41
	Flow Deflectors	0	0.0%	71	0.1%	71
	Feature Type Totals	4,066	4.1%	4,096	4.1%	30
Other In C	Channel					
	Bedrock Outcrop	2,854	2.9%	2,854	2.9%	0
	Feature Type Totals	2,854	2.9%	2,854	2.9%	0
	Reach Totals	6,919	6.9%	6,949	6.9%	30

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		0	0	0	2,378	0	2,676	0	0
	Totals	0	0	0	2,378	0	2,676	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	50,040	3,028	1.06	1950 to 1976:	14.55%
1976	50,142	10,774	1.21	1976 to 1995:	2.48%
1995	50,158	12,286	1.24	1995 to 2001:	-9.91%
2001	50,035	6,080	1.12	1950 to 2001:	5.75%
Change 1950 - 2001	-5	3,052	0.06		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	13	2.6%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	469		1090		
Total Floodplain Area (Ac)	481		1185		
Total Isolated (Ac)	13	2.6%	95	35.3%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	0	0	0

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tot CN Acre	al Restricte IZ CMZ age Acreage	d % Restrict Migratio Area	ted Tota n AHZ Acrea	I Restr AF ge Acre	icted % Rest IZ Avul age Ar	% Restricted Avulsion Area
	85	169	1,39	95 2	0%	56	0	0°	%
2011 Restricted Migration Area Summary					Note that these data reflect the observed conditions in the				
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, COE for the rest of the river).		855		
RipRap									
	Railroad		2	0.2%					
		Totals	2	0.2%					
Land Us	es within th	ne CMZ (A	Acres)	Flood Irrigation 9.3	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 0.0	Trans- portation 4.9	
LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	35	95	100	100	0.5%	1.2%	1.3%	1.3%
	Totals	35	95	100	100	0.5%	1.2%	1.3%	1.3%
Agricultural Lan	d								
	Non-Irrigated	4,830	4,332	4,818	4,611	61.9%	55.6%	61.8%	59.1%
	Irrigated	1,799	2,165	1,737	1,916	23.1%	27.8%	22.3%	24.6%
	Totals	6,629	6,497	6,556	6,527	85.0%	83.3%	84.1%	83.7%
Channel									
	Channel	1,032	1,026	967	996	13.2%	13.2%	12.4%	12.8%
	Totals	1,032	1,026	967	996	13.2%	13.2%	12.4%	12.8%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	11	11	0.0%	0.0%	0.1%	0.1%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	11	11	0.0%	0.0%	0.1%	0.1%
Transportation									
	Public Road	28	32	57	57	0.4%	0.4%	0.7%	0.7%
	Interstate	0	76	76	76	0.0%	1.0%	1.0%	1.0%
	Railroad	72	72	31	31	0.9%	0.9%	0.4%	0.4%
	Totals	100	180	164	164	1.3%	2.3%	2.1%	2.1%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 and	4								Char	ige Betv	veen Y	ears
			Acr	res		%	of Rea	ch Area	l I	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	488	0	0	0.0%	7.5%	0.0%	0.0%	7.5%	-7.5%	0.0%	0.0%
	Flood	1,799	1,676	1,737	1,916	27.1%	25.8%	26.5%	29.4%	-1.3%	0.7%	2.9%	2.2%
	Totals	1,799	2,165	1,737	1,916	27.1%	33.3%	26.5%	29.4%	6.2%	-6.8%	2.9%	2.2%

Reach C21

Multi-Use	4,746	4,193	4,077	4,066	71.6%	64.5%	62.2%	62.3%	-7.0%	-2.3%	0.1%	-9.3%
Hay/Pasture	84	139	741	545	1.3%	2.1%	11.3%	8.4%	0.9%	9.2%	-2.9%	7.1%
Totals	4,830	4,332	4,818	4,611	72.9%	66.7%	73.5%	70.6%	-6.2%	6.8%	-2.9%	-2.2%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	;	Shrub (Acres	es) Closed Timber (Acres)			Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.6	0.7	0.1	1.5	1.5	1.9	2.4	2.4	1.5
Max	15.6	34.3	64.9	12.6	10.8	16.0	29.0	12.2	28.5
Average	4.9	7.7	6.4	5.2	4.6	5.9	8.2	4.9	8.9
Sum	113.4	246.8	199.7	57.3	36.8	47.5	73.4	19.5	98.2
Riparian	Turnove	er er			Riparian f	to Channel (a	acres)	33.4	
from cl	rsion of ripar hannel to rip	arian areas to a	n the 1950's		Channel t	to Riparian (a	acres)	86.8	
and 20	01 data set.			R	iparian Encr	oachment (a	icres)	53.3	
Riparian	Recruit	nent	1950s Char	nnel Mapped	as 2011 Ripa	arian (Ac)	119.4		
Creation o	f riparian are	eas	1950s Floodp	lain Mapped	as 2011 Cha	annel (Ac)	9.7		
between 1	950s and 20	01.	Total Recruitment (1950s to 2011)(Ac) 129.2						

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	7.7	61.4	10.5	0.0	79.6
Acres/Valley Mile	0.9	7.2	1.2	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	48.62	0.84%	2.39	0.00	8.70	0.30

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	73.5	87.7	9.1%
Rip Rap Bottom	78.2	53.3	5.5%
Rip Rap Margin	62.6	7.6	0.8%
Terrace Pool	384.5	227.9	23.6%
Secondary Channel	27.3	28.8	3.0%
Secondary Channel (Seasonal)	47.7	91.3	9.4%
Channel Crossover	226.7	187.1	19.3%
Point Bar		55.1	5.7%
Side Bar		30.3	3.1%
Mid-channel Bar		95.0	9.8%
Island	53.7	53.7	5.6%
Dry Channel		44.7	4.6%
Confluence Area	4.0	4.5	0.5%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region C

In the study segment, Powder River to Big Horn River, three conversations emerged across the four interest groups. The first conversation focuses on the "familiar way of life." The conversation exposes a local identity that is tied to agriculture and to traditional forms of recreation, such as hunting and fishing. When asked if the familiar management practices are sufficient in terms of sharing the river's resources, some locals express concerns. The second conversation explicitly acknowledges that the demand for recreational access to the river's resources is in its infancy in terms of representing a problem. The third conversation focuses on controlling the river with rip-rap and dikes.

Upstream River Mile 149.2 137 **Downstream River Mile** Length

12.20 mi (19.63 km)

Reach D

Narrative Summary

Reach D1 is located in Prairie County, and extends from just below the mouth of the Powder River to Terry. The reach is a 12.2 mile long Confined Meandering (CM) reach type, indicating that the river flows along a meandering course that is confined by older geologic units. Sandstones of the Fort Union Formation and younger erosion-resistant terraces confine the channel through the reach. Because of the geologic confinement, channel migration rates are low and the riparian corridor is notably thin or absent. There is one Fishing Access Site at the upper end of the reach at the Powder River confluence (Powder River Depot).

There are less than 1000 feet of bank armor in the reach; including about 550 feet of rock riprap and 140 feet of flow deflectors. The flow deflectors were all built between 2001 and 2011. During that timeframe there was a loss of 650 feet or rock riprap where it was protecting an old railroad bridge at RM 144.5. The bridge was built in 1907 for the railroad and now serves County Road 42.

Wolf Rapids is located on the apex of a large meander at RM 146. These rapids are formed from an exposed bedrock shelf that extends across the entire river.

Reach D1 has lost almost a mile of side channel length since 1950, but none of this loss has been associated with intentional blockages. There has been 126 acres of riparian recruitment into abandoned 1950s channels.

Land use is predominantly agricultural, and there has been 310 acres of land developed under pivot irrigation. There are two animal handling facilities just north of Terry that are adjacent to old swales. One dump site was mapped on the right bank of the river at RM 137.5R, about ³/₄ miles upstream from the Terry Bridge.

About 51 percent of the historic 5-year floodplain has become isolated, primarily due to flow alterations. The abandoned Milwaukee rail line embankment has been breached by river erosion in several locations on the south side of the river.

A total of four ice jams have been reported in the reach. One of these events was in February (1996), and three occurred in March (1993, 2009, and 2011). No damages were reported.

There are about 20 acres of mapped Russian olive in the reach.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,850 cfs to 2,810 cfs with human development, a reduction of 42 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,940 cfs under unregulated conditions to 3,270 cfs under regulated conditions, a reduction of 53 percent.

CEA-Related observations in Reach D1 include: Breaching of abandoned Milwaukee Railroad line

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D1 include: •Dump site Practice at RM 137.5R •Russian olive removal

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

Flood His	story				Downstream	Upstream
Year	Date	Flow on Date	Return Interval	Gage No	Gage 6329500	Gage 6309000
1978	May 23	111,000	10-25 yr	Location	Sidney	Miles City
1912	Mar 29	114,000	10-25 yr	Period of Record	1911-2015	1929-2015
1944	Jun 21	120,000	10-25 yr	Distance To (miles)	106.2	24.0
2011	May 24	124,000	10-25 yr	Distance To (miles)	106.2	34.8
1918	Jun 20	126,000	25-50 yr			
1943	Mar 29	132,000	25-50 yr			
1923	Oct 3	134,000	25-50 yr			
1952	Mar 31	138,000	25-50 yr			
1921	Jun 21	159,000	100-yr			

Discharge

•	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		68,200	87,300	99,900	128,000	140,000	169,000	4,850	6,940
Regulated		53,000	71,700	83,600	109,000	119,000	142,000	2,810	3,280
% Change		-22.29%	-17.87%	-16.32%	-14.84%	-15.00%	-15.98%	-42.06%	-52.74%

Flow Duration		Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time						
Season		5%	50%	95%				
Spring	Unregulated	66,400	24,800	6,810				
	Regulated	51,200	14,800	4,970				
	% Change	-23%	-40%	-27%				
Summer	Unregulated	46,600	14,700	6,940				
	Regulated	34,800	8,850	3,280				
	% Change	-25%	-40%	-53%				
Fall	Unregulated	9,690	5,920	2,090				
	Regulated	11,100	7,380	3,610				
	% Change	15%	25%	73%				
Winter	Unregulated	14,100	5,300	2,100				
	Regulated	14,700	6,450	3,410				
	% Change	4%	22%	62%				
Annual	Unregulated	49,200	8,790	2,830				
	Regulated	36,700	7,940	3,670				
	% Change	-25%	-10%	30%				

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010

95% Sum

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	USCOE	9-Oct-76	B/W	1:24,000	6329500	9580
1995	USGS DOQQ	1995??	B/W		6329500	
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2005	NAIP	08/05/2005	color	1-meter pixels	6329500	4170
2005	NAIP	08/04/2005	color	1-meter pixels	6329500	4350
2007	Woolpert	10/15/2007 - 11/2/0007	Color		6329500	
2009	NAIP	8/11/2009	Color	1-meter pixels	6329500	13000
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/25/2011	Color	1-meter pixels	6329500	41100
2011	NAIP	7/16/2011	Color	1-meter pixels	6329500	60100
2013	NAIP	07/24/2013	color	1-meter pixels	6329500	
2013	NAIP	07/19/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization	Longin (it)	Daniano	Longth (it)	Barnanio	onango
	Rock RipRap	1,196	0.9%	545	0.4%	-651
	Flow Deflectors	0	0.0%	113	0.1%	113
	Between Flow Deflectors	0	0.0%	130	0.1%	130
	Feature Type Totals	1,196	0.9%	787	0.6%	-409
Other In C	Channel					'
	Bedrock Outcrop	1,429	1.1%	1,429	1.1%	0
	Feature Type Totals	1,429	1.1%	1,429	1.1%	0
Floodplair	n Control					'
	Floodplain Dike/Levee	4,290	3.4%	4,290	3.4%	0
	Feature Type Totals	4,290	3.4%	4,290	3.4%	0
	Reach Totals	6,914	5.4%	6,506	5.1%	-409

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		0	0	0	1,197	0	0	0	0
	Totals	0	0	0	1,197	0	0	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

3/26/1993

2/9/1996

3/3/2009

3/14/2011

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	65,951	16,560	1.25	1950 to 1976:	2.31%
1976	63,797	17,862	1.28	1976 to 1995:	-6.65%
1995	63,973	12,462	1.19	1995 to 2001:	0.01%
2001	63,919	12,462	1.19	1950 to 2001:	-4.49%
Change 1950 - 2001	-2,032	-4,098	-0.06		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-1	/ear
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%		
Agriculture (generally relates to field boundaries)	0	0.0%		
Agriculture (isloated by canal or large ditch)	0	0.0%		
Levee/Riprap (protecting agricultural lands)	15	3.3%		
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%		
Railroad	0	0.0%		
Abandoned Railroad	0	0.0%		
Transportation (Interstate and other roads)	0	0.0%		
Total Not Isolated (Ac)	440		1321	
Total Floodplain Area (Ac)	455		1417	
Total Isolated (Ac)	15	3.3%	95	51.3%

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	0	0	0

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal Restricte IZ CMZ age Acreage	d % Restrictor Migration Area	ed Tota I AHZ Acreag	l Restr Al- ge Acre	icted % Restric IZ Avulsic age Area	cted on
	120	241	1,8	39 12	1%	0	0	0%	
2011 Res	stricted Mig	ration Ar	ea Sun	nmary	Note that the	se data reflec	t the observe	ed conditions in th	ie
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, CC	E for the res	t of the river).		5
Road/Railro	oad Prism								
	Public Road		12	0.6%					
		Totals	12	0.6%					
Land Us	es within th	e CMZ (A	Acres)	Flood Irrigation 21.7	Sprinkler Irrigation 0.0	Pivot Irrigation 2.0	Urban/ ExUrban 0.1	Trans- portation 5.1	

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Acı	res		%	of Rea	ich Area	a I
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	7	31	64	57	0.1%	0.4%	0.8%	0.7%
	Totals	7	31	64	57	0.1%	0.4%	0.8%	0.7%
Agricultural Lan	d								
	Non-Irrigated	5,846	5,654	5,499	5,383	73.8%	71.4%	69.4%	67.9%
	Irrigated	682	866	1,048	1,157	8.6%	10.9%	13.2%	14.6%
	Totals	6,529	6,519	6,547	6,540	82.4%	82.3%	82.6%	82.5%
Channel						•			
	Channel	1,283	1,257	1,221	1,251	16.2%	15.9%	15.4%	15.8%
	Totals	1,283	1,257	1,221	1,251	16.2%	15.9%	15.4%	15.8%
ExUrban									
	ExUrban Other	0	16	16	16	0.0%	0.2%	0.2%	0.2%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	16	16	16	0.0%	0.2%	0.2%	0.2%
Transportation									
	Public Road	31	25	42	27	0.4%	0.3%	0.5%	0.3%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	72	74	32	32	0.9%	0.9%	0.4%	0.4%
	Totals	104	99	74	59	1.3%	1.2%	0.9%	0.7%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 and	4								Char	ige Beti	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	202	310	0.0%	0.0%	3.1%	4.7%	0.0%	3.1%	1.7%	4.7%
	Flood	682	866	846	846	10.5%	13.3%	12.9%	12.9%	2.8%	-0.4%	0.0%	2.5%
	Totals	682	866	1,048	1,157	10.5%	13.3%	16.0%	17.7%	2.8%	2.7%	1.7%	7.2%

Non-Irrigated

Multi-Use	5,405	5,129	5,205	5,212	82.8%	78.7%	79.5%	79.7%	-4.1%	0.8%	0.2%	-3.1%
Hay/Pasture	441	524	294	171	6.8%	8.0%	4.5%	2.6%	1.3%	-3.5%	-1.9%	-4.1%
Totals	5,846	5,654	5,499	5,383	89.5%	86.7%	84.0%	82.3%	-2.8%	-2.7%	-1.7%	-7.2%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Statistic Min Max Average Sum Riparian Convers from ch and 200 Riparian Creation of	;	Shrub (Acres)			ed Timber (A	Acres)	Оре	en Timber (A	cres)
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	1.6	0.9	0.2	3.3	1.7	0.7	2.9	4.8	3.9
Max	17.6	33.6	21.6	32.4	19.7	23.1	13.0	23.3	17.3
Average	5.0	5.1	5.0	14.7	6.4	5.5	6.6	13.4	11.1
Sum	69.7	97.7	44.9	88.1	44.5	43.8	39.8	80.5	66.3
Riparian	Turnove	er eren erene te	shannal ar		Riparian	to Channel (a	acres)	27.1	
from cl	hannel to rip	arian betwee	in the 1950's		Channel	to Riparian (a	acres)	34.2	
and 20	01 data set.			R	iparian Encr	oachment (a	acres)	7.2	
Riparian	Recruit	nent	1950s Char	nnel Mapped	l as 2011 Ripa	arian (Ac)	126.0		
Creation o	- Creation of riparian areas	eas	1950s Floodp	lain Mapped	as 2011 Cha	annel (Ac)	7.6		
between 1	950s and 20	01.	Tota	I Recruitme	nt (1950s to :	2011)(Ac)	133.6		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	27.0	18.0	0.0	0.0	45.0
Acres/Valley Mile	3.0	2.0	0.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	19.88	1.36%	40.51	0.07	6.50	0.37

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	90.2	81.8	6.4%
Rip Rap Bottom	78.2	48.0	3.8%
Bluff Pool	235.1	183.6	14.4%
Terrace Pool	350.6	212.5	16.7%
Secondary Channel	63.2	40.6	3.2%
Secondary Channel (Seasonal)	29.4	49.1	3.9%
Channel Crossover	373.3	299.2	23.5%
Point Bar		105.0	8.3%
Side Bar		117.9	9.3%
Mid-channel Bar		66.6	5.2%
Island	50.1	23.1	1.8%
Dry Channel		41.5	3.3%
Confluence Area		2.7	0.2%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

Reach D2

County	Prairie
Classification	CM: Confined meandering
General Location	To Fallon, I-90 Bridge
General Comments	To Fallon, I-90 Bridge; confined

Upstream River Mile137Downstream River Mile126.5Length10.50 mi (16.90 km)

Narrative Summary

Reach D2 is located in Prairie County, and extends from Terry to Fallon and the I-90 Bridge. The reach is a 10.5 mile long Confined Meandering (CM) reach type, indicating that the river flows along a meandering course that is confined by older geologic units. Sandstones of the Fort Union Formation and younger erosion-resistant terraces confine the channel through the reach. Because of the geologic confinement, channel migration rates are low and the riparian corridor is notably thin or absent. The Channel Migration Zone (CMZ) is extremely narrow because there has been essentially no bank migration in this reach since 1950.

There are just over 1,000 feet of bank armor in the reach; all of which is rock riprap that is protecting the Fallon Bridge.

Land use is predominantly agricultural with more acreage irrigated under pivot than under flood; as of 2011 there were 712 acres in flood and 1,070 acres in pivot in the reach. All of the pivots are on the north side of the river, and several of them extend to the river bank.

One dump site was mapped on the right bank at RM 135.1. There is also an animal handling facility on lower O'Fallon Creek near RM 130.

About 57 percent of the historic 5-year floodplain has become isolated, primarily due to flow alterations. There has been almost 50 acres of riparian encroachment in the reach, likely due to reduced 2-year flows.

Two ice jams have been reported in the reach. In early April of 1943, the breakup of ice jams at Fallon resulted in a 13 foot rise in the river stage at Intake. According to records, many of the farmers "remained in their homes, taking refuge in the attics and second floors of their homes, and some in the haylofts of their barns". More recently in February 1996, lowland flooding resulted from another ice jam breakup.

There are about 20 acres of mapped Russian olive in the reach.

Bluff pools and terrace pools make up 57 percent of the low flow fish habitat mapped in the reach, indicating that this reach may provide important areas for fish species that prefer this habitat type.

O'Fallon Creek enters the Yellowstone River at RM 129. The lowermost 3,100 feet of this creek has been diked off, and the channel now bypasses that remnant and flows directly into the Yellowstone. This abandoned channel supports some emergent wetland and could potentially provide excellent restoration opportunities for wetlands and slackwater areas connected to the Yellowstone River in this highly confined reach.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,850 cfs to 2,810 cfs with human development, a reduction of 43 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,940 cfs under unregulated conditions to 3,270 cfs under regulated conditions, a reduction of 53 percent.

CEA-Related observations in Reach D2 include: •Breaching of abandoned Milwaukee Railroad line •Diking of lower O'Fallon Creek and isolation of ~3,000 feet of historic tributary channel

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D2 include:

•Dump site YRRP at RM 137.5R

•Nutrient management at animal handling facility on lower O'Fallon Creek RM 130 •Russian olive removal

PHYSICAL FEATURES MAP (2011)

cato Floodplain Dike/Levee Flow Deflector Rock RipRap Concrete RipRap Flow Deflectors COUN Physical Features Other 4.1 nterstate Highway **US or State Route** Secondary Road 2 Reach Breaks **River Miles** Counties Legend

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

Flood His	story				Downstream	Upstream
Year	Date	Flow on Date	Return Interval	Gage No	6329500	Gage 6309000
1978	May 23	111,000	10-25 yr	Location	Sidney	Miles City
1912	Mar 29	114,000	10-25 yr	Period of Record	1911-2015	1929-2015
1944	Jun 21	120,000	10-25 yr	Distance To (miles)	05.7	47.0
2011	May 24	124,000	10-25 yr	Distance To (miles)	95.7	47.0
1918	Jun 20	126,000	25-50 yr			
1943	Mar 29	132,000	25-50 yr			
1923	Oct 3	134,000	25-50 yr			
1952	Mar 31	138,000	25-50 yr			
1921	Jun 21	159,000	100-yr			

Discharge

	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		68,300	87,500	100,000	128,000	141,000	170,000	4,850	6,940
Regulated		53,100	72,000	84,000	109,000	120,000	143,000	2,790	3,270
% Change		-22.25%	-17.71%	-16.00%	-14.84%	-14.89%	-15.88%	-42.47%	-52.88%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010

95% Sum

			-	
Season		5%	50%	95%
Spring	Unregulated	66,500	24,900	6,820
	Regulated	51,300	14,800	4,980
	% Change	-23%	-41%	-27%
Summer	Unregulated	46,700	14,700	6,940
	Regulated	34,900	8,860	3,270
	% Change	-25%	-40%	-53%
Fall	Unregulated	9,700	5,920	2,090
	Regulated	11,100	7,390	3,610
	% Change	14%	25%	73%
Winter	Unregulated	14,100	5,300	2,100
	Regulated	14,700	6,450	3,410
	% Change	4%	22%	62%
Annual	Unregulated	49,300	8,810	2,830
	Regulated	36,800	7,950	3,670
	% Change	-25%	-10%	30%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	USCOE	9-Oct-76	B/W	1:24,000	6329500	9580
1995	USGS DOQQ	8/26/96 - 8/27/96	B/W		6329500	5700
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2005	NAIP	08/05/2005	color	1-meter pixels	6329500	4170
2005	NAIP	08/04/2005	color	1-meter pixels	6329500	4350
2005	NAIP	07/28/2005	color	1-meter pixels	6329500	5110
2007	Woolpert	10/15/2007 - 11/2/0007	Color		6329500	
2009	NAIP	8/11/2009	Color	1-meter pixels	6329500	13000
2009	NAIP	8/10/2009	Color	1-meter pixels	6329500	13700
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/25/2011	Color	1-meter pixels	6329500	41100
2011	NAIP	7/20/2011	Color	1-meter pixels	6329500	48800
2013	NAIP	07/24/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	889	0.8%	1,055	0.9%	166
	Feature Type Totals	889	0.8%	1,055	0.9%	166
Floodplain	n Control					
	Floodplain Dike/Levee	1,279	1.1%	1,279	1.1%	0
	Feature Type Totals	1,279	1.1%	1,279	1.1%	0
	Reach Totals	2,168	1.9%	2,334	2.1%	166

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		0	0	0	0	672	0	0	0
	Totals	0	0	0	0	672	0	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

4/1/1943

2/1/1996

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft) 56,281	Anab. Ch. Length (ft)	Bankfull Braiding Parameter 1.00	1950 to 1976:	% Change in Braiding 4.55%
1976	55,880	2,540	1.05	1976 to 1995:	-4.35%
1995	55,920		1.00	1995 to 2001:	0.00%
2001	55,920		1.00	1950 to 2001:	0.00%
Change 1950 - 2001	-361		0.00		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	40	7.2%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	515		1071		
Total Floodplain Area (Ac)	554		1171		
Total Isolated (Ac)	40	7.2%	101	56.7%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	0	0	0

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal //Z eage	Restricted CMZ Acreage	% Restric Migratic Area	ted Tota on AH2 Acrea	al Re Z Ige A	stricted AHZ creage	% Restricted Avulsion Area
	46	92	1,2	32	6	0%	0		0	0%
2011 Res	stricted Mig	ration A	rea Sur	nmary	/	Note that th	ese data refle	ect the obse	erved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perce CN	ent of /IZ	2011 aerial photography (NAIP for Park and Swe Counties, COE for the rest of the river).		Sweet Grass		
Road/Railro	oad Prism									
	Public Road		2	0.1	%					
RipRap										
	Interstate		4	0.3	3%					
		Totals	6	0.5	5%					
Land Us	es within th	e CMZ (Acres)	Fl Irrig	ood jation	Sprinkler Irrigation	Pivot Irrigation	Urban. ExUrba	n po	Frans- ortation
				2	2.4	0.0	0.3	0.0		2.3

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Timeline - Tiers 2 and 3		Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	10	64	67	61	0.1%	0.8%	0.8%	0.7%
	Totals	10	64	67	61	0.1%	0.8%	0.8%	0.7%
Agricultural Land	d								
	Non-Irrigated	6,415	5,982	5,027	5,001	78.2%	72.9%	61.3%	60.9%
	Irrigated	631	779	1,761	1,782	7.7%	9.5%	21.5%	21.7%
	Totals	7,046	6,761	6,789	6,783	85.9%	82.4%	82.7%	82.7%
Channel									
	Channel	1,008	1,000	999	1,011	12.3%	12.2%	12.2%	12.3%
	Totals	1,008	1,000	999	1,011	12.3%	12.2%	12.2%	12.3%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	34	0	0	0.0%	0.4%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	3	3	0.0%	0.0%	0.0%	0.0%
	Totals	0	34	3	3	0.0%	0.4%	0.0%	0.0%
Transportation									
	Public Road	61	57	54	54	0.7%	0.7%	0.7%	0.7%
	Interstate	0	210	219	219	0.0%	2.6%	2.7%	2.7%
	Railroad	81	81	76	76	1.0%	1.0%	0.9%	0.9%
	Totals	142	348	348	348	1.7%	4.2%	4.2%	4.2%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	meline - Tiers 3 and	14								Char	ige Betv	veen Y	ears
			Acr	res		%	of Rea	ch Area	a	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	907	1,070	0.0%	0.0%	13.4%	15.8%	0.0%	13.4%	2.4%	15.8%
	Flood	631	779	854	712	8.9%	11.5%	12.6%	10.5%	2.6%	1.1%	-2.1%	1.5%
	Totals	631	779	1,761	1,782	8.9%	11.5%	25.9%	26.3%	2.6%	14.4%	0.3%	17.3%

Reach D2

Non-I	rrigated	
	J	

Multi-Use	5,363	5,278	4,383	4,815	76.1%	78.1%	64.6%	71.0%	1.9%	-13.5%	6.4%	-5.1%
Hay/Pasture	1,052	704	644	186	14.9%	10.4%	9.5%	2.7%	-4.5%	-0.9%	-6.7%	-12.2%
Totals	6,415	5,982	5,027	5,001	91.1%	88.5%	74.1%	73.7%	-2.6%	-14.4%	-0.3%	-17.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (Acres)			Closed Timber (Acres)			Оре	cres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.5	1.1	1.2	0.2	1.1	0.9	49.5		1.7
Max	72.7	69.9	94.0	12.8	18.3	13.0	49.5		78.1
Average	11.4	12.9	13.0	4.5	9.9	6.8	49.5		22.9
Sum	182.2	321.8	234.5	31.7	49.7	27.3	49.5		91.7
Riparian	Turnove	er er er e			Riparian t	to Channel (a	cres)	5.2	
from channel to riparian between the 1950's Channel to Riparian Encroaching Channel to Riparia					Channel t	to Riparian (a	cres)	53.5	
					oachment (a	cres)	48.3		
Riparian	Recruit	nent	1950s Char	nnel Mapped	as 2011 Ripa	arian (Ac)	72.2		
Creation of	f riparian are	as	1950s Floodp	lain Mapped	as 2011 Cha	nnel (Ac)	1.6		
between 1950s and 2001. Total Recruitment (1950s to 2011)(Ac)					73.8				

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	11.0	22.9	4.5	0.0	38.4
Acres/Valley Mile	1.1	2.3	0.5	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	10.79	0.96%	30.21	0.29	1.36	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat Bluff Pool	Bankfull 231.1	Low Flow 176.5	% of Low Flow 17.7%
Terrace Pool	549.1	397.3	39.8%
Secondary Channel		10.3	1.0%
Secondary Channel (Seasonal)	19.1	2.8	0.3%
Channel Crossover	179.9	165.8	16.6%
Point Bar		68.5	6.9%
Side Bar		71.5	7.2%
Mid-channel Bar		9.2	0.9%
Island	19.6	19.6	2.0%
Dry Channel		77.5	7.8%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

County	Prairie
Classification	PCS: Partially confined straight
General Location	Downstream of Fallon Bridge
General Comments	Hugs right bank wall; into Dawson County

Upstream River Mile	126.5
Downstream River Mile	118.1
Length	8.40 mi (13.52 km)

Narrative Summary

Reach D3 straddles the Prairie/Dawson County line, extending from the Fallon Bridge to about two miles into Dawson County. The reach is 8.4 miles long and has been classified as a Partially Confined Straight (PCS) reach type, indicating minimal meandering and some influence of the valley wall on river form and process. Sandstones of the Fort Union Formation typically form the south bank, and younger erosion-resistant terraces confine the channel to the north. Because of the geologic confinement, channel migration rates are low and the riparian corridor is notably thin or absent. The Channel Migration Zone (CMZ) is extremely narrow because there has been only minor bank migration in this reach since 1950. All of the migration measured in the reach was at RM 123, where the river abruptly hits the south valley wall and apparently backwaters as it has developed a series of islands that drive local bank movement. From 1950 to 2011, the right bank migrated almost 900 feet at this single location. These islands provide areas for riparian colonization and habitat for bird species such as least terns.

Approximately 1,500 feet of bank armor have been mapped in the reach; about 2/3 of that armor protects the Interstate Bridge, with the remainder (600 feet) protecting irrigated land. Two pipelines cross the river about 1,000 feet downstream from the Interstate Bridge. One is an 8-inch petroleum product line that has been abandoned and purged, and the other is a product line that was directionally drilled in 1999. About 4,000 feet downstream from the Fallon Bridge, three large bridge piers from an old trestle remain in the middle of the river.

The Glendive Pump Station #1 is located about two miles downstream of the Fallon Bridge at RM 124.5L and is part of the Glendive Unit of the Buffalo Rapids Project. Construction of the unit began November 12, 1937, with ground breaking for excavation of the main canal. The following April 1938, excavation began on the lateral system. The first operation of the pumping station occurred on September 26, 1939, before the Unit was completed; diverted water was allowed to flow about ten miles down the main canal. Ice damage in 2012 required in extensive repairs to the pumping station. The unit serves 16,500 acres of irrigated land.

Land use in Reach D3 is predominantly agricultural, with about 600 acres of pivot irrigation development since 1950. All of the pivots are on the north side of the river, and several of them extend to the river bank and into the CMZ. In total, 57 acres of land under pivot irrigation are within the CMZ, making them especially prone to the threat of bank erosion. Although there has been extensive pivot development, most irrigated land had remained in flood irrigation in 2011 (1,500 acres).

Dump sites were mapped on the banks or in adjacent riparian areas at RM 125.6R, RM 124.2L, and RM 122L.

The most recently available map of the proposed Keystone Pipeline route shows that the line would cross the Yellowstone River at the lower end of Reach D3, at approximately RM 118.2 (www.keystone.steamingmules.com). The river is at Milepost 198 on the proposed pipeline route.

About 108 acres or 49 percent of the historic 5-year floodplain has become isolated in Reach D3, primarily due to flow alterations.

There are 11 acres of mapped Russian olive in the reach.

Bluff pools and terrace pools make up 22 percent of the low flow fish habitat mapped in the reach, indicating that this reach may provide important areas for fish species that prefer this habitat type.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The magnitude of the 100-year flood is now 20,000 cfs or 14 percent lower than it was pre-development. The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,820 cfs to 2,750 cfs with human development, a reduction of 43 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,970 cfs under unregulated conditions to 3,240 cfs under regulated conditions, a reduction of 55 percent.

Seasonal low flows have increased by 62 percent in the winter and 75 percent in the fall.

CEA-Related observations in Reach D3 include: •Isolation of historic 5-year floodplain area due to flow alterations

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D3 include:

•Solid waste (dump site) removal at RM 125.6R, RM 124.2L, and RM 122L

•Pipeline crossing practices at RM 126.2

•Russian olive removal

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

Flood His	story				Downstream	Upstream
Year	Date	Flow on Date	Return Interval	Gage No	6329500	6309000
1978	May 23	111,000	10-25 yr	Location	Sidney	Miles City
1912	Mar 29	114,000	10-25 yr	Period of Record	1911-2015	1929-2015
1944	Jun 21	120,000	10-25 yr	Distance To (miles)	07.2	
2011	May 24	124,000	10-25 yr	Distance To (miles)	07.3	57.5
1918	Jun 20	126,000	25-50 yr			
1943	Mar 29	132,000	25-50 yr			
1923	Oct 3	134,000	25-50 yr			
1952	Mar 31	138,000	25-50 yr			
1921	Jun 21	159,000	100-yr			

Discharge

· · ·	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		68,900	88,500	102,000	131,000	143,000	174,000	4,820	6,970
Regulated		53,700	73,000	85,400	112,000	123,000	147,000	2,750	3,240
% Change		-22.06%	-17.51%	-16.27%	-14.50%	-13.99%	-15.52%	-42.95%	-53.52%

Flow Duration		Streamflow, in ft3/s, which was equal exceeded for indicated percent of t					
Season		5%	50%	95%			
Spring	Unregulated	67,000	25,000	6,870			
	Regulated	51,700	14,900	5,010			
	% Change	-23%	-40%	-27%			
Summer	Unregulated	46,900	14,800	6,970			
	Regulated	35,000	8,900	3,240			
	% Change	-25%	-40%	-54%			
Fall	Unregulated	9,740	5,940	2,060			
	Regulated	11,200	7,420	3,600			
	% Change	15%	25%	75%			
Winter	Unregulated	14,300	5,320	2,110			
	Regulated	14,900	6,480	3,420			
	% Change	4%	22%	62%			
Annual	Unregulated	49,600	8,860	2,820			
	Regulated	37,000	7,990	3,660			
	% Change	-25%	-10%	30%			

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010

95% Sum

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	USCOE	9-Oct-76	B/W	1:24,000	6329500	9580
1995	USGS DOQQ	7/9/96 - 8/26/96	B/W		6329500	35000
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2005	NAIP	08/05/2005	color	1-meter pixels	6329500	4170
2007	Woolpert	10/15/2007 - 11/2/0007	Color		6329500	
2009	NAIP	8/10/2009	Color	1-meter pixels	6329500	13700
2009	NAIP	8/1/2009	Color	1-meter pixels	6329500	12600
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/20/2011	Color	1-meter pixels	6329500	48800
2013	NAIP	07/27/2013	color	1-meter pixels	6329500	
2013	NAIP	07/24/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	tabilization					
	Rock RipRap	1,283	1.5%	1,493	1.7%	210
	Feature Type Totals	1,283	1.5%	1,493	1.7%	210
	Reach Totals	1,283	1.5%	1.493	1.7%	210

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Rock RipRap		597	0	0	0	902	0	0	0
	Totals	597	0	0	0	902	0	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan.	Anab. Ch.	Bankfull Braiding Parameter		% Change in Braiding
1950	45,233	13,093	1.29	1950 to 1976:	7.04%
1976	43,598	16,577	1.38	1976 to 1995:	2.31%
1995	43,654	17,992	1.41	1995 to 2001:	1.71%
2001	44,080	19,230	1.44	1950 to 2001:	11.38%
Change 1950 - 2001	-1,153	6,136	0.15		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year			
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain		
Non-Structural (hydrology, geomorphic, etc.)	101	12.7%				
Agriculture (generally relates to field boundaries)	0	0.0%				
Agriculture (isloated by canal or large ditch)	0	0.0%				
Levee/Riprap (protecting agricultural lands)	0	0.0%				
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%				
Railroad	0	0.0%				
Abandoned Railroad	0	0.0%				
Transportation (Interstate and other roads)	0	0.0%				
Total Not Isolated (Ac)	695		988			
Total Floodplain Area (Ac)	796		1096			
Total Isolated (Ac)	101	12.7%	108	48.7%		

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	0	3	3

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 188	Erosion Buffer (ft) 376	Tot CN Acre 1,7 ⁻	tal Restrict IZ CMZ age Acreag 17 18	ed % Restric Migratio e Area 1%	cted Total on AHZ Acreac 137	Restricted AHZ ge Acreage 0	% Restricted Avulsion Area 0%			
2011 Res	stricted Mig	ration Ar	rea Sun	nmary	Note that th	Note that these data reflect the observed conditions in the					
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, C	Counties, COE for the rest of the river).					
RipRap											
	Irrigated		9	0.5%							
	Interstate		8	0.4%							
		Totals	18	1.0%							
Land Use	es within th	e CMZ (A	Acres)	Flood Irrigation 59.9	Sprinkler Irrigation 0.0	Pivot Irrigation 57.4	Urban/ ExUrban p 0.0	Trans- ortation 4.4			

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	12	11	12	12	0.2%	0.2%	0.2%	0.2%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	9	64	63	57	0.1%	0.9%	0.9%	0.8%	
	Totals	21	75	75	69	0.3%	1.1%	1.1%	1.0%	
Agricultural Lan	d								1.1	
	Non-Irrigated	4,387	3,890	4,076	3,596	63.5%	56.3%	59.0%	52.1%	
	Irrigated	1,421	1,835	1,621	2,102	20.6%	26.6%	23.5%	30.4%	
	Totals	5,808	5,725	5,697	5,698	84.1%	82.9%	82.5%	82.5%	
Channel						•			1	
	Channel	1,009	1,038	1,054	1,058	14.6%	15.0%	15.3%	15.3%	
	Totals	1,009	1,038	1,054	1,058	14.6%	15.0%	15.3%	15.3%	
ExUrban										
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
Transportation										
	Public Road	24	24	24	24	0.3%	0.3%	0.3%	0.3%	
	Interstate	0	0	13	13	0.0%	0.0%	0.2%	0.2%	
	Railroad	41	41	41	41	0.6%	0.6%	0.6%	0.6%	
	Totals	65	65	78	78	0.9%	0.9%	1.1%	1.1%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	neline - Tiers 3 and	4								Char	nge Betv	veen Y	ears
			Acr	es		%	of Rea	ch Area	l I	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	43	598	0.0%	0.0%	0.8%	10.5%	0.0%	0.8%	9.7%	10.5%
	Flood	1,421	1,835	1,578	1,504	24.5%	32.1%	27.7%	26.4%	7.6%	-4.4%	-1.3%	1.9%
	Totals	1,421	1,835	1,621	2,102	24.5%	32.1%	28.4%	36.9%	7.6%	-3.6%	8.4%	12.4%

Reach D3

Non-I	rrigated
	0

Multi-Use	4,133	3,809	4,004	3,493	71.2%	66.5%	70.3%	61.3%	-4.6%	3.8%	-9.0%	-9.9%
Hay/Pasture	254	81	72	104	4.4%	1.4%	1.3%	1.8%	-3.0%	-0.1%	0.6%	-2.6%
Totals	4,387	3,890	4,076	3,596	75.5%	67.9%	71.6%	63.1%	-7.6%	3.6%	-8.4%	-12.4%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (Acı			es) Closed Timber (Acres)			(cres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.8	0.2	1.3	0.3	4.1	1.1	1.2	4.2	0.0
Max	145.5	131.6	99.4	40.2	38.1	156.2	68.0	53.8	52.8
Average	15.7	27.1	20.9	19.8	14.2	28.0	21.9	21.0	18.0
Sum	345.1	542.2	418.0	98.9	142.5	196.1	175.3	105.2	108.2
Riparian	Turnove)r			Riparian t	o Channel (a	cres)	42.3	
Conve from cl	rsion of ripar hannel to rip	ian areas to arian betwee	channel, or n the 1950's		Channel to Riparian (acres) 56.1				
and 20	01 data set.			R	Riparian Encroachment (acres) 13.8				
Riparian	Recruit	nent	1950s Chai	nnel Mapped	as 2011 Ripa	arian (Ac)	84.6		
Creation o	f riparian are	as	1950s Floodp	lain Mapped	as 2011 Cha	innel (Ac)	39.3		
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	123.9		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	12.1	80.1	7.1	0.0	99.3
Acres/Valley Mile	1.5	10.2	0.9	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	10.70	0.86%	24.13	0.01	0.88	0.12

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)					
Habitat	Bankfull	Low Flow	% of Low Flow			
Scour Pool	290.7	173.4	16.5%			
Bluff Pool	85.2	47.0	4.5%			
Terrace Pool	223.7	190.1	18.0%			
Secondary Channel	56.2	69.2	6.6%			
Secondary Channel (Seasonal)	53.3	42.6	4.0%			
Channel Crossover	183.5	154.4	14.6%			
Point Bar		23.9	2.3%			
Side Bar		51.5	4.9%			
Mid-channel Bar		31.5	3.0%			
Island	179.0	179.0	17.0%			
Dry Channel		91.4	8.7%			

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

11.00 mi (17.70 km)

118.1

107.1

Upstream River Mile

Length

Downstream River Mile

County	Dawson
Classification	PCM/I: P

Hoyt

Partially confined meandering/islands

General Location General Comments

Co

Narrative Summary

Reach D4 is located in western Dawson County. The reach is 11 miles long and has a meandering planform with forested islands that formed where meanders have cut off.

Approximately 1,500 feet of bank armor have been mapped in the reach, including 920 feet of rock riprap and 590 feet of concrete riprap. This armor collectively covers about 1.3 percent of the bankline.

Prior to 1950, a side channel on the south floodplain at RM 110.8R was blocked by a small dike. This channel remnant is about a mile and a half long and currently has blockages at its middle and lower end.

Similar to many reaches in the Lower Yellowstone Valley, the river channel in Reach D4 has gotten smaller since 1950. The channel contracted by about 115 acres in this reach since 1950, and about 84 acres of riparian vegetation has encroached into old channel areas. This pattern has been consistent in the lower river, and relates primarily to a reduction in flows due to human development. Although there has been net encroachment of riparian vegetation, most of this cover is either shrub or open timber. The extent of closed timber dropped from 371 acres in 1950 to 191 acres in 2001.

Land use is predominantly agricultural, with about 180 acres of pivot irrigation development since 1950. About 20 acres of land in pivot irrigation has encroached into the Channel Migration Zone (CMZ), making it especially susceptible to damage by river erosion. Although there has been extensive pivot development, most irrigated land had remained in flood irrigation in 2011 (2,300 acres). Approximately 125 acres of flood irrigated land is within the CMZ.

One solid waste dump site was mapped on the right bank at RM 117.8L. Animal handling facilities (corral complexes) were mapped within a few thousand feet of the river at RM 112.2R, RM 114L, and RM 116L.

About 195 acres or 46 percent of the historic 5-year floodplain has become isolated, primarily due to flow alterations.

There are 16 acres of mapped Russian olive in the reach. Most of the Russian olive is in tributary drainages that flow into the Yellowstone River from the north.

Due to a reduction in the extent of closed timber with time, the extent of riparian forest considered at low risk of cowbird parasitism in Reach D4 has been reduced since 1950. At that time, there were 36.5 acres per mile of forest considered less prone to cowbirds, but by 2001 that had dropped to 14.7 acres per mile of such forest.

One ice jam was recorded in Reach D4. On March 4, 1994, a breakup jam forced local evacuations due to flooding.

Bluff pools and terrace pools make up 22 percent of the low flow fish habitat mapped in the reach, indicating that this reach may provide important areas for fish species that prefer this habitat type.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The magnitude of the 100-year flood is now 121,000 cfs, or 14 percent lower than it was pre-development. The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,800 cfs to 2,730 cfs with human development, a reduction of 43 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,980 cfs under unregulated conditions to 3,220 cfs under regulated conditions, a reduction of 54 percent.

Seasonal low flows have increased by 63 percent in the winter and 76 percent in the fall.

CEA-Related observations in Reach D4 include: Increased risk of cowbird parasitism with loss of closed timber

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D4 include:

Side channel reactivation at RM 110.3R

•Solid waste (dump site) removal at RM 117.8L

Russian olive removal

•Nutrient management at corral complexes at RM 112.2R, RM 114L, and RM 116L

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

Flood His	story				Downstream	Upstream
Year	Date	Flow on Date	Return Interval	Gage No	Gage 6329500	Gage 6309000
1978	May 23	111,000	10-25 yr	Location	Sidney	Miles City
1912	Mar 29	114,000	10-25 yr	Period of Record	1911-2015	1929-2015
1944	Jun 21	120,000	10-25 yr		70.0	05.0
2011	May 24	124,000	10-25 yr	Distance To (miles)	76.3	65.9
1918	Jun 20	126,000	25-50 yr			
1943	Mar 29	132,000	25-50 yr			
1923	Oct 3	134,000	25-50 yr			
1952	Mar 31	138,000	25-50 yr			
1921	Jun 21	159,000	100-yr			

Discharge

	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		69,100	88,900	102,000	132,000	145,000	175,000	4,800	6,980
Regulated		53,900	73,500	86,100	113,000	124,000	149,000	2,730	3,220
% Change		-22.00%	-17.32%	-15.59%	-14.39%	-14.48%	-14.86%	-43.13%	-53.87%

Flow Duration		Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time					
Season		5%	50%	95%			
Spring	Unregulated	67,300	25,100	6,890			
	Regulated	51,900	15,000	5,030			
	% Change	-23%	-40%	-27%			
Summer	Unregulated	47,100	14,900	6,980			
	Regulated	35,100	8,910	3,220			
	% Change	-25%	-40%	-54%			
Fall	Unregulated	9,750	5,950	2,040			
	Regulated	11,200	7,430	3,590			
	% Change	15%	25%	76%			
Winter	Unregulated	14,400	5,320	2,110			
	Regulated	15,000	6,490	3,430			
	% Change	4%	22%	63%			
Annual	Unregulated	49,800	8,890	2,820			
	Regulated	37,100	8,000	3,650			
	% Change	-26%	-10%	29%			

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010

95% Sum

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	USCOE	9-Oct-76	B/W	1:24,000	6329500	9580
1995	USGS DOQQ	6/12/96 - 8/8/96 - 7/9/96	B/W		6329500	
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2004	Merrick	20-May-04	Color	1:15,840	6329500	5070
2005	NAIP	08/05/2005	color	1-meter pixels	6329500	4170
2005	NAIP	07/31/2005	color	1-meter pixels	6329500	5280
2009	NAIP	8/1/2009	Color	1-meter pixels	6329500	12600
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/20/2011	Color	1-meter pixels	6329500	48800
2013	NAIP	07/24/2013	color	1-meter pixels	6329500	
2013	NAIP	07/27/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	0	0.0%	921	0.8%	921
	Concrete RipRap	0	0.0%	587	0.5%	587
	Feature Type Totals		0.0%	1,509	1.3%	
Other In C	hannel					
	Bedrock Outcrop	1,961	1.7%	1,961	1.7%	0
	Feature Type Totals	1,961	1.7%	1,961	1.7%	0
	Reach Totals	1,961	1.7%	3,469	3.0%	1,509

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

	Sum of Feature Length (ft)							
Feature Type	1950	1976	1995	2001	2004	2005		
Floodplain Dike/Levee	0	1,978	1,978	1,978	1,978	1,978		
Totals	0	1,978	1,978	1,978	1,978	1,978		
Floodplain Dike/Levee	0	481	481	481	481	481		
Totals	0	481	481	481	481	481		
croachment								
Railroad	18,032	18,032	18,032	18,032	18,032	18,032		
Totals	18,032	18,032	18,032	18,032	18,032	18,032		
	Feature Type Floodplain Dike/Levee Totals Floodplain Dike/Levee Totals croachment Railroad Totals	Feature Type1950Floodplain Dike/Levee0Totals0Floodplain Dike/Levee0Totals0croachment18,032Railroad18,032Totals18,032	Sum Feature Type 1950 1976 Floodplain Dike/Levee 0 1,978 Totals 0 1,978 Floodplain Dike/Levee 0 481 Totals 0 481 Croachment 18,032 18,032 Totals 18,032 18,032	Sum of Feature Type Sum of Feature Type Floodplain Dike/Levee 0 1,978 1995 Floodplain Dike/Levee 0 1,978 1,978 Floodplain Dike/Levee 0 481 481 Totals 0 481 481 Croachment 18,032 18,032 18,032 Totals 18,032 18,032 18,032	Sum of Feature Leng Feature Type 1950 1976 1995 2001 Floodplain Dike/Levee 0 1,978 1,978 1,978 1,978 Totals 0 1,978 1,978 1,978 1,978 Floodplain Dike/Levee 0 481 481 481 Totals 0 481 481 481 croachment 18,032 18,032 18,032 18,032 Totals 18,032 18,032 18,032 18,032	Sum of Feature Length (ft) Feature Type 1950 1976 1995 2001 2004 Floodplain Dike/Levee 0 1,978 1,978 1,978 1,978 1,978 Totals 0 1,978 1,978 1,978 1,978 1,978 Floodplain Dike/Levee 0 481 481 481 481 Totals 0 481 481 481 Croachment 18,032 18,032 18,032 18,032 Totals 18,032 18,032 18,032 18,032 18,032		

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

3/4/1994

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	59,835	38,509	1.64	1950 to 1976:	-2.57%
1976	58,168	34,978	1.60	1976 to 1995:	-5.47%
1995	58,151	29,871	1.51	1995 to 2001:	-6.86%
2001	57,997	23,767	1.41	1950 to 2001:	-14.22%
Change 1950 - 2001	-1,838	-14,742	-0.23		
Length of Side		Pre-1950s (ft)	8,549		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	98	7.7%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	1171		1463		
Total Floodplain Area (Ac)	1269		1658		
Total Isolated (Ac)	98	7.7%	195	46.0%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	0	0	0

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal F MZ eage	Restricted CMZ Acreage	% Restric Migratio Area	ted Tota n AH2 Acrea	al Re Z Ige A	estricted AHZ Acreage	% Restricted Avulsion Area
	194	388	2,5	81	38	1%	194	ŀ	0	0%
2011 Res	stricted Mig	gration A	rea Sur	nmary		Note that the	ese data refle	ect the obs	erved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percen CM	it of Z	Counties, C	ver).	Sweet Grass		
RipRap										
	Irrigated		18	0.6%	6					
Dike/Levee										
	Railroad		38	1.3%	6					
		Totals	55	2.0%	6					
Land Us	es within th	ne CMZ (Acres)	Flo Irriga	od ation	Sprinkler Irrigation	Pivot Irrigation	Urban ExUrba	an po	Frans- ortation
				125	5.3	0.0	19.8	0.0		7.4

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Aci	res		%	of Rea	% of Reach Area		
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	75	70	140	143	0.8%	0.7%	1.5%	1.5%	
	Totals	75	70	140	143	0.8%	0.7%	1.5%	1.5%	
Agricultural Lan	d									
	Non-Irrigated	6,022	5,263	5,482	5,350	63.0%	55.1%	57.4%	56.0%	
	Irrigated	1,601	2,384	2,446	2,545	16.8%	24.9%	25.6%	26.6%	
	Totals	7,623	7,646	7,929	7,895	79.8%	80.0%	83.0%	82.6%	
Channel										
	Channel	1,770	1,752	1,400	1,431	18.5%	18.3%	14.7%	15.0%	
	Totals	1,770	1,752	1,400	1,431	18.5%	18.3%	14.7%	15.0%	
ExUrban										
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
Transportation										
	Public Road	35	35	35	35	0.4%	0.4%	0.4%	0.4%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	52	52	52	52	0.5%	0.5%	0.5%	0.5%	
	Totals	88	87	87	87	0.9%	0.9%	0.9%	0.9%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Tir	meline - Tiers 3 and	4								Char	nge Betv	ween Y	ears
			Acr	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	44	0.0%	0.0%	0.0%	0.6%	0.0%	0.0%	0.6%	0.6%
	Pivot	0	120	94	180	0.0%	1.6%	1.2%	2.3%	1.6%	-0.4%	1.1%	2.3%
	Flood	1,601	2,264	2,352	2,321	21.0%	29.6%	29.7%	29.4%	8.6%	0.1%	-0.3%	8.4%
	Totals	1,601	2,384	2,446	2,545	21.0%	31.2%	30.9%	32.2%	10.2%	-0.3%	1.4%	11.2%

Non-Irrigated

Multi-Use	3,481	4,225	4,539	4,430	45.7%	55.3%	57.2%	56.1%	9.6%	2.0%	-1.1%	10.4%
Hay/Pasture	2,541	1,038	943	920	33.3%	13.6%	11.9%	11.7%	-19.8%	-1.7%	-0.2%	-21.7%
Totals	6,022	5,263	5,482	5,350	79.0%	68.8%	69.1%	67.8%	-10.2%	0.3%	-1.4%	-11.2%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	9	Shrub (Acres	5)	Closed Timber (Acres)			Ор	cres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.3	0.2	0.2	1.8	2.2	2.9	2.7	7.0	2.9	
Max	100.4	130.6	147.3	57.4	108.1	39.9	54.8	53.5	86.9	
Average	16.4	17.2	22.4	28.6	25.5	17.4	18.9	24.2	20.2	
Sum	556.0	688.0	671.9	371.5	331.2	191.2	151.5	145.4	222.0	
Riparian Turnover Riparian to Channel (a							cres)	108.5		
from cl	hannel to ripa	arian betweel	n the 1950's		Channel t	o Riparian (a	cres)	193.1		
and 20	01 data set.			R	iparian Encre	oachment (a	cres)	84.5		
Riparian	Recruitr	nent	1950s Char	nnel Mapped	as 2011 Ripa	arian (Ac)	258.6			
Creation o	tion of riparian areas 1950s Floodplain Mapped as 2011 Channel (Ac) 34.4									
between 1	950s and 20	01.	Tota	Total Recruitment (1950s to 2011)(Ac) 293.0						

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	8.0	103.2	24.3	0.0	135.5
Acres/Valley Mile	0.8	10.1	2.4	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	16.30	1.65%	80.00	0.00	3.42	1.01

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	256.5	189.9	13.6%
Bluff Pool	153.4	132.1	9.4%
Terrace Pool	208.3	183.9	13.1%
Secondary Channel	82.3	60.1	4.3%
Secondary Channel (Seasonal)	114.7	125.4	9.0%
Channel Crossover	401.3	246.6	17.6%
Point Bar		39.1	2.8%
Side Bar		83.7	6.0%
Mid-channel Bar		60.8	4.3%
Island	165.8	166.9	11.9%
Dry Channel		111.6	8.0%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

CountyDawsonClassificationPCA: Partially confined anabranchingGeneral LocationTo GlendiveGeneral CommentsLong secondary channels; to Glendive

pstream River Mile	107.1
ownstream River Mile	94.6
ength	12.50 mi (20.12 km)

U

D

L

Reach [

Narrative Summary

Reach D5 is located just south of Glendive. The reach is a 12.5 mile long Partially Confined Anabranching reach type, indicating the presence of forested islands with some valley wall influence on the river. The downstream end of the reach is at Black Bridge. Within Reach D5, the river flows across the Cedar Creek Anticline, which is a~115 mile long structure that extends from Glendive to Buffalo South Dakota. Oil was discovered on the anticline in 1951, and since then over a half a billion barrels of oil have been produced from 2,700 wells. As the river flows right through the anticline, the Pierre Shale becomes exposed in the right bluff line and the channel becomes more dynamic than upstream reaches. Active drill pads are located on both sides of the river; several of them are within the 100-year floodplain, and two are mapped within the CMZ.

Reach D5 has just over a mile of bank armor and most of that armor is rock riprap. There are also 1,050 feet of concrete armor and a few flow deflectors. About 640 feet of riprap was built between 2001 and 2011. The majority of the bank armor is protecting either streambank just upstream of Black Bridge. Black Bridge forms a major constriction in the river corridor and bank migration upstream of the bridge has been extensive. The bridge is oriented about 45 degrees off of the axis of the river corridor which further disrupts channel processes upstream. Just upstream of the bridge the river migrated over 1,700 feet eastward between 1950 and 2001, which is over 30 feet per year on average.

Since 1950, a side channel that is over 9,000 feet of side channel has been blocked by a dike at RM 105R. The dike crossing the head of this old channel is about 720 feet long. There are still several side channels in the reach that are perennial (flow year-round) and over a mile long.

Floodplain turnover rates have dropped in Reach D5 since 1976; prior to that time, floodplain turnover rates were about 18.5 acres per year, and since then rates have averaged 14.2 acres per year. The reduction in rates has been coupled by an increase in the extent of woody riparian vegetation of almost 300 acres.

Land use is dominated by agriculture, with 219 acres of pivot irrigation development since 1950. Some of the irrigation development took place in historic riparian areas; a total of 161 acres of riparian lands were converted for agricultural and other land uses since 1950. Development near Glendive has created about 310 acres of urban/exurban land uses in the reach. About 190 acres or 3 percent of the total CMZ has become restricted by physical features. Residential development near Glendive has encroached into the CMZ; in 2011, there were over 75 acres of urban/exurban land uses mapped within the CMZ.

Six dump sites were mapped in the reach in 2001. These sites are at RM 104L, RM 104.2L, RM 101L, RM 98L, RM 97.5L, and RM 97.1L.

One ice jam has been recorded in Reach D5. A breakup event was recorded on March 17, 2011, but no damages were recorded.

There is one pipeline crossing in the reach at RM 100. This crossing is the Poplar Pipeline owned by Bridger Pipeline, a 10 inch crude oil pipeline that ruptured in 2015. The pipeline crossing is located at the downstream end of a large forested island. Bank migration at the site has been relatively slow.

About 8 percent of the total 100-year floodplain has become isolated due to human development and most of that isolated floodplain area is behind floodplain dikes near Black Bridge. The 5-year floodplain is even more affected; 31 percent of the historic 5-year floodplain is no longer inundated at that frequency. There has been over 1,260 acres of woody riparian vegetation recruitment in the reach since 1950, indicating generation of new forest, some of which reflects encroachment due to lower flows and a shrinking river channel. The bankfull area of the channel has dropped by 255 acres since 1950. Some of that riparian expansion has been due to Russian olive colonization; there are just under 50 acres of mapped Russian olive in the Reach D5 floodplain.

Reach D5 was sampled as part of the fisheries study. A total of 33 fish species were sampled in the reach including four identified by the Montana Natural Heritage Program as a Species of Concern (SOC): the Blue Sucker, Pallid sturgeon, Sauger, and Sturgeon chub.

Reach D5 was sampled as part of the avian study. A total of 33 bird species were identified in the reach. One bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) was found, the Plumbeous Vireo. The Red-headed Woodpecker was also observed, which has been identified as a Species of Concern (SOC). Reach D5 has seen a decrease in the forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 86 acres per valley mile of such forest, and that number decreased to 38 acres per valley mile by 2001.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,800 cfs to 2,720 cfs with human development, a reduction of 436 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,980 cfs under unregulated conditions to 3,220 cfs, a reduction of 54 percent.

CEA-Related observations in Reach D5 include:

•Channel migration issues upstream of major constriction that is poorly aligned to corridor (Black Bridge)

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D5 include: •Side channel reactivation at RM 104.5

Russian olive removal

•Pipeline Crossing Practices at RM 100

•Dump site removal at RM 104L, RM 104.2L, RM 101L, RM 98L, RM 97.5L, and RM 97.1L

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

Flood His	story				Downstream	Upstream
Year	Date	Flow on Date	Return Interval	Gage No	Gage 6329500	Gage 6309000
1978	May 23	111,000	10-25 yr	Location	Sidney	Miles City
1912	Mar 29	114,000	10-25 yr	Period of Record	1911-2015	1929-2015
1944	Jun 21	120,000	10-25 yr			70.0
2011	May 24	124,000	10-25 yr	Distance To (miles)	63.8	76.9
1918	Jun 20	126,000	25-50 yr			
1943	Mar 29	132,000	25-50 yr			
1923	Oct 3	134,000	25-50 yr			
1952	Mar 31	138,000	25-50 yr			
1921	Jun 21	159,000	100-yr			

Discharge

· · ·	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		69,200	89,100	102,000	132,000	145,000	176,000	4,800	6,980
Regulated		54,000	73,700	86,400	113,000	124,000	150,000	2,720	3,220
% Change		-21.97%	-17.28%	-15.29%	-14.39%	-14.48%	-14.77%	-43.33%	-53.87%

Flow Duration		Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time					
Season		5%	50%	95%			
Spring	Unregulated	67,300	25,100	6,900			
	Regulated	52,000	15,000	5,040			
	% Change	-23%	-40%	-27%			
Summer	Unregulated	47,100	14,900	6,980			
	Regulated	35,100	8,920	3,220			
	% Change	-25%	-40%	-54%			
Fall	Unregulated	9,760	5,950	2,040			
	Regulated	11,200	7,440	3,580			
	% Change	15%	25%	75%			
Winter	Unregulated	14,400	5,330	2,110			
	Regulated	15,000	6,490	3,430			
	% Change	4%	22%	63%			
Annual	Unregulated	49,800	8,900	2,820			
	Regulated	37,100	8,010	3,650			
	% Change	-26%	-10%	29%			

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010

95% Sum

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	USCOE	9-Oct-76	B/W	1:24,000	6329500	9580
1995	USGS DOQQ	12-Jun-96	B/W		6329500	
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2004	Merrick	5/20/2004 - 6/3/04	Color	1:15,840	6329500	5070
2005	NAIP	07/31/2005	color	1-meter pixels	6329500	5280
2009	NAIP	8/10/2009	Color	1-meter pixels	6329500	13700
2009	NAIP	8/1/2009	Color	1-meter pixels	6329500	12600
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/20/2011	Color	1-meter pixels	6329500	48800
2013	NAIP	07/27/2013	color	1-meter pixels	6329500	
2013	NAIP	07/24/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	3,771	2.8%	4,409	3.3%	638
	Flow Deflectors	0	0.0%	58	0.0%	58
	Concrete RipRap	1,049	0.8%	1,049	0.8%	0
	Feature Type Totals	4,820	3.6%	5,516	4.1%	696
Floodplain	Control					I
	Transportation Encroachment	2,815	2.1%	2,815	2.1%	0
	Floodplain Dike/Levee	3,546	2.7%	2,914	2.2%	-632
	Feature Type Totals	6,361	4.8%	5,729	4.3%	-632
	Reach Totals	11,181	8.4%	11,244	8.4%	63

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap		0	0	0	0	0	1,050	0	0
Rock RipRap		2,801	558	328	0	0	328	0	0
	Totals	2,801	558	328	0	0	1,378	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

		Sum of Feature Length (ft)					
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005
Irrigation							
	Floodplain Dike/Levee	6,008	6,008	6,008	6,008	6,008	6,008
	Totals	6,008	6,008	6,008	6,008	6,008	6,008
Other							
	Floodplain Dike/Levee	0	1,233	2,007	2,007	2,007	2,007
	Totals	0	1,233	2,007	2,007	2,007	2,007
Other Off Channe	el						
	Floodplain Dike/Levee	1,760	6,350	9,893	9,893	10,262	10,262
	Totals	1,760	6,350	9,893	9,893	10,262	10,262
Stream Stabilizat	ion						
	Rock RipRap	0	3,844	3,844	3,844	3,844	3,844
	Concrete RipRap	0	0	0	1,036	1,036	1,036
	Totals	0	3,844	3,844	4,879	4,879	4,879

Reach D5

Transportation Encroachment

Totals	31,917	33,499	35,933	35,933	35,933	35,933
Bridge Approach	1,707	1,707	1,707	1,707	1,707	1,707
County Road	13,899	13,899	13,899	13,899	13,899	13,899
Other	2,394	3,975	6,409	6,409	6,409	6,409
Railroad	13,917	13,917	13,917	13,917	13,917	13,917

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

3/17/2011

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	65,846	96,726	2.47	1950 to 1976:	1.76%
1976	66,784	101,011	2.51	1976 to 1995:	16.27%
1995	59,770	114,837	2.92	1995 to 2001:	-13.84%
2001	66,626	101,078	2.52	1950 to 2001:	1.95%
Change 1950 - 2001	780	4,352	0.05		
Length of Side		Pre-1950s (ft)			
Channels Blocked		Post-1950s (ft)	9,066		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	60	1.9%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	101	3.1%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	88	2.7%			
Total Not Isolated (Ac)	2974		3035		
Total Floodplain Area (Ac)	3222		3571		
Total Isolated (Ac)	248	7.7%	536	30.8%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	14	0	0	14
CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal IZ age	Restricted CMZ Acreage	% Restric Migratio Area	ted Tot on AH Acrea	ial I IZ age	Restricted AHZ Acreage	% Restricted Avulsion Area
	481	962	5,72	21	190	3%	24	4	0	0%
2011 Res	stricted Mig	ration A	rea Sun	nmar	у	Note that the	ese data refl	ect the ob	served con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perco C	ent of MZ	Counties, C	OE for the re	est of the	r Park and s river).	Sweet Grass
Road/Railro	oad Prism									
	Railroad		35	0.	6%					
RipRap										
	Irrigated		98	1.	7%					
Dike/Levee										
	Railroad		56	1.	0%					
		Totals	190	3.	3%					
Land Us	es within th	e CMZ (/	Acres)	F Irri 4	lood gation 66.3	Sprinkler Irrigation 0.0	Pivot Irrigation 2.2	Urba ExUr 75	an/ T ban po .2	rans- ortation 10.7

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	25	56	100	114	0.2%	0.5%	0.9%	1.1%
	Totals	25	56	100	114	0.2%	0.5%	0.9%	1.1%
Agricultural Lan	d								
	Non-Irrigated	6,204	5,054	4,598	4,469	58.4%	47.6%	43.3%	42.1%
	Irrigated	865	1,664	1,927	1,910	8.1%	15.7%	18.1%	18.0%
	Totals	7,069	6,718	6,526	6,379	66.6%	63.3%	61.4%	60.1%
Channel									
	Channel	3,422	3,471	3,523	3,612	32.2%	32.7%	33.2%	34.0%
	Totals	3,422	3,471	3,523	3,612	32.2%	32.7%	33.2%	34.0%
ExUrban									1
	ExUrban Other	0	0	11	0	0.0%	0.0%	0.1%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	15	23	24	0.0%	0.1%	0.2%	0.2%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	15	34	24	0.0%	0.1%	0.3%	0.2%
Transportation									
	Public Road	43	40	40	40	0.4%	0.4%	0.4%	0.4%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	63	63	62	62	0.6%	0.6%	0.6%	0.6%
	Totals	106	103	103	102	1.0%	1.0%	1.0%	1.0%
Urban									
	Urban Other	0	9	28	28	0.0%	0.1%	0.3%	0.3%
	Urban Residential	0	174	203	203	0.0%	1.6%	1.9%	1.9%
	Urban Commercial	0	7	13	20	0.0%	0.1%	0.1%	0.2%
	Urban Undeveloped	0	23	25	55	0.0%	0.2%	0.2%	0.5%
	Urban Industrial	0	46	68	85	0.0%	0.4%	0.6%	0.8%
	Totals	0	258	337	391	0.0%	2.4%	3.2%	3.7%

Land Use Ti	and Use Timeline - Tiers 3 and 4							Change Between Years					
			Acr	res		%	of Rea	ch Area	a a a a a a a a a a a a a a a a a a a	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	0	218	0.0%	0.0%	0.0%	3.4%	0.0%	0.0%	3.4%	3.4%
	Flood	865	1,664	1,927	1,691	12.2%	24.8%	29.5%	26.5%	12.5%	4.8%	-3.0%	14.3%
	Totals	865	1,664	1,927	1,910	12.2%	24.8%	29.5%	29.9%	12.5%	4.8%	0.4%	17.7%

Non-Irrigated

Multi-Use	5,911	4,695	4,329	4,243	83.6%	69.9%	66.3%	66.5%	-13.7%	-3.5%	0.2%	-17.1%
Hay/Pasture	294	360	269	226	4.2%	5.4%	4.1%	3.5%	1.2%	-1.2%	-0.6%	-0.6%
Totals	6,204	5,054	4,598	4,469	87.8%	75.2%	70.5%	70.1%	-12.5%	-4.8%	-0.4%	-17.7%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (Acres			s) Closed Timber (Acres)			(cres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min Max Average Sum	0.6 174.6 22.6 1,490.2	0.3 163.1 18.6 1,298.6	0.2 121.9 18.9 1,249.1	0.4 127.9 39.0 819.3	3.7 121.5 31.6 662.6	1.1 182.7 39.5 948.2	3.4 61.9 19.4 330.4	0.5 175.9 40.9 654.9	6.5 181.9 42.6 511.5
Riparian Conve from c and 20	ersion of ripar hannel to ripa 001 data set.	er ian areas to o arian betweel	channel, or n the 1950's	R	Riparian t Channel t iparian Encr e	to Channel (a to Riparian (a oachment (a	cres) cres) cres)	505.9 800.4 294.4	
Riparian	Recruit	nent	1950s Char	nnel Mapped	as 2011 Ripa	arian (Ac)	850.2		
Creation of riparian areas 1950s Flood between 1950s and 2001. Tota			lain Mapped I Recruitme i	as 2011 Cha nt (1950s to 2	innel (Ac) 2011)(Ac)	410.1 1260.3			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	23.7	152.8	102.2	0.0	278.7
Acres/Valley Mile	2.2	14.3	9.5	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	48.95	2.58%	112.24	0.44	24.58	7.97

Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region	Region	Region	Region Reach
Bigmouth buffalo	✓ ✓ Flathead chub	☐ ✔ Northern redbelly dace	Stonecat
✓ Black bullhead	Freshwater drum	✓ ✓ Pallid sturgeon	Sturgeon chub
Black crappie	Goldeye	Pumpkinseed	Sucker species
✓ ✓ Blue sucker	Green sunfish	Rainbow trout	Sunfish species
Bluegill	Lake chub	River carpsucker	V Walleye
Brook stickleback	Largemouth bass	Rock bass	✓ ✓ Western silvery minnov
Brown trout	✓ ✓ Longnose dace	Sand shiner	☐ ✔ White bass
V Burbot	✓ ✓ Longnose sucker	Sauger	✓ ✓ White crappie
✓ ✓ Catfish species	Minnow species	Shorthead redhorse	✓ ✓ White sucker
Channel catfish	Mottled sculpin	☐ ✔ Shortnose gar	Yellow bullhead
Common carp	Mountain sucker	✓ ✓ Shovelnose sturgeon	Yellow perch
Creek chub	Mountain whitefish	Sicklefin chub	
Emerald shiner	Northern pike	✓ ✓ Smallmouth bass	
✓ ✓ Fathead minnow	✓ ✓ Northern plains killifish	Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	430.8	270.5	7.7%
Rip Rap Bottom	27.7	21.7	0.6%
Terrace Pool	317.0	298.3	8.5%
Secondary Channel	280.9	177.4	5.0%
Secondary Channel (Seasonal)	483.7	320.2	9.1%
Channel Crossover	291.0	201.0	5.7%
Point Bar		116.4	3.3%
Side Bar		51.2	1.5%
Mid-channel Bar		187.1	5.3%
Island	1,691.8	1,693.7	48.0%
Dry Channel		189.8	5.4%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region Reach	Region
	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch		✓ ✓ Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	🗹 🗹 Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	✓ ✓ Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	☐ ☐ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	Ovenbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	✓ ✓ Eastern Kingbird	Plumbeous Vireo	✓ ✓ Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	Vestern Meadowlark
	Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	Western Wood-pewee
	Bobolink	Field Sparrow	Red Crossbill	☐ ✔ White-breasted Nuthatch
	Brewer's Blackbird	🗌 🗹 Franklin's Gull	Ring-necked Pheasant	White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	Red-winged Blackbird	☐ ✓ Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Vellow-billed Cuckoo
	Canada Goose	Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	V Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

County	Dawson	Upstream River Mile	94.6
Classification	PCM/I: Partially confined meandering/islands	Downstream River Mile	89
General Location	Glendive	Length	5.60 mi (9.01 km)
General Comments	Reach D6 is located at Glendive and provides a good exampl by transportation infrastructure and floodplain dikes in an area	e of an urbanized reach tha a prone to severe ice jammi	t is primarily impacted

Narrative Summary

Reach D6 is located in Dawson County at Glendive. The reach is a 5.6 mile long Partly Confined Meandering reach type, extending from Black Bridge at RM 89.0 to downstream of Glendive at RM 94.6. The partial confinement is imposed by terraces and Hell Creek Formation bluff line. The reach is fairly straight, with minor bendways and several densely vegetated islands. Within Reach D6, the Yellowstone River has been directly affected by both urban/exurban development and the I-94 transportation corridor.

Reach D6 has almost a mile of bank armor including 2,930 feet of rock riprap, 1,200 feet of concrete riprap, and 760 feet of flow deflectors as mapped in 2011. About 8.3 percent of the total bankline is armored. Between 2001 and 2011, about 1,300 feet of rock riprap and 200 feet of flow deflectors were built, whereas 354 feet of concrete riprap were destroyed.

Prior to the 1950s, about three miles of side channel were blocked in the reach by physical features. Since then another three miles have been blocked such that a total of six miles of side channel have been blocked in this urbanized section of the Yellowstone River. The side channel losses occurred under the Interstate and near the mouth of Glendive Creek. In 1950, the side channel under the Interstate was almost three miles long before being blocked off.

Floodplain dikes have isolated historic floodplain area. There are 14,700 feet of floodplain dikes mapped in the reach, most of which was built between 1950 and 1976. There are also 23,736 feet of transportation encroachments. The encroachments associated with the railroad have been in place since 1950; however the length of bridge approaches increased substantially from 1950 to 1976, which is when I-94 was constructed. The large West Glendive Dike (RM 93.5) was constructed in 1957 by the US Army Corps of Engineers to protect the west Glendive area from Yellowstone River flooding.

There are five bridge crossings in Reach D6. The uppermost crossing is referred to as the BNSF "Black Bridge", which is a 1325 footlong steel truss bridge at RM 94.5. There is a natural gas pipeline crossing at the bridge. Just downstream at RM 93.6, the "Old Bell Street Bridge' is a 1,290 foot long bridge that was originally built in 1894, then destroyed by ice in 1899, and rebuilt in 1924. It is currently preserved as a pedestrian bridge. Approximately 0.1 mile downstream, the Towne Street Bridge is a 1,318 foot-long steel girder/floor beam structure that was built in 1958. About 1.3 miles downstream from that structure, I-94 consists of two bridges built in 1968. These bridges are 2,013 and 1,973 feet long, and both are steel girder/floor beam structures. The I-94 bridges restrict about 200 acres of the CMZ.

Some of the most severe ice jamming in Montana occurs in Glendive. A total of 30 ice jam floods have occurred in the Glendive area since 1890 (COE, 2009). Descriptions of these and even older ice jams include loss of life (1894, 1899), bridge failure (1899) and major flooding (1899, 1936, 1969, 1986 and 1994). In 1980, FEMA concluded that the West Glendive Levee did not provide adequate protection from ice jam flooding (COE, 2009). According to the COE (2009), the majority of ice jams form downstream of the I-94 Bridge and its embankment, which acts as a flow obstruction on the left floodplain of the Yellowstone River. This embankment cuts off a side channel of the Yellowstone, "which may have historically provided a relief for floodwaters to flow around the ice jams" (COE, 2009).

Similar to many reaches on the Lower Yellowstone, the river has gotten smaller since 1950. At that time, the bankfull channel area in Reach D6 was 810 acres, and by 2001 it was 640 acres, which is a reduction of 21 percent. This has been accompanied by the encroachment of 134 acres of riparian vegetation into old channel areas. On the floodplain, however, riparian clearing has been notable; since 1950 over 400 acres of riparian vegetation was converted to another land use, which was 32 percent of the entire 1950s riparian footprint.

Floodplain turnover rates in Reach D6 have dropped from 4 acres per year prior to 1976 to 2 acres per year since then. This is also a common trend on the lower river, as the influences of bank armor and reduced flow energy have collectively slowed rates of channel change.

Land use is dominated by agriculture and urban/exurban development; although there is over 1,300 acres of urban, exurban, and transportation-related land uses, there are still over 3,100 acres of agricultural land. Most is non-irrigated, but 502 acres are in flood irrigation and 280 are in pivot. Between 1950 and 2011 approximately two square miles of land was converted to Urban and Exurban uses in the Glendive area. Much of this growth occurred in the now-leveed area on the west side of the river.

About 18 percent of the total 100-year floodplain has become isolated due to human development and most of that isolated floodplain area is behind floodplain dikes. The 5-year floodplain is even more affected; 51 percent of the historic 5-year floodplain is no longer inundated at that frequency.

Reach D6 was sampled as part of the fisheries study. A total of 27 fish species were sampled in the reach including three identified by the Montana Natural Heritage Program as a Species of Concern (SOC): the Blue Sucker, Sauger, and Sturgeon chub.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 100year flood has dropped from 146,000 cfs pre-development to 125,000 cfs currently, which is a 14 percent reduction. The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Summer base flows have dropped by 54 percent with

Reach D6

human development, from 6,990 cfs to 3,210 cfs, a 54 percent reduction. In contrast, fall and winter base flows have both increased between 60 percent (winter) and 75 percent (fall). Fall and wither base flows are currently 2,030 and 2,110 cfs, respectively.

CEA-Related observations in Reach D6 include:

- •Loss of side channels due to physical features
- •Shrinking of channel due to flow consolidation and reduced high flows.
- Extensive transportation encroachment
- •Dike construction post-1950 to facilitate urban/exurban development in West Glendive

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D6 include: •Bank armor removal at RM 92.8L

•Russian olive removal

PHYSICAL FEATURES MAP (2011)

Reach D6

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

Flood His	story				Downstream	Upstream
Year	Date	Flow on Date	Return Interval	Gage No	6329500	Gage 6309000
1978	May 23	111,000	10-25 yr	Location	Sidney	Miles City
1912	Mar 29	114,000	10-25 yr	Period of Record	1911-2015	1929-2015
1944	Jun 21	120,000	10-25 yr		50.0	00.4
2011	May 24	124,000	10-25 yr	Distance To (miles)	58.2	89.4
1918	Jun 20	126,000	25-50 yr			
1943	Mar 29	132,000	25-50 yr			
1923	Oct 3	134,000	25-50 yr			
1952	Mar 31	138,000	25-50 yr			
1921	Jun 21	159,000	100-yr			

Discharge

	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		69,400	89,400	103,000	133,000	146,000	177,000	4,790	6,990
Regulated		54,200	74,000	86,800	114,000	125,000	151,000	2,710	3,210
% Change		-21.90%	-17.23%	-15.73%	-14.29%	-14.38%	-14.69%	-43.42%	-54.08%

Flow Duration		Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time					
Season		5%	50%	95%			
Spring	Unregulated	67,500	25,200	6,910			
	Regulated	52,100	15,000	5,050			
	% Change	-23%	-40%	-27%			
Summer	Unregulated	47,200	14,900	6,990			
	Regulated	35,200	8,930	3,210			
	% Change	-25%	-40%	-54%			
Fall	Unregulated	9,770	5,960	2,030			
	Regulated	11,200	7,450	3,580			
	% Change	15%	25%	76%			
Winter	Unregulated	14,500	5,330	2,110			
	Regulated	15,100	6,500	3,430			
	% Change	4%	22%	63%			
Annual	Unregulated	49,900	8,920	2,820			
	Regulated	37,200	8,020	3,650			
	% Change	-25%	-10%	29%			

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010

95% Sum

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	USCOE	9-Oct-76	B/W	1:24,000	6329500	9580
1995	USGS DOQQ	12-Jun-96	B/W		6329500	52600
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2004	Merrick	5/20/04 - 6/3/2004	Color	1:15,840	6329500	5070
2005	NAIP	07/31/2005	color	1-meter pixels	6329500	5280
2005	NAIP	07/14/2005	color	1-meter pixels	6329500	15900
2009	NAIP	8/10/2009	Color	1-meter pixels	6329500	13700
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/20/2011	Color	1-meter pixels	6329500	48800
2013	NAIP	07/27/2013	color	1-meter pixels	6329500	
2013	NAIP	07/14/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Lenath (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization			5 - 0 - 0 -		0
	Rock RipRap	1,655	2.8%	2,933	5.0%	1,278
	Flow Deflectors	93	0.2%	330	0.6%	238
	Concrete RipRap	1,533	2.6%	1,188	2.0%	-345
	Between Flow Deflectors	496	0.8%	431	0.7%	-64
	Feature Type Totals	3,776	6.4%	4,882	8.3%	1,106
Floodplain	Control					
	Floodplain Dike/Levee	7,743	13.2%	7,743	13.2%	0
	Feature Type Totals	7,743	13.2%	7,743	13.2%	0
	Reach Totals	11,519	19.7%	12,625	21.5%	1,106

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type	Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap	561	0	0	0	971	0	0	0
Flow Deflectors/Between FDs	430	0	0	0	0	0	0	0
Rock RipRap	0	0	0	1,410	0	0	0	0
Tot	als 991	0	0	1,410	971	0	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

			Sum	or Feati	re reu	$gtn(\pi)$	
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005
Other							
	Floodplain Dike/Levee	688	14,720	14,720	14,720	14,720	14,720
	Totals	688	14,720	14,720	14,720	14,720	14,720
Other Off Channe	el						
	Floodplain Dike/Levee	0	1,505	1,505	1,505	1,505	1,505
	Totals	0	1,505	1,505	1,505	1,505	1,505
Stream Stabilizat	ion						
	Rock RipRap	728	3,060	3,060	4,156	4,156	4,156
	Flow Deflector	0	605	605	605	605	605
	Concrete RipRap	0	963	963	963	1,559	1,559
	Totals	728	4,628	4,628	5,724	6,320	6,320
Transportation E	ncroachment						
	Railroad	8,934	8,934	8,934	8,934	8,934	8,934
Thursday, March 3	, 2016						

Reach D6

Bridge Approach	1,375	7,813	7,813	7,813	7,813	7,813
Totals	10,309	23,736	23,736	23,736	23,736	23,736
Other	0	4,542	4,542	4,542	4,542	4,542
County Road		2,447	2,447	2,447	2,447	2,447
01	0	4 5 4 0	4 5 40	4 5 4 0	4 5 40	4 5 4 0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

Jam Date	Jam Type	River Mile	Damages
	NA	94	Death of 3 men
4/1/1904	NA	94	?
3/23/1932	NA	94	?
1/7/1934	NA	94	?
1/1/1936	NA	94	?
4/1/1943	Break-up	94	Severe flooding affecting farmers
3/19/1959	Break-up	94	25K USD
1/1/1969	NA	94	Highway, sewage pump sta., oil well supply flooded
3/15/1972	NA	93	Severe flooding
2/21/1982	NA	94	?
12/29/1992	NA	94	?
3/5/1994	NA	94	Dike nearly overtopped, 60 cattle died,
2/11/1996	Break-up	94	Flooding
2/18/1997	NA	94	?
3/9/1998	Break-up	94	Lowland flooding
3/16/2003	Break-up		
3/16/2003	Break-up		?
3/20/2009	Break-up		Unknown
3/14/2011	Break-up		
12/28/2011			

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)			Bankfull		
	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Braiding Parameter		% Change in Braiding
1950	29,804	35,774	2.20	1950 to 1976:	-30.94%
1976	29,529	15,343	1.52	1976 to 1995:	-8.13%
1995	29,484	11,678	1.40	1995 to 2001:	5.05%
2001	29,301	13,672	1.47	1950 to 2001:	-33.35%
Change 1950 - 2001	-503	-22,102	-0.73		
Length of Side		Pre-1950s (ft)	16,884		
Channels Blocked		Post-1950s (ft)	16,597		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	10-Year 5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%		
Agriculture (generally relates to field boundaries)	0	0.0%		
Agriculture (isloated by canal or large ditch)	0	0.0%		
Levee/Riprap (protecting agricultural lands)	0	0.0%		
Levee/Riprap (protecting urban, industrial, etc.)	176	9.2%		
Railroad	117	6.1%		
Abandoned Railroad	0	0.0%		
Transportation (Interstate and other roads)	61	3.2%		
Total Not Isolated (Ac)	1565		1126	
Total Floodplain Area (Ac)	1919		1655	
Total Isolated (Ac)	354	18.4%	529	52.1%

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	33	0	0	33

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal //Z eage	Restricted CMZ Acreage	% Restric Migratio Area	ted Tota n AH2 Acrea	al Re Z nge A	stricted AHZ creage	% Restricted Avulsion Area
	225	451	1,8	19	319	18%	9		0	0%
2011 Res	stricted Migr	ration A	rea Sun	nmar	у	Note that the	ese data refle	ect the obse	rved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perco Cl	ent of MZ	Counties, COE for the rest of the river).				
Road/Railro	oad Prism									
	Public Road		17	0.	9%					
	Non-Irrigated		29	1.	6%					
	Irrigated		22	1.	2%					
	Interstate		155	8.	5%					
RipRap/Flo	w Deflectors									
	Irrigated		7	0.4	4%					
RipRap										
	Urban Reside	ential	11	0.	6%					
	Irrigated		27	1.	5%					
Flow Deflect	ctors									
	Irrigated		58	3.	2%					
		Totals	326	17	.8%					
Land Us	es within the	e CMZ (Acres)	F Irri 2	lood gation 34.0	Sprinkler Irrigation 0.0	Pivot Irrigation 28.5	Urban/ ExUrba 91.6	n pc	frans- ortation 31.7

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3		Acres			% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	structure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	27	72	75	71	0.5%	1.4%	1.4%	1.3%
	Totals	27	72	75	71	0.5%	1.4%	1.4%	1.3%
Agricultural Land									
	Non-Irrigated	2,897	2,545	2,301	2,285	54.9%	48.2%	43.6%	43.3%
	Irrigated	304	560	792	782	5.8%	10.6%	15.0%	14.8%
	Totals	3,201	3,105	3,092	3,067	60.6%	58.8%	58.5%	58.1%
Channel									
	Channel	1,380	938	738	756	26.1%	17.8%	14.0%	14.3%
	Totals	1,380	938	738	756	26.1%	17.8%	14.0%	14.3%
ExUrban									
	ExUrban Other	0	64	143	143	0.0%	1.2%	2.7%	2.7%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	60	60	60	0.0%	1.1%	1.1%	1.1%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	24	28	28	0.0%	0.4%	0.5%	0.5%
	Totals	0	148	231	231	0.0%	2.8%	4.4%	4.4%
Transportation									
	Public Road	65	67	67	67	1.2%	1.3%	1.3%	1.3%
	Interstate	0	58	58	58	0.0%	1.1%	1.1%	1.1%
	Railroad	45	45	45	45	0.9%	0.9%	0.9%	0.9%
	Totals	110	170	170	170	2.1%	3.2%	3.2%	3.2%
Urban									
	Urban Other	150	39	97	97	2.8%	0.7%	1.8%	1.8%
	Urban Residential	198	410	432	435	3.7%	7.8%	8.2%	8.2%
	Urban Commercial	79	116	115	115	1.5%	2.2%	2.2%	2.2%
	Urban Undeveloped	43	51	81	90	0.8%	1.0%	1.5%	1.7%
	Urban Industrial	93	233	251	251	1.8%	4.4%	4.7%	4.7%
	Totals	563	849	976	988	10.7%	16.1%	18.5%	18.7%

Land Use Ti	meline - Tiers 3 and	4								Char	ige Betv	veen Y	ears
			Acr	res		%	of Rea	ch Area	a	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	91	279	0.0%	0.0%	2.9%	9.1%	0.0%	2.9%	6.2%	9.1%
	Flood	304	560	701	502	9.5%	18.0%	22.7%	16.4%	8.5%	4.6%	-6.3%	6.9%
	Totals	304	560	792	782	9.5%	18.0%	25.6%	25.5%	8.5%	7.6%	-0.1%	16.0%

Non-Irrigated

Multi-Use	2,272	1,881	1,984	2,060	71.0%	60.6%	64.1%	67.2%	-10.4%	3.6%	3.0%	-3.8%
Hay/Pasture	625	664	317	225	19.5%	21.4%	10.3%	7.3%	1.9%	-11.1%	-2.9%	-12.2%
Totals	2,897	2,545	2,301	2,285	90.5%	82.0%	74.4%	74.5%	-8.5%	-7.6%	0.1%	-16.0%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Clos	ed Timber (A	(cres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.5	0.3	0.8	0.4	4.5	1.6	2.7	6.1	0.8	
Max	313.7	161.4	77.1	138.3	59.0	53.0	142.4	47.9	79.5	
Average	27.9	15.5	13.9	24.6	22.8	26.5	29.2	13.3	13.9	
Sum	669.5	603.5	403.8	393.2	250.5	345.1	233.5	106.4	139.3	
Riparian	Turnove	er			Riparian t	o Channel (a	cres)	94.7		
from cl	rsion of ripar nannel to rip	arian areas to carian betweer	n the 1950's		Channel to Riparian (acres) 229.0					
and 2001 data set. Riparian End					iparian Encre	oachment (a	cres)	134.4		
Riparian	Recruit	nent	1950s Char	nnel Mapped	as 2011 Ripa	arian (Ac)	283.9			
Creation of riparian areas 1950s FI				lain Mapped	as 2011 Cha	nnel (Ac)	0.9			
between 1	950s and 20	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	284.8			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	47.0	88.9	18.6	0.0	154.5
Acres/Valley Mile	9.1	17.1	3.6	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	7.08	0.49%	9.11	0.64	2.11	0.76

Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region	Region	Region	Region Reach
Bigmouth buffalo	Flathead chub	✓ ✓ Northern redbelly dace	Stonecat
Black bullhead	Freshwater drum	Pallid sturgeon	Sturgeon chub
Black crappie	Goldeye	Pumpkinseed	Sucker species
✓ ✓ Blue sucker	Green sunfish	Rainbow trout	Sunfish species
✓ ✓ Bluegill	Lake chub	River carpsucker	V Walleye
Brook stickleback	Largemouth bass	Rock bass	✓ ✓ Western silvery minnow
Brown trout	✓ ✓ Longnose dace	Sand shiner	White bass
V Burbot	✓ ✓ Longnose sucker	✓ ✓ Sauger	Vite crappie
Catfish species	Minnow species	Shorthead redhorse	✓ ✓ White sucker
Channel catfish	Mottled sculpin	☐ ✔ Shortnose gar	Yellow bullhead
Common carp	Mountain sucker	✓ ✓ Shovelnose sturgeon	Yellow perch
Creek chub	Mountain whitefish	Sicklefin chub	
Emerald shiner	✓ ✓ Northern pike	Smallmouth bass	
Fathead minnow	Northern plains killifish	Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat Scour Pool	Bankfull 238.7	Low Flow 199.2	% of Low Flow 27.0%
Rip Rap Margin	18.8	5.5	0.7%
Terrace Pool	153.0	120.1	16.3%
Secondary Channel	52.0	65.6	8.9%
Secondary Channel (Seasonal)	53.4	48.1	6.5%
Channel Crossover	126.1	80.5	10.9%
Point Bar		37.4	5.1%
Side Bar		51.5	7.0%
Mid-channel Bar		14.6	2.0%
Island	97.5	104.8	14.2%
Dry Channel		9.7	1.3%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

County	Dawson	Upstream Riv
Classification	PCA: Partially confined anabranching	Downstream
General Location	Downstream of Glendive	Length
General Comments		

pstream River Mile89ownstream River Mile81.4ength7.60 mi (12.23 km)

Narrative Summary

Reach D7 is located just downstream of Glendive. It is 7.6 miles long and is a Partially Confined Anabranching (PCA) reach type, including some valley wall influence as well as numerous forested islands. These reach types tend to be relatively dynamic with high rates of channel change through time. The Stipek Fishing Access Site is located in the middle portion of the reach.

No bank armor has been mapped in Reach D7, and no side channels have been blocked by dikes. About two miles of transportation encroachment by the railroad was mapped in Reach D7, all of which was in place by 1950.

Similar to many reaches in the Lower Yellowstone Valley, the river channel in Reach D7 has gotten smaller since 1950. The channel contracted by about 121 acres in this reach since 1950, and about 150 acres of riparian vegetation has encroached into old channel areas. This pattern has been consistent in the lower river, and relates primarily to a reduction in flows due to human development. Floodplain turnover rates have dropped from 8.9 acres per year pre-1976 to5.4 acres per year post-1976.

Even though no side channels have been intentionally blocked, Reach D7 has lost about 3,800 feet of side channel length since 1950. This is likely due to passive loss caused by a reduction in high flows. Lower flows have also resulted in the isolation of 48 percent of the historic 5-year floodplain.

Land use is predominantly agricultural, with about 258 acres of pivot irrigation development since 1950. There are 27 acres of pivot irrigation and 21 acres of exurban land uses in the Channel Migration Zone. Two dump sites have been mapped on the right bank at RM 84R and RM 85.9R.

There are 7.4 acres of mapped Russian olive in the reach.

Reach D7 was part of the avian study. A total of 43 species were identified in the reach, including the Ovenbird, which has been identified by the Montana Natural Heritage Program as a Potential Special Concern. The Black-billed Cuckoo and Red-headed Woodpecker were also identified, both of which are Species of Concern.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The magnitude of the 100-year flood is now 127,000 cfs, which 12 percent lower than it was pre-development (145,000 cfs). The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,700 cfs to 2,600 cfs with human development, a reduction of 45 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,890 cfs under unregulated conditions to 3,110 cfs under regulated conditions, a reduction of 55 percent.

Seasonal low flows have increased by 78 percent in the winter and 62 percent in the fall. Both fall and winter base flows are currently about 3,500 cfs.

CEA-Related observations in Reach D7 include: •Passive loss of side channels with flow alterations

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D7 include: •Russian olive removal

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

Flood His	story				Downstream	Upstream
Year	Date	Flow on Date	Return Interval	Gage No	Gage 6329500	Gage 6309000
1978	May 23	111,000	10-25 yr	Location	Sidney	Miles City
1912	Mar 29	114,000	10-25 yr	Period of Record	1911-2015	1929-2015
1944	Jun 21	120,000	10-25 yr	Distance To (miles)	50.6	05.0
2011	May 24	124,000	10-25 yr	Distance To (miles)	50.0	95.0
1918	Jun 20	126,000	25-50 yr			
1943	Mar 29	132,000	25-50 yr			
1923	Oct 3	134,000	25-50 yr			
1952	Mar 31	138,000	25-50 yr			
1921	Jun 21	159,000	100-yr			

Discharge

	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		69,500	89,600	103,000	133,000	145,000	176,000	4,700	6,890
Regulated		54,200	74,200	87,200	115,000	127,000	153,000	2,600	3,110
% Change		-22.01%	-17.19%	-15.34%	-13.53%	-12.41%	-13.07%	-44.68%	-54.86%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010

95% Sum

Season		5%	50%	95%
Spring	Unregulated	67,500	25,100	6,960
	Regulated	52,100	14,900	5,080
	% Change	-23%	-41%	-27%
Summer	Unregulated	47,300	14,900	6,890
	Regulated	35,200	8,820	3,110
	% Change	-26%	-41%	-55%
Fall	Unregulated	9,800	5,940	2,010
	Regulated	11,200	7,430	3,570
	% Change	14%	25%	78%
Winter	Unregulated	14,800	5,380	2,120
	Regulated	15,400	6,550	3,440
	% Change	4%	22%	62%
Annual	Unregulated	49,900	8,900	2,820
	Regulated	37,200	8,020	3,620
	% Change	-25%	-10%	28%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	USCOE	9-Oct-76	B/W	1:24,000	6329500	9580
1995	USGS DOQQ	12-Jun-96	B/W		6329500	52600
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2004	Merrick	5/20/2004 - 6/3/04	Color	1:15,840	6329500	5070
2005	NAIP	07/14/2005	color	1-meter pixels	6329500	15900
2009	NAIP	8/10/2009	Color	1-meter pixels	6329500	13700
2009	NAIP	7/11/2009	Color	1-meter pixels	6329500	32600
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/20/2011	Color	1-meter pixels	6329500	48800
2013	NAIP	07/27/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

Bankline/Flo	odplain Inventory:	Time Se	The Hu throug	uman In h time fo	pacts 7 or Yellov	Timeline assessed physical feature developmen wstone, Stillwater, and Dawson Counties.	
			Sum	of Feat	ure Leng	gth (ft)	
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005
Transportation E	incroachment						
	Railroad	12,529	12,529	12,529	12,529	12,529	12,529
	Totals	12,529	12,529	12,529	12,529	12,529	12,529

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	43,833	59,956	2.37	1950 to 1976:	1.78%
1976	39,713	55,991	2.41	1976 to 1995:	3.49%
1995	40,102	59,914	2.49	1995 to 2001:	-4.10%
2001	40,314	56,108	2.39	1950 to 2001:	1.01%
Change 1950 - 2001	-3,519	-3,848	0.02		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	44	2.4%			
Agriculture (generally relates to field boundaries)	0	0.0%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	1762		1532		
Total Floodplain Area (Ac)	1806		1928		
Total Isolated (Ac)	44	2.4%	395	47.9%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	2	0	0	2

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal Restricte MZ CMZ eage Acreage	d % Restric Migratio Area	ted Tota on AHZ Acrea	ll Rest 2 A ge Acr	ricted % HZ / eage	Restricted Avulsion Area
	341	682	2,8	11 6	0%	127		0	0%
2011 Res	stricted Mig	gration A	rea Sun	nmary	Note that the	ese data refle	ct the observ	ed condition	ns in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, C	OE for the res	t of the river	k and Swee).	a Grass
Road/Railro	oad Prism								
	Railroad		6	0.2%					
		Totals	6	0.2%					
Land Us	es within t	he CMZ (/	Acres)	Flood Irrigation 180.4	Sprinkler Irrigation 2.2	Pivot Irrigation 27.3	Urban/ ExUrban 20.7	Trans portati 9.0	s- ion

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3	Acres					% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	29	64	81	84	0.4%	0.9%	1.2%	1.2%	
	Totals	29	64	81	84	0.4%	0.9%	1.2%	1.2%	
Agricultural Lan	d									
	Non-Irrigated	4,756	4,485	3,767	3,629	70.5%	66.5%	55.9%	53.8%	
	Irrigated	0	182	876	992	0.0%	2.7%	13.0%	14.7%	
	Totals	4,756	4,668	4,644	4,621	70.5%	69.2%	68.9%	68.5%	
Channel										
	Channel	1,869	1,918	1,881	1,899	27.7%	28.4%	27.9%	28.2%	
	Totals	1,869	1,918	1,881	1,899	27.7%	28.4%	27.9%	28.2%	
ExUrban										
	ExUrban Other	0	0	24	23	0.0%	0.0%	0.4%	0.3%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	3	22	26	0.0%	0.0%	0.3%	0.4%	
	Totals	0	3	46	49	0.0%	0.0%	0.7%	0.7%	
Transportation										
	Public Road	57	59	59	59	0.8%	0.9%	0.9%	0.9%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	31	31	31	31	0.5%	0.5%	0.5%	0.5%	
	Totals	88	90	90	90	1.3%	1.3%	1.3%	1.3%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Ti	meline - Tiers 3 aı	าd 4								Char	ige Beti	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	26	26	0.0%	0.0%	0.5%	0.6%	0.0%	0.5%	0.0%	0.6%
	Pivot	0	0	0	258	0.0%	0.0%	0.0%	5.6%	0.0%	0.0%	5.6%	5.6%
	Flood	0	182	851	708	0.0%	3.9%	18.3%	15.3%	3.9%	14.4%	-3.0%	15.3%
Totals 0			182	876	992	0.0%	3.9%	18.9%	21.5%	3.9%	15.0%	2.6%	21.5%

Non-Irrigated

Multi-Use	3,714	2,925	2,899	2,816	78.1%	62.7%	62.4%	61.0%	-15.4%	-0.2%	-1.5%	-17.1%
Hay/Pasture	1,043	1,560	868	812	21.9%	33.4%	18.7%	17.6%	11.5%	-14.7%	-1.1%	-4.3%
Totals	4,756	4,485	3,767	3,629	######	96.1%	81.1%	78.5%	-3.9%	-15.0%	-2.6%	-21.5%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	:	Shrub (Acres	5)	Clos	ed Timber (A	Acres)	Ор	en Timber (A	cres)	
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.2	0.5	0.9	0.1	0.7	2.7	2.7	2.0	1.4	
Max	107.9	88.8	35.3	153.3	159.7	298.9	53.7	26.1	48.2	
Average	13.4	13.5	8.2	44.6	35.5	66.1	15.1	11.3	16.8	
Sum	617.6	619.7	318.1	757.7	815.5	1,123.3	136.3	67.6	134.1	
Riparian	Turnove	er			Riparian	to Channel (a	cres)	209.9		
from ch	rsion of ripar hannel to ripa	arian areas to a	channel, or n the 1950's		Channel	to Riparian (a	cres)	359.2		
and 20	01 data set.			R	iparian Encr	oachment (a	cres)	149.4		
Riparian	Recruit	ment	1950s Chai	nnel Mapped	as 2011 Rip	arian (Ac)	366.8			
Creation of	f riparian are	eas	1950s Floodp	lain Mapped	as 2011 Cha	annel (Ac)	53.7			
between 1	950s and 20	01.	Tota	I Recruitme	nt (1950s to	2011)(Ac)	420.6			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	28.9	72.3	47.1	0.0	148.2
Acres/Valley Mile	4.2	10.6	6.9	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	7.44	0.21%	1.67	0.00	4.97	1.12
FISHERIES SUMMARY

L

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

ow Flow Fisheries Habitat Mapping	2001 (Acres)		
Habitat	Bankfull	Low Flow	% of Low Flow	
Scour Pool	349.7	212.3	11.3%	
Bluff Pool	138.1	163.2	8.7%	
Secondary Channel	186.2	130.8	7.0%	
Secondary Channel (Seasonal)	262.8	190.1	10.1%	
Channel Crossover	164.3	124.7	6.6%	
Point Bar		89.5	4.8%	
Side Bar		69.3	3.7%	
Mid-channel Bar		60.2	3.2%	
Island	778.5	789.4	42.0%	
Dry Channel		47.6	2.5%	

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	in Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region Reach	Region
	American Robin	Chipping Sparrow	✓ ✓ Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch		✓ ✓ Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	□ □ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	Venbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	Eastern Kingbird	Plumbeous Vireo	Vestern Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	Vestern Meadowlark
	Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
	Brewer's Blackbird	🗌 🗹 Franklin's Gull	Ring-necked Pheasant	White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	Red-winged Blackbird	Vellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Vellow-billed Cuckoo
	Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
	Chimney Swift	✓ House Wren	Savannah Sparrow	✓ ✓ Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

County	Dawson
Classification	PCA: Partially confined anabranching
General Location	Intake
General Comments	To Intake

Upstream River Mile81.4Downstream River Mile71.1Length10.30 mi (16.58 km)

Narrative Summary

Reach D8 is located in Dawson County, and includes Intake Diversion Dam. The reach is a Partly Confined Anabranching reach type, indicating distinct side channels around forested islands, and some valley wall influence on the active channel. Intake Diversion Dam is located on the lower end of the reach at RM 73.

The primary form of bank stabilization in Reach D8 is rock riprap, with 4,576 feet or 1.9 percent of the total bankline mapped as armored in 2011. All of the bank armor in Reach D8 is protecting either Intake Diversion or the railroad grade; the majority (3,178 feet) is against the rail line. In the uppermost part of the reach at RM 81L, over 1,500 feet of flow deflectors were flanked between 2001 and 2011. At RM 77L, the river has flanked two sections of rock riprap protecting the rail line, forming two large scallops in the bank that currently threaten to undermine the toe of the railroad embankment.

The largest diversion dam on the Yellowstone River is Intake Diversion Dam at RM 73. Construction of the dam began in 1905, in response to authorization under the Reclamation Act of 1902 (http://www.fws.gov/yellowstonerivercoordinator/Intake.html). Intake Dam was completed in 1911 and is used to irrigate 50,000 acres of land in eastern Montana and western North Dakota. The original dam crest was 12 feet above the river bed; and the structure stretches 700 feet across the river. With a diversion capacity of 1,200 cfs, it feeds Intake Canal and a ~225 mile network of lateral canals that distribute water to approximately 500 farms. Fish passage issues at this structure are currently being addressed by the Bureau Reclamation, US Army Corps of Engineers, MT Fish Wildlife and Parks, US Fish and Wildlife Service, and Lower Yellowstone Irrigation District.

Reach D8 has lost almost three miles of side channel length since 1950, and none of this loss is attributable to floodplain dikes. Similar to other reaches in the lower Yellowstone River valley, side channel loss has occurred to both intentional blockages, as well as lost connectivity due to flow alterations. Flow alterations have also resulted in lost connectivity to the 5-year floodplain; development in the basin has resulted in the isolation of 58 percent of the historic 5-year floodplain.

There are 110 acres of sprinkler irrigation and 19 acres of exurban land in the Channel Migration Zone in Reach D8, making these areas especially susceptible to threats of river erosion.

There has been a net increase of woody riparian vegetation in Reach D8 of approximately 210 acres since 1950, indicating riparian colonization of open gravel bars and channel margins.

There are about 10 acres of mapped Russian olive in the reach.

Reach D8 was sampled as part of the avian study. A total of 21 species were identified in the reach, including the Red-headed Woodpecker, which is a Species of Concern.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The magnitude of the 100-year flood is now 128,000 cfs, which 12 percent lower than it was pre-development (145,000 cfs). The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,630 cfs to 2,520 cfs with human development, a reduction of 46 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,810 cfs under unregulated conditions to 3,030 cfs under regulated conditions, a reduction of 55 percent.

Seasonal low flows have increased by 78 percent in the winter and 62 percent in the fall. Both fall and winter base flows are currently about 3,500 cfs.

CEA-Related observations in Reach D8 include:

- •Passive loss of side channels with flow alterations
- •Low avian species richness
- •Passive loss of 5-year floodplain area

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D8 include: •Flanked bank armor removal at RM 77L and RM 81L

•Fish Passage Practices at Intake Diversion Dam (RM 73)

•Watercraft Passage PRACTICE at Intake Diversion Dam (RM 73)

•Irrigation Structure Management at Intake Diversion Dam (RM 73)

•Russian olive removal

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

Flood His	story				Downstream	Upstream
Year	Date	Flow on Date	Return Interval	Gage No	6329500	Gage 6309000
1978	May 23	111,000	10-25 yr		Sidney	Miles City
1912	Mar 29	114,000	10-25 yr	Period of Record	1911-2015	1929-2015
1944	Jun 21	120,000	10-25 yr		40.2	1020 2010
2011	May 24	124,000	10-25 yr	Distance To (miles)	40.3	102.0
1918	Jun 20	126,000	25-50 yr			
1943	Mar 29	132,000	25-50 yr			
1923	Oct 3	134,000	25-50 yr			
1952	Mar 31	138,000	25-50 yr			
1921	Jun 21	159,000	100-yr			

Discharge

	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		69,500	89,700	103,000	132,000	145,000	175,000	4,630	6,810
Regulated		54,200	74,300	87,400	116,000	128,000	155,000	2,520	3,030
% Change		-22.01%	-17.17%	-15.15%	-12.12%	-11.72%	-11.43%	-45.57%	-55.51%

Flow Duration Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time 5% 50% 95% Season 25,000 7,000 Spring Unregulated 67,500 52,100 14,800 5,100 Regulated % Change -23% -41% -27% Summer Unregulated 47,400 14,800 6,810 3,030 35,200 8,740 Regulated -26% -41% -56% % Change Fall Unregulated 9,820 2,000 5,920 7,410 3,560 Regulated 11,200 14% 25% 78% % Change Unregulated 15,000 5,410 2.120 Winter Regulated 15,600 6,580 3,450 4% 22% 63% % Change Annual Unregulated 49,800 8,890 2,820 37,100 8,010 3.590 Regulated -26% -10% 27% % Change

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010

05% Sum

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	USCOE	9-Oct-76	B/W	1:24,000	6329500	9580
1995	USGS DOQQ	8/8/96 - 6/12/96	B/W		6329500	52600
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2004	Merrick	5/20/2004 - 6/3/04	Color	1:15,840	6329500	5070
2005	NAIP	07/14/2005	color	1-meter pixels	6329500	15900
2009	NAIP	7/11/2009	Color	1-meter pixels	6329500	32600
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/21/2011	Color	1-meter pixels	6329500	46600
2011	NAIP	7/20/2011	Color	1-meter pixels	6329500	48800
2013	NAIP	07/27/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	4,140	3.9%	4,576	4.3%	435
	Flow Deflectors	122	0.1%	0	0.0%	-122
	Between Flow Deflectors	641	0.6%	0	0.0%	-641
	Feature Type Totals	4,904	4.6%	4,576	4.3%	-328
Floodplain	Control					
	Floodplain Dike/Levee	519	0.5%	319	0.3%	-200
	Feature Type Totals	519	0.5%	319	0.3%	-200
	Reach Totals	5,423	5.1%	4,895	4.6%	-528

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between F	Ds	0	764	0	0	0	0	0	0
Rock RipRap		0	0	961	0	0	3,178	0	0
	Totals	0	764	961	0	0	3,178	0	0

Bankline/Floodplain Inventory: Time Series

The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

		Sum of Feature Length (ft					
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005
Irrigation							
	In Channel Diversion	669	669	669	669	669	669
	Floodplain Dike/Levee	5,268	5,268	5,268	5,268	5,268	5,268
	Totals	5,936	5,936	5,936	5,936	5,936	5,936
Other Off Channe	el						
	Floodplain Dike/Levee	478	478	478	478	478	478
	Totals	478	478	478	478	478	478
Stream Stabilizat	ion						
	Rock RipRap	962	2,562	2,562	3,433	3,433	3,433
	Flow Deflector	0	0	0	0	734	734
	Totals	962	2,562	2,562	3,433	4,168	4,168
Transportation Er	ncroachment						
	Railroad	10,300	10,300	10,300	10,300	10,300	10,300
	County Road	4,206	4,206	4,206	4,206	4,206	4,206
	Totals	14,506	14,506	14,506	14,506	14,506	14,506

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	55,112	53,812	1.98	1950 to 1976:	9.19%
1976	54,712	63,359	2.16	1976 to 1995:	5.96%
1995	53,646	69,029	2.29	1995 to 2001:	-1.33%
2001	53,643	67,389	2.26	1950 to 2001:	14.16%
Change 1950 - 2001	-1,470	13,577	0.28		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-`	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain		
Non-Structural (hydrology, geomorphic, etc.)	61	1.6%				
Agriculture (generally relates to field boundaries)	0	0.0%				
Agriculture (isloated by canal or large ditch)	0	0.0%				
Levee/Riprap (protecting agricultural lands)	0	0.0%				
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%				
Railroad	38	1.0%				
Abandoned Railroad	0	0.0%				
Transportation (Interstate and other roads)	0	0.0%				
Total Not Isolated (Ac)	3746		1729			
Total Floodplain Area (Ac)	3845		2342			
Total Isolated (Ac)	99	2.6%	613	57.7%		

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	0	0	0

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal Restricto MZ CMZ eage Acreag	ed % Restric Migratione Area	cted Tota on AHZ Acrea	nl Res Z A ge Aci	tricted AHZ reage	% Restricted Avulsion Area
	274	549	4,1	30 44	1%	1,06	7	0	0%
2011 Res	stricted Mig	gration A	rea Sun	nmary	Note that th	nese data refle	ct the observ	ved cond	litions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	2011 aerial photography (NAIP for Park and Sv Counties, COE for the rest of the river).		weet Grass		
RipRap									
	Railroad		28	0.5%					
		Totals	28	0.5%					
Land Us	es within th	ne CMZ (A	Acres)	Flood Irrigation 213.7	Sprinkler Irrigation 109.0	Pivot Irrigation 0.0	Urban/ ExUrban 19.4	Ті рог	r ans- rtation 16.4

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	
Agricultural Infra	astructure									
	Canal	29	29	29	29	0.3%	0.3%	0.3%	0.3%	
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Other Infrastructure	11	54	86	88	0.1%	0.6%	1.0%	1.0%	
	Totals	40	83	115	117	0.5%	1.0%	1.3%	1.4%	
Agricultural Lan	d									
	Non-Irrigated	5,278	5,010	4,746	4,639	61.4%	58.3%	55.2%	54.0%	
	Irrigated	51	331	592	615	0.6%	3.8%	6.9%	7.2%	
	Totals	5,329	5,341	5,338	5,253	62.0%	62.1%	62.1%	61.1%	
Channel										
	Channel	3,070	3,024	2,971	3,054	35.7%	35.2%	34.6%	35.5%	
	Totals	3,070	3,024	2,971	3,054	35.7%	35.2%	34.6%	35.5%	
ExUrban										
	ExUrban Other	0	0	21	21	0.0%	0.0%	0.2%	0.2%	
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Industrial	17	36	36	36	0.2%	0.4%	0.4%	0.4%	
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	17	36	56	56	0.2%	0.4%	0.7%	0.7%	
Transportation										
	Public Road	95	69	71	71	1.1%	0.8%	0.8%	0.8%	
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Railroad	45	44	44	44	0.5%	0.5%	0.5%	0.5%	
	Totals	140	113	116	116	1.6%	1.3%	1.3%	1.3%	
Urban										
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%	
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%	

Land Use Til	meline - Tiers 3 and	4								Char	nge Bet	ween Y	ears
			Acr	res		%	of Rea	ch Area	l I	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	'01-11	'50-11
Irrigated													
	Sprinkler	7	8	157	164	0.1%	0.2%	2.9%	3.1%	0.0%	2.8%	0.2%	3.0%
	Pivot	0	0	157	180	0.0%	0.0%	2.9%	3.4%	0.0%	2.9%	0.5%	3.4%
	Flood	44	322	278	271	0.8%	6.0%	5.2%	5.2%	5.2%	-0.8%	-0.1%	4.3%
	Totals	51	331	592	615	1.0%	6.2%	11.1%	11.7%	5.2%	4.9%	0.6%	10.7%

Reach D8

Multi-Use	4,732	4,285	3,801	3,693	88.8%	80.2%	71.2%	70.3%	-8.6%	-9.0%	-0.9%	-18.5%
Hay/Pasture	546	724	945	946	10.2%	13.6%	17.7%	18.0%	3.3%	4.1%	0.3%	7.8%
Totals	5,278	5,010	4,746	4,639	99.0%	93.8%	88.9%	88.3%	-5.2%	-4.9%	-0.6%	-10.7%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Clos	Closed Timber (Acres)			Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min Max Average Sum	0.2 186.4 31.7 1,491.5	1.2 197.8 23.8 1,240.2	1.3 271.2 43.9 1,184.8	3.4 110.6 41.4 994.8	2.8 400.1 70.6 1,483.3	3.0 301.4 51.6 1,444.0	2.7 100.9 26.9 430.9	8.5 103.7 53.9 269.3	2.1 106.7 29.1 203.4	
Riparian TurnoverRiparian to ChannelConversion of riparian areas to channel, or from channel to riparian between the 1950's and 2001 data set.Channel to RiparianRiparian EncroachmentRiparian Encroachment							cres) cres) cres)	172.8 380.3 207.5		
Riparian	Recruitr	nent	1950s Char	nnel Mappeo	l as 2011 Ripa	arian (Ac)	403.3			
Creation of	f riparian are	as	1950s Floodp	lain Mapped	l as 2011 Cha	nnel (Ac)	32.0			
between 1950s and 2001.			Tota	l Recruitme	nt (1950s to 2	2011)(Ac)	435.2			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	13.7	46.2	24.3	0.0	84.2
Acres/Valley Mile	2.0	6.6	3.5	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	9.70	0.18%	1.32	0.04	5.84	1.92

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat Scour Pool	Bankfull 501.8	Low Flow 362.7	% of Low Flow 12.2%
Rip Rap Bottom	20.9	21.3	0.7%
Rip Rap Margin	64.5	59.0	2.0%
Terrace Pool	51.4	43.2	1.5%
Secondary Channel	106.4	42.3	1.4%
Secondary Channel (Seasonal)	198.9	173.7	5.8%
Channel Crossover	288.7	258.5	8.7%
Point Bar		86.4	2.9%
Side Bar		76.7	2.6%
Mid-channel Bar		40.6	1.4%
Island	1,695.9	1,695.9	57.0%
Dry Channel		71.7	2.4%
Dam Influenced	51.5	43.9	1.5%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region Reach	Region
	American Robin	Chipping Sparrow	Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch		Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	🗹 🗹 Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	✓ ✓ Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	☐ ☐ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	Ovenbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	✓ ✓ Eastern Kingbird	Plumbeous Vireo	Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	Western Meadowlark
	Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	Vestern Wood-pewee
	Bobolink	Field Sparrow	Red Crossbill	☐ ✔ White-breasted Nuthatch
	Brewer's Blackbird	🗌 🗹 Franklin's Gull	Ring-necked Pheasant	White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	Red-winged Blackbird	☐ ✓ Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Vellow-billed Cuckoo
	Canada Goose	Hairy Woodpecker	Red-breasted Grosbeak	☐ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
	Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	Vellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

County	Dawson
Classification	PCM/I: Partially confined meandering/islands
General Location	Downstream of Intake
General Comments	Downstream of Intake

Upstream River Mile	71.1
Downstream River Mile	67.8
Length	3.30 mi (5.31 km)

Narrative Summary

Reach D9 is located in Dawson County and starts 1 mile below the Intake Diversion Dam. The reach is a 3.3 mile long Partly Confined Meandering with Islands (PCM/I) reach type, indicating a single-threaded channel with vegetated islands and some valley wall influence on the active channel. This reach is currently the most upstream reach that fully supports pallid sturgeon and paddlefish in the watershed.

This reach has almost no bank armor. There are almost three miles of floodplain dikes associated with irrigation, and two miles of transportation encroachment associated with the railroad grade.

By 1950 almost three miles of side channel had been blocked in Reach D9, with another mile blocked since then. At RM 68.8L, discreet dikes block a side channel that remains within the riparian area, suggesting some potential for restoration.

There is one small rapid in the reach at RM 69.8 where it appears that a bedrock shelf is exposed in the riverbed.

Isolation of the 100 year floodplain has resulted from both physical features on the floodplain as well as reduced flows with human development. In Reach D9, 170 acres of the floodplain, which is 15 percent of the historic floodplain area, is no longer inundated at that frequency. Most of this area isolated is out in flood irrigated fields on the west floodplain. The 5-year floodplain, which has become smaller primarily due to flow alterations, has lost 161 acres or 50 percent of its original footprint.

Land use is predominantly agricultural, with about 183 acres of pivot irrigation development since 1950. There are a total of 19 acres of pivot-irrigated ground within the Channel Migration Zone (CMZ), making these fields especially prone to river erosion.

Reach D9 has seen an increase in the amount of forest area considered at low risk of cowbird parasitism. In 1950, there were 42.3 acres per valley mile of such forest, and by 2001, that number had increased to 79.7 acres per valley mile.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The magnitude of the 100-year flood is now 128,000 cfs, which is 12 percent lower than it was pre-development (145,000 cfs). The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,630 cfs to 2,460 cfs with human development, a reduction of 47 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,760 cfs under unregulated conditions to 2,980 cfs under regulated conditions, a reduction of 56 percent.

In the fall and winter, low flows are typically around 3,500 cfs, which is 60-75 percent higher than historic flow conditions.

CEA-Related observations in Reach D9 include: •Floodplain isolation due to flow alterations and agricultural dikes •Side channel blockages

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D9 include: •Side channel reactivation at RM 68.8L •Russian olive removal PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

FI	ood His	story				Downstream	Upstream
	Year	Date	Flow on Date	Return Interval	Gage No	6329500	Gage 6309000
	1978	May 23	111,000	10-25 yr	Location	Sidney	Miles City
	1912	Mar 29	114,000	10-25 yr	Period of Record	ecord 1911-2015	1929-2015
	1944	Jun 21	120,000	10-25 yr			1120-2010
	2011	May 24	124,000	10-25 yr	Distance To (miles)	37.0	112.9
	1918	Jun 20	126,000	25-50 yr			
	1943	Mar 29	132,000	25-50 yr			
	1923	Oct 3	134,000	25-50 yr			
	1952	Mar 31	138,000	25-50 yr			
	1921	Jun 21	159,000	100-yr			

Discharge

	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		69,600	89,800	103,000	132,000	145,000	175,000	4,630	6,760
Regulated		54,200	74,400	87,600	116,000	128,000	156,000	2,460	2,980
% Change		-22.13%	-17.15%	-14.95%	-12.12%	-11.72%	-10.86%	-46.87%	-55.92%

low Duration		Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time				
Season		5%	50%	95%		
Spring	Unregulated	67,500	25,000	7,030		
	Regulated	52,100	14,800	5,110		
	% Change	-23%	-41%	-27%		
Summer	Unregulated	47,400	14,800	6,760		
	Regulated	35,200	8,680	2,980		
	% Change	-26%	-41%	-56%		
Fall	Unregulated	9,830	5,900	1,990		
	Regulated	11,200	7,400	3,550		
	% Change	14%	25%	78%		
Winter	Unregulated	15,200	5,440	2,120		
	Regulated	15,800	6,610	3,460		
	% Change	4%	22%	63%		
Annual	Unregulated	49,800	8,880	2,820		
	Regulated	37,100	8,010	3,580		
	% Change	-26%	-10%	27%		

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010

95% Sum

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	USCOE	9-Oct-76	B/W	1:24,000	6329500	9580
1995	USGS DOQQ	8-Aug-96	B/W		6329500	10300
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2004	Merrick	3-Jun-04	Color	1:15,840	6329500	9950
2005	NAIP	07/14/2005	color	1-meter pixels	6329500	15900
2009	NAIP	7/11/2009	Color	1-meter pixels	6329500	32600
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/21/2011	Color	1-meter pixels	6329500	46600
2013	NAIP	07/27/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change		
Stream St	abilization							
	Flow Deflectors	0	0.0%	45	0.1%	45		
	Feature Type Totals		0.0%	45	0.1%			
Other In C	Other In Channel							
	Bedrock Outcrop	417	1.1%	417	1.1%	0		
	Feature Type Totals	417	1.1%	417	1.1%	0		
	Reach Totals	417	1.1%	462	1.3%	45		

Bankline/Floodplain Inventory: Time Series The Human Impacts Timeline assessed physical feature development through time for Yellowstone, Stillwater, and Dawson Counties.

		Sum of Feature Length (ft)							
Feature Class	Feature Type	1950	1976	1995	2001	2004	2005		
Irrigation									
	Floodplain Dike/Levee	15,737	15,737	15,737	15,737	15,737	15,737		
	Totals	15,737	15,737	15,737	15,737	15,737	15,737		
Other Off Channe									
	Floodplain Dike/Levee	0	1,038	1,038	1,038	1,038	1,038		
	Totals	0	1,038	1,038	1,038	1,038	1,038		
Transportation Er	ncroachment								
	Railroad	11,580	11,580	11,580	11,580	11,580	11,580		
	Totals	11,580	11,580	11,580	11,580	11,580	11,580		

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	17,273	14,070	1.81	1950 to 1976:	-12.98%
1976	17,792	10,303	1.58	1976 to 1995:	23.66%
1995	18,461	17,589	1.95	1995 to 2001:	2.57%
2001	18,461	18,515	2.00	1950 to 2001:	10.38%
Change 1950 - 2001	1,188	4,445	0.19		
Lenath of Side		Pre-1950s (ft)	14,796		
Channels Blocked		Post-1950s (ft)	6,635		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-`	Year % of Floodplain
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)	137	12.4%		
Agriculture (generally relates to field boundaries)	0	0.0%		
Agriculture (isloated by canal or large ditch)	33	3.0%		
Levee/Riprap (protecting agricultural lands)	0	0.0%		
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%		
Railroad	0	0.0%		
Abandoned Railroad	0	0.0%		
Transportation (Interstate and other roads)	0	0.0%		
Total Not Isolated (Ac)	940		578	
Total Floodplain Area (Ac)	1111		739	
Total Isolated (Ac)	170	15.3%	161	50.4%

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	0	0	0	0

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

Mean 50-Yr	Erosion	Total	Restricted	% Restricted	Total	Restricted	% Restricted
Migration	Buffer	CMZ	CMZ	Migration	AHZ	AHZ	Avulsion
Distance (ft)	(ft)	Acreage	Acreage	Area	Acreage	Acreage	Area
344	688	1,094	0	0%	310	0	0%

Land Uses within the CMZ (Acres)	Flood	Sprinkler	Pivot	Urban/	Trans-
	Irrigation	Irrigation	Irrigation	ExUrban	portation
	29.0	0.0	19.2	0.0	0.0

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3	Acres				% of Reach Area			
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	65	65	65	65	1.7%	1.7%	1.7%	1.7%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	16	16	13	13	0.4%	0.4%	0.3%	0.3%
	Totals	81	81	78	78	2.1%	2.1%	2.1%	2.1%
Agricultural Land	d								
	Non-Irrigated	2,248	2,244	2,221	2,211	59.1%	59.0%	58.4%	58.1%
	Irrigated	760	886	891	891	20.0%	23.3%	23.4%	23.4%
	Totals	3,008	3,130	3,112	3,102	79.1%	82.3%	81.8%	81.6%
Channel									
	Channel	679	557	578	588	17.9%	14.7%	15.2%	15.5%
	Totals	679	557	578	588	17.9%	14.7%	15.2%	15.5%
ExUrban						•			1.1
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%
Transportation									
	Public Road	19	19	19	19	0.5%	0.5%	0.5%	0.5%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	16	16	16	16	0.4%	0.4%	0.4%	0.4%
	Totals	35	35	35	35	0.9%	0.9%	0.9%	0.9%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	and Use Timeline - Tiers 3 and 4 Change Between Years												
			Aci	res		%	of Rea	ch Area	a	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01	'01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	183	183	0.0%	0.0%	5.9%	5.9%	0.0%	5.9%	0.0%	5.9%
	Flood	760	886	708	708	25.3%	28.3%	22.8%	22.8%	3.0%	-5.5%	0.1%	-2.5%
	Totals	760	886	891	891	25.3%	28.3%	28.6%	28.7%	3.0%	0.3%	0.1%	3.4%

Non-Irrigated

Multi-Use	1,963	2,017	1,992	1,989	65.3%	64.4%	64.0%	64.1%	-0.8%	-0.4%	0.1%	-1.2%
Hay/Pasture	285	228	228	222	9.5%	7.3%	7.3%	7.2%	-2.2%	0.1%	-0.2%	-2.3%
Totals	2,248	2,244	2,221	2,211	74.7%	71.7%	71.4%	71.3%	-3.0%	-0.3%	-0.1%	-3.4%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (A			5)	Clos	ed Timber (A	Acres)	Ор	en Timber (A	cres)
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.9	1.9	1.8	4.6	3.5	2.9	5.3	9.5	5.2
Max	97.0	44.4	29.9	144.7	168.6	521.6	39.3	68.7	5.2
Average	22.9	12.4	10.5	52.2	40.5	52.1	15.5	27.0	5.2
Sum	480.6	286.1	146.3	417.5	526.9	781.5	77.3	108.0	5.2
Riparian	Turnove	er			Riparian f	to Channel (a	acres)	112.1	
from ch	rsion of ripar nannel to rip	arian areas to a	channel, or n the 1950's		Channel to Riparian (acres) 147.4				
and 20	01 data set.			R	iparian Encr	oachment (a	icres)	35.3	
Riparian	Recruit	ment	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	147.4		
Creation of	f riparian are	eas	1950s Floodp	lain Mapped	as 2011 Cha	nnel (Ac)	31.2		
between 1	950s and 20	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	178.6		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	1.9	21.8	18.1	0.0	41.9
Acres/Valley Mile	0.6	7.2	6.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	1.04	0.05%	0.21	0.00	0.44	0.07

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)				
Habitat	Bankfull	Low Flow	% of Low Flow		
Scour Pool	160.1	82.7	14.3%		
Bluff Pool	112.3	76.9	13.3%		
Secondary Channel		8.8	1.5%		
Secondary Channel (Seasonal)	84.8	57.5	9.9%		
Channel Crossover	57.4	61.4	10.6%		
Point Bar		47.2	8.2%		
Side Bar		21.4	3.7%		
Mid-channel Bar		2.6	0.5%		
Island	159.7	159.4	27.6%		
Dry Channel		60.5	10.5%		

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

Reach D10

County	Dawson
Classification	PCA: Partially confined anabranching
General Location	Lowermost Dawson County, Richland County
General Comments	Vegatated islands

Upstream River Mile	67.8
Downstream River Mile	56.3
Length	11.50 mi (18.51 km)

Narrative Summary

Reach D10 is located in lowermost Dawson County and extends into upper Richland County. The reach is an 11.5 mile long Partially Confined Anabranching (PCA) reach type, indicating some valley wall influence and numerous forested islands.

In 2011 there were just about 730 feet of rock riprap in the reach armoring 0.6 percent of the total stream bank. Prior to that some armor had been lost; between 2001 and 2011, almost 500 feet of rock riprap and 1,050 feet of concrete riprap were destroyed. Some of the greatest damage was at RM 64.2L, where several hundred feet of flow deflectors were flanked, and now are in the river over 100 feet off of the bank. The remaining bank protection in this area continues to flank. Another is at RM 60, where the flanking of concrete riprap has been followed by over 200 feet of erosion behind the original armor.

Similar to many reaches in the Lower Yellowstone Valley, the river channel in Reach D10 has gotten smaller since 1950. The channel contracted by about 404 acres in this reach since 1950, and about 406 acres of riparian vegetation has encroached into old channel areas. This pattern has been consistent in the lower river, and relates primarily to a reduction in flows due to human development. The encroachment was at the expense of open gravel bars; between 1950 and 2001, the reach lost 151 acres of mid-channel bar habitat. Floodplain turnover rates have dropped as well; prior to 1976 measured floodplain turnover rates in this reach were 13.9 acres per year, and post-1976 rages were 7.0 acres per year.

Reach D10 has a relatively high concentration of mapped wetlands; the NWI mapping shows a total of 278 acres of mapped wetland, much of which is emergent marsh and wet meadow.

Land use is dominated by agriculture, with 230 acres of pivot irrigation development since 1950. Some of the irrigation development took place in historic riparian areas; a total of 457 acres of riparian lands were converted for agricultural and other land uses since 1950. This equates to 15 percent of the entire 1950 riparian footprint. There are 97 acres of land under pivot irrigation within the Channel Migration Zone (CMZ) of the river, making these areas especially prone to river erosion.

About 38 percent of the historic 5-year floodplain has become isolated, primarily due to flow alterations.

Reach D10 was sampled as part of the avian study. A total of 57 species were identified in the reach, indicating relatively high bird species richness on the Yellowstone River. Four species identified are considered Potential Species of Concern (PSOC) by the Montana Natural Heritage Center: The Black and White Warbler, Dickscissel, Ovenbird, and Plumbeous Vireo. The Red-headed Woodpecker was also identified which is a Species of Concern. Similar to Reach D9 upstream, Reach D10 has seen an increase in the amount of forest area considered at low risk of cowbird parasitism. In 1950, there were 92 acres per valley mile of such forest, and by 2001, that number had increased to 112 acres per valley mile.

There are about 12 acres of mapped Russian olive in the reach.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,850 cfs to 2,810 cfs with human development, a reduction of 43 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,940 cfs under unregulated conditions to 3,270 cfs under regulated conditions, a reduction of 53 percent.

CEA-Related observations in Reach D10 include: •Armor flanking and accelerated erosion behind

Recommended Practices (May include Yellowstone River Recommended Practices--YRRPs) for Reach D10 include: •Removal of flanked armor at RM 60 and RM 64.2L •Russian olive removal PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

FI	ood His	story				Downstream	Upstream
	Year	Date	Flow on Date	Return Interval	Gage No	Gage 6329500	Gage 6309000
	1978	May 23	111,000	10-25 yr	Location	Sidnev	Miles Citv
	1912	Mar 29	114,000	10-25 yr	Period of Record	1911-2015	1929-2015
	1944	Jun 21	120,000	10-25 yr	Distance To (miles)	25.5	116.2
	2011	May 24	124,000	10-25 yr	Distance To (Innes)	20.0	110.2
	1918	Jun 20	126,000	25-50 yr			
	1943	Mar 29	132,000	25-50 yr			
	1923	Oct 3	134,000	25-50 yr			
	1952	Mar 31	138,000	25-50 yr			
	1921	Jun 21	159,000	100-yr			

Discharge

	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		69,700	90,000	103,000	132,000	144,000	173,000	4,450	6,620
Regulated		54,200	74,700	88,100	118,000	130,000	159,000	2,310	2,840
% Change		-22.24%	-17.00%	-14.47%	-10.61%	-9.72%	-8.09%	-48.09%	-57.10%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010 95% Sum

Season		5%	50%	95%
Spring	Unregulated	67,400	24,900	7,100
	Regulated	52,000	14,600	5,150
	% Change	-23%	-41%	-27%
Summer	Unregulated	47,500	14,700	6,620
	Regulated	35,300	8,540	2,840
	% Change	-26%	-42%	-57%
Fall	Unregulated	9,870	5,870	1,970
	Regulated	11,300	7,370	3,530
	% Change	14%	26%	79%
Winter	Unregulated	15,600	5,500	2,130
	Regulated	16,200	6,670	3,480
	% Change	4%	21%	63%
Annual	Unregulated	49,800	8,860	2,830
	Regulated	37,000	8,000	3,530
	% Change	-26%	-10%	25%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	MDT	28-Oct-77	B/W	1:12,000	6329500	5800
1995	USGS DOQQ	7/9/96 - 7/15/96 - 8/8/96	B/W		6329500	35000
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2004	Merrick	3-Jun-04	Color	1:15,840	6329500	9950
2005	NAIP	07/14/2005	color	1-meter pixels	6329500	15900
2009	NAIP	7/11/2009	Color	1-meter pixels	6329500	32600
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/21/2011	Color	1-meter pixels	6329500	46600
2013	NAIP	07/19/2013	color	1-meter pixels	6329500	
2013	NAIP	07/27/2013	color	1-meter pixels	6329500	
PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	1,175	1.0%	728	0.6%	-447
	Concrete RipRap	1,051	0.9%	0	0.0%	-1,051
	Feature Type Totals	2,226	1.9%	728	0.6%	-1,498
Other In C	hannel					
	Bedrock Outcrop	787	0.7%	787	0.7%	0
	Feature Type Totals	787	0.7%	787	0.7%	0
	Reach Totals	3,012	2.5%	1,515	1.3%	-1,498

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap		1,050	0	0	0	0	0	0	0
Rock RipRap		0	1,174	0	0	0	0	0	0
	Totals	1,050	1,174	0	0	0	0	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	59,537	92,853	2.56	1950 to 1976:	-4.18%
1976	60,364	87,686	2.45	1976 to 1995:	-3.62%
1995	61,165	83,424	2.36	1995 to 2001:	11.88%
2001	59,913	98,546	2.64	1950 to 2001:	3.33%
Change 1950 - 2001	376	5,693	0.09		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	94	1.9%			
Agriculture (generally relates to field boundaries)	13	0.3%			
Agriculture (isloated by canal or large ditch)	121	2.5%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	423	8.7%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	4236		2758		
Total Floodplain Area (Ac)	4887		3576		
Total Isolated (Ac)	651	13.3%	818	38.3%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	121	0	0	121

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal I MZ eage	Restricted CMZ Acreage	% Restrict Migratio Area	ted Tota n AHZ Acrea	al Re Z Ige A	estricted AHZ creage	% Restricted Avulsion Area
	526	1,051	4,7	53	95	2%	233	5	0	0%
2011 Re	stricted Mig	ration A	rea Sun	nmary		Note that the	ese data refle	ct the observe	erved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percer CM	ent of Counties, COE for the rest of the river					Sweet Glass
Road/Railro	oad Prism									
	Railroad		8	0.2	%					
RipRap										
	Non-Irrigated	l	44	0.9	%					
		Totals	52	1.0	%					
Land Us	es within th	e CMZ (/	Acres)	Flc Irriga	ood ation	Sprinkler Irrigation	Pivot Irrigation	Urban ExUrba	n po	Trans- ortation
				54	0.6	0.0	96.5	5.7		1.8

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	26	26	26	26	0.3%	0.3%	0.3%	0.3%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	18	18	29	26	0.2%	0.2%	0.4%	0.3%
	Totals	44	44	55	53	0.5%	0.5%	0.7%	0.6%
Agricultural Land	d								
	Non-Irrigated	3,863	4,018	4,158	3,825	47.1%	49.0%	50.7%	46.6%
	Irrigated	723	1,130	1,533	1,505	8.8%	13.8%	18.7%	18.3%
	Totals	4,586	5,148	5,692	5,330	55.9%	62.8%	69.4%	65.0%
Channel									· · · · ·
	Channel	3,546	2,979	2,424	2,788	43.2%	36.3%	29.6%	34.0%
	Totals	3,546	2,979	2,424	2,788	43.2%	36.3%	29.6%	34.0%
ExUrban									1
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	5	6	6	0.0%	0.1%	0.1%	0.1%
	Totals	0	5	6	6	0.0%	0.1%	0.1%	0.1%
Transportation									
	Public Road	5	5	5	5	0.1%	0.1%	0.1%	0.1%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	21	21	21	21	0.3%	0.3%	0.3%	0.3%
	Totals	26	26	26	26	0.3%	0.3%	0.3%	0.3%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 and	4								Char	ige Betv	ween Y	ears
			Acr	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	232	229	0.0%	0.0%	4.1%	4.3%	0.0%	4.1%	0.2%	4.3%
	Flood	723	1,130	1,301	1,275	15.8%	21.9%	22.9%	23.9%	6.2%	0.9%	1.1%	8.2%
	Totals	723	1,130	1,533	1,505	15.8%	21.9%	26.9%	28.2%	6.2%	5.0%	1.3%	12.5%

Reach D10

Multi-Use	3,442	3,567	3,909	3,594	75.1%	69.3%	68.7%	67.4%	-5.8%	-0.6%	-1.2%	-7.6%
Hay/Pasture	421	452	250	231	9.2%	8.8%	4.4%	4.3%	-0.4%	-4.4%	-0.1%	-4.8%
Totals	3,863	4,018	4,158	3,825	84.2%	78.1%	73.1%	71.8%	-6.2%	-5.0%	-1.3%	-12.5%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	S	Shrub (Acres	5)	Clos	ed Timber (A	Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.8	0.3	0.1	0.3	1.3	1.6	0.0	7.0	5.6
Max	148.9	156.3	88.8	213.5	693.9	870.0	80.0	32.7	42.8
Average	27.8	13.6	16.9	48.9	59.9	53.4	20.8	17.3	24.7
Sum	1,251.2	680.8	796.1	1,760.9	1,797.3	2,083.2	228.3	138.1	172.7
Riparian	Turnove	r			Diporion f	channel (ar		242.0	
Conve	rsion of ripari	an areas to	channel. or		Ripanan	o Channel (ad	sies)	343.0	
from cl	hannel to ripa	arian betweel	n the 1950's		Channel t	o Riparian (ad	cres)	748.9	
and 20	01 data set.			R	iparian Encre	oachment (ac	cres)	405.9	
Riparian	Recruitn	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	758.1		
Creation o	Creation of riparian areas			olain Mapped	as 2011 Cha	innel (Ac)	164.3		
between 1	950s and 200	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	922.3		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	21.6	136.8	120.4	0.0	278.7
Acres/Valley Mile	2.3	14.7	12.9	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	11.90	0.22%	5.79	0.02	5.83	2.33

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	307.2	219.2	9.0%
Rip Rap Bottom	115.7	62.0	2.6%
Bluff Pool	188.0	134.9	5.6%
Secondary Channel	103.1	73.2	3.0%
Secondary Channel (Seasonal)	449.9	415.5	17.1%
Channel Crossover	275.2	148.3	6.1%
Point Bar		248.7	10.3%
Side Bar		20.5	0.8%
Mid-channel Bar		21.3	0.9%
Island	985.0	989.2	40.8%
Dry Channel		91.3	3.8%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird Species Observed	in Reach/Region	Species of Concern	Potential Species of Concern
Region	Region	Region	Region Reach
✓ ✓ American Robin	Chipping Sparrow	Killdeer	Song Sparrow
American Crow	✓ ✓ Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
✓ ✓ American Goldfinch	Cliff Swallow	✓ ✓ Lark Sparrow	Spotted Towhee
✓ ✓ American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
✓ ✓ Bald Eagle	🖌 🗹 Common Nighthawk	Mallard	Sandhill Crane
Baltimore Oriole	Common Raven	Mountain Bluebird	Tree Swallow
Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
✓ ✓ Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
V Black-billed Magpie	Downy Woodpecker	Osprey	□ □ Violet-green Swallow
V Black-capped Chickadee	Eastern Bluebird	Venbird	Warbling Vireo
I Black-and-white Warbler	Eastern Kingbird	Plumbeous Vireo	Vestern Kingbird
V Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	Vestern Meadowlark
✓ ✓ Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	Vestern Wood-pewee
Bobolink	Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
Brewer's Blackbird	🗌 🗹 Franklin's Gull	Ring-necked Pheasant	White-throated Swift
V B rown-headed Cowbird	✓ ✓ Grasshopper Sparrow	Red-tailed hawk	Vild Turkey
Brown Creeper	✓ ✓ Gray Catbird	Rock Dove	Wood Duck
V Brown Thrasher	Great Blue Heron	Red-winged Blackbird	Vellow-bellied Sapsucker
V Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Vellow-billed Cuckoo
Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	Vellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

Reach DII

County	Richland	Upstream River Mile	56.3
Classification	PCA: Partially confined anabranching	Downstream River Mile	49.9
General Location	Savage; Elk Island	Length	6.40 mi (10.30 km)

General Comments Elk Island: Very wide riparian; marked change in channel course since 1981 geologic map base

Narrative Summary

Reach D11 is 10.3 miles long, located near Savage and Elk Island. It is a Partially Confined Anabranching reach type (PCA) indicating distinct side channels around vegetated islands with some valley wall influences. The valley wall is comprised of Tertiary-age Fort Union Formation, and a distinct terrace surface borders the active stream corridor. Fort Union Formation rocks are exposed on a right bank bluff on the downstream end of the reach.

There is no mapped bank armor in Reach D11. Prior to 1950, however, about three miles of side channel had been blocked, mostly around Elk Island.

The most striking change in Reach D11 since 1950 is the encroachment of riparian vegetation onto old sand bars. Between 1950 and 2001, the size of the channel has dropped by 313 acres, and there has been 294 acres of riparian encroachment into old channel areas. Much of this encroachment converted open sand bars into forested islands. There has been a loss of over 100 acres of sand bar since 1950. This change has resulted in a conversion of almost 7 miles low flow channels around gravel bars to anabranching side channels around islands.

Reach D11 has had six ice jams-related floods reported since 1943. They all occurred in February or March, and several of them reported flood damages.

Approximately 36 percent of the historic 5-year floodplain has become isolated, largely due to flow alterations.

Land use in the reach is dominated by flood irrigation.

There are about 32 acres of Russian olive mapped in the reach.

Reach D11 was sampled as part of the avian study. A total of 61 bird species were identified in the reach, indicating high bird species richness. Five bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) were found, the Black and white Warbler, Chimney Swift, Dickscissel, Ovenbird, and Plumbeous Vireo. The Red-headed woodpecker was also observed, which has been identified as a Species of Concern (SOC). Reach D11 has seen an increase in the amount of forest area considered at low risk of cowbird parasitism. In 1950, there were 216.4 acres per valley mile of such forest, and by 2001, that number had increased to 247.2 acres per valley mile.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,370 cfs to 2,220 cfs with human development, a reduction of 50 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,540 cfs under unregulated conditions to 2,750 cfs under regulated conditions, a reduction of 59 percent. Fall and winter low flows are about 3,500 cfs; these discharges are about 60 percent to 80 percent higher than they were prior to development.

CEA-Related observations in Reach D11 include:

- •Reduction in 5-year floodplain footprint with flow alterations
- •Increased fall and winter low flows with development
- •Reduced summer low flows with development
- •Reduced channel forming discharge causing channel contraction
- •Extensive riparian encroachment with flow alterations

•Conversion of open sand bars to forested islands

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D11 include: •Side channel reactivation RM 53L •Russian olive removal

PHYSICAL FEATURES MAP (2011)

PHYSICAL FEATURES MAP (2011)

Reach DII

05% Sum

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

FI	ood His	story				Downstream	Upstream
	Year	Date	Flow on Date	Return Interval	Gage No	Gage 6329500	Gage 6309000
	1978	May 23	111,000	10-25 yr	Location	Sidnev	Miles Citv
	1912	Mar 29	114,000	10-25 yr	Period of Record	1911-2015	1929-2015
	1944	Jun 21	120,000	10-25 yr	Distance To (miles)	10 1	127 7
	2011	May 24	124,000	10-25 yr	Distance TO (Innes)	19.1	121.1
	1918	Jun 20	126,000	25-50 yr			
	1943	Mar 29	132,000	25-50 yr			
	1923	Oct 3	134,000	25-50 yr			
	1952	Mar 31	138,000	25-50 yr			
	1921	Jun 21	159,000	100-yr			

Discharge

•	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		69,800	90,100	103,000	132,000	144,000	172,000	4,370	6,540
Regulated		54,200	74,800	88,400	118,000	131,000	161,000	2,220	2,750
% Change		-22.35%	-16.98%	-14.17%	-10.61%	-9.03%	-6.40%	-49.20%	-57.95%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010

Season		5%	50%	95%
Spring	Unregulated	67,400	24,800	7,150
	Regulated	52,000	14,500	5,170
	% Change	-23%	-42%	-28%
Summer	Unregulated	47,600	14,700	6,540
	Regulated	35,300	8,440	2,750
	% Change	-26%	-43%	-58%
Fall	Unregulated	9,900	5,850	1,950
	Regulated	11,300	7,350	3,520
	% Change	14%	26%	81%
Winter	Unregulated	15,900	5,550	2,140
	Regulated	16,400	6,720	3,490
	% Change	3%	21%	63%
Annual	Unregulated	49,800	8,840	2,830
	Regulated	37,000	8,000	3,500
	% Change	-26%	-10%	24%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	MDT	28-Oct-77	B/W	1:12,000	6329500	5800
1995	USGS DOQQ	8/22/97 - 7/9/96	B/W		6329500	35000
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2005	NAIP	07/14/2005	color	1-meter pixels	6329500	15900
2007	Woolpert	10/15/2007 - 11/2/0007	Color		6329500	
2009	NAIP	7/11/2009	Color	1-meter pixels	6329500	32600
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/21/2011	Color	1-meter pixels	6329500	46600
2013	NAIP	07/19/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Other In C	hannel					
	Bedrock Outcrop	674	1.0%	674	1.0%	0
	Feature Type Totals	674	1.0%	674	1.0%	0
	Reach Totals	674	1.0%	674	1.0%	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

3/10/1943

3/4/1994

2/13/1996

2/16/1996

3/18/2003

3/20/2009

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	35,949	72,196	3.01	1950 to 1976:	7.56%
1976	40,583	90,731	3.24	1976 to 1995:	1.55%
1995	34,282	78,367	3.29	1995 to 2001:	-17.69%
2001	33,705	57,459	2.70	1950 to 2001:	-10.09%
Change 1950 - 2001	-2,244	-14,738	-0.30		
Length of Side		Pre-1950s (ft)	15,601		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-`	Year
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain
Non-Structural (hydrology, geomorphic, etc.)	32	0.8%		
Agriculture (generally relates to field boundaries)	0	0.0%		
Agriculture (isloated by canal or large ditch)	0	0.0%		
Levee/Riprap (protecting agricultural lands)	0	0.0%		
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%		
Railroad	72	1.7%		
Abandoned Railroad	0	0.0%		
Transportation (Interstate and other roads)	0	0.0%		
Total Not Isolated (Ac)	4135		2524	
Total Floodplain Area (Ac)	4238		3386	
Total Isolated (Ac)	104	2.5%	862	35.7%

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	130	0	0	130

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CM Acre	tal Restricte //Z CMZ eage Acreage	ed % Restric Migratic e Area	cted Tota on AHZ Acrea	l Restr 2 Al- ge Acre	icted % Restr IZ Avulsi age Area	ricted ion a
	686	1,371	4,3	34 62	1%	30	0	0%)
2011 Res	stricted Mig	gration A	rea Sun	nmary	Note that th	ese data refle	ct the observe	ed conditions in t	the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	2011 aerial photography (NAIP for Park an Counties, COE for the rest of the river).		Cand Sweet Gra	SS	
Dike/Levee									
	Railroad		62	1.4%					
		Totals	62	1.4%					
Land Us	es within tl	ne CMZ (A	Acres)	Flood Irrigation 256.4	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 0.4	Trans- portation 8.5	

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use T	imeline - Tiers 2 and 3		Aci	res		%	of Rea	ch Area	a I
Feature Class	Feature Type	1950	1976	2001	2011	1950	2011		
Agricultural Infra	astructure								
	Canal	15	15	15	15	0.2%	0.2%	0.2%	0.2%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	25	35	38	35	0.4%	0.5%	0.6%	0.5%
	Totals	40	50	52	50	0.6%	0.8%	0.8%	0.8%
Agricultural Lan	d								
	Non-Irrigated	2,727	3,334	3,768	3,788	42.4%	51.9%	58.6%	58.9%
	Irrigated	610	584	739	670	9.5%	9.1%	11.5%	10.4%
	Totals	3,338	3,918	4,507	4,457	51.9%	61.0%	70.1%	69.4%
Channel									
	Channel	3,003	2,392	1,792	1,845	46.7%	37.2%	27.9%	28.7%
	Totals	3,003	2,392	1,792	1,845	46.7%	37.2%	27.9%	28.7%
ExUrban									1
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	2	2	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	2	2	0	0	0.0%	0.0%	0.0%	0.0%
Transportation									
	Public Road	19	26	27	27	0.3%	0.4%	0.4%	0.4%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	12	12	12	12	0.2%	0.2%	0.2%	0.2%
	Totals	31	37	39	39	0.5%	0.6%	0.6%	0.6%
Urban									
	Urban Other	0	8	18	18	0.0%	0.1%	0.3%	0.3%
	Urban Residential	13	15	17	17	0.2%	0.2%	0.3%	0.3%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	5	0	0	0.0%	0.1%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	13	28	35	35	0.2%	0.4%	0.5%	0.5%

Land Use Til	meline - Tiers 3 and	4								Char	nge Betv	veen Y	ears
			Acr	res		%	of Rea	ch Area	l I	(% 0	f Agricul	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irrigated													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	11	11	0.0%	0.0%	0.2%	0.3%	0.0%	0.2%	0.0%	0.3%
Flood		610	584	728	658	18.3%	14.9%	16.1%	14.8%	-3.4%	1.2%	-1.4%	-3.5%
	Totals	610	584	739	670	18.3%	14.9%	16.4%	15.0%	-3.4%	1.5%	-1.4%	-3.3%

Reach D11

Multi-Use	2,328	2,932	3,619	3,641	69.7%	74.8%	80.3%	81.7%	5.1%	5.5%	1.4%	11.9%
Hay/Pasture	400	402	149	147	12.0%	10.3%	3.3%	3.3%	-1.7%	-6.9%	0.0%	-8.7%
Totals	2,727	3,334	3,768	3,788	81.7%	85.1%	83.6%	85.0%	3.4%	-1.5%	1.4%	3.3%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Clos	ed Timber (A	Acres)	Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min Max Average Sum	0.5 256.8 29.7 1,037.8	0.1 208.6 22.2 756.3	1.0 230.0 17.9 608.7	0.5 415.7 49.9 1,597.1	1.4 493.5 88.4 2,210.6	0.3 391.8 65.9 2,108.3	0.8 232.9 53.7 483.5	1.7 18.4 8.6 25.8	6.7 128.6 46.2 277.2
Riparian Turnover Conversion of riparian areas to channel, or from channel to riparian between the 1950's and 2001 data set.					Riparian t Channel t iparian Encr e	to Channel (a to Riparian (a oachment (a	cres) cres) cres)	355.9 650.8 294.9	
Riparian Recruitment 1950s Cha				nnel Mapped	as 2011 Ripa	arian (Ac)	700.9		
Creation o	Creation of riparian areas			olain Mapped	as 2011 Cha	innel (Ac)	74.3		
between 1	950s and 200	01.	Total Recruitment (1950s to 2011)(Ac)				775.2		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	24.4	119.1	44.7	0.0	188.2
Acres/Valley Mile	4.5	22.1	8.3	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	31.79	1.05%	34.72	1.00	9.53	3.42	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (Acres)	
Habitat Scour Pool	Bankfull 303.0	Low Flow 193.9	% of Low Flow 10.8%
Secondary Channel	211.9	113.8	6.3%
Secondary Channel (Seasonal)	303.9	233.5	13.0%
Channel Crossover	152.9	112.8	6.3%
Point Bar		56.5	3.2%
Side Bar		76.0	4.2%
Mid-channel Bar		44.4	2.5%
Island	820.7	821.5	45.8%
Dry Channel		139.9	7.8%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird Species Observed	in Reach/Region	Species of Concern	Potential Species of Concern
Region	Region Reach	Region Reach	Region Reach
American Robin	Chipping Sparrow	Killdeer	Song Sparrow
American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
American Goldfinch	Cliff Swallow	✓ ✓ Lark Sparrow	Spotted Towhee
✓ ✓ American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
✓ ✓ American Redstart	Common Merganser	✓ ✓ Least Flycatcher	Swainson's Thrush
Bald Eagle	🖌 🖌 Common Nighthawk	Mallard	Sandhill Crane
Baltimore Oriole	Common Raven	Mountain Bluebird	Tree Swallow
Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
Black-billed Magpie	Downy Woodpecker	Osprey	Violet-green Swallow
Black-capped Chickadee	Eastern Bluebird	V Ovenbird	✓ ✓ Warbling Vireo
Black-and-white Warbler	Eastern Kingbird	Plumbeous Vireo	Vestern Kingbird
Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	Vestern Meadowlark
✓ ✓ Blue Jay	✓ ✓ European Starling	Red-naped Sapsucker	Vestern Wood-pewee
Bobolink	Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
Brewer's Blackbird	✓ ✓ Franklin's Gull	✓ ✓ Ring-necked Pheasant	White-throated Swift
I Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
Brown Creeper	Gray Catbird	Rock Dove	Vood Duck
Brown Thrasher	Great Blue Heron	✓ ✓ Red-winged Blackbird	Vellow-bellied Sapsucker
Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Vellow-billed Cuckoo
Canada Goose	✓ ✓ Hairy Woodpecker	🖌 🖌 Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
Chimney Swift	✓ ✓ House Wren	✓ ✓ Savannah Sparrow	✓ ✓ Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

CountyRichlandUpstream River Mile49.9ClassificationPCA: Partially confined anabranchingDownstream River Mile36.3General LocationSeven SistersLength13.60 mi (21.89 km)General CommentsSecondary channel on valley wall; Sinuous; long abandoned secondary channelSecondary channel

Narrative Summary

Reach D12 is located in Richland County at Seven Sisters. The Seven Sisters Fishing Access Site is located in the lower portion of the reach. The reach is a 13.6 mile long Partially Confined Anabranching reach type, indicating some influence of the valley wall along with extensive forested islands. This reach supports over 20 miles of side channels, and islands that are miles long and over ½ mile wide.

There are almost 7,000 feet of bank armor in the reach, and about one third of that was built since 2001. Most of the armor (3,250 feet) is rock riprap, and there are about 2,000 feet each of concrete riprap and flow deflectors. A total of 5 percent of the bank is armored, which is a relatively low concentration of bank armor for the Yellowstone River. All of the armor is protecting agricultural land, most of it against a flood irrigated field on the left bank in the lower end of the reach at RM 37.

Since 1950, a side channel that is almost three miles long was blocked at RM 45.3L. There have also been some gains in side channel length in the reach, such that the net change in length is a loss of approximately one mile. As of 2001, this reach supported almost 21 miles of anabranching channel.

Land use is dominated by agriculture, with 583 acres of pivot irrigation development since 1950. Physical features such as bank armor, dikes, and levees have isolated 3 percent of the Channel Migration Zone in Reach D12, and as of 2011 there were 224 acres of land in the CMZ under pivot irrigation, and 900 acres under flood.

Reach D12 shows, like most other reaches below the Bighorn River, a shrinking channel with reduced rates of erosion and floodplain turnover. For example, the bankfull channel area in the reach dropped by 480 acres since 1950, and there was almost 600 acres of riparian encroachment into old channel areas. Floodplain turnover rates have dropped from 2.1 acres/valley mile/year from 1950-1976 to 1.3 acres/valley mile/year from 1976-2001. This equates to 330 fewer acres of floodplain turnover since 1976. There has also been a net loss of 159 acres of open bar area as the channel has become smaller and more forested. On the floodplain, riparian acreage has decreased; about 350 acres or 9 percent of the total riparian area was cleared for irrigation since 1950.

There are 75 acres of Russian olive in the reach.

The 100-year floodplain has been isolated in this reach, but compared to other reaches the isolation has been fairly minor. About 300 acres of 100-year floodplain has been isolated by human development, which is 5 percent of the total 100-year floodplain. Although only about 5 percent of the 100-year floodplain has been isolated, the impact of flow alterations on the smaller 5-year floodplain has been much more severe; 42 percent of the historic 5-year floodplain is no longer inundated at that frequency. The isolation of the historic 5-year floodplain, which is due primarily to flow alterations, has been associated with increased development in these areas; currently there are about 300 acres of flood irrigated land and within the historic 5-year floodplain footprint.

There is an animal feeding facility on the right bank at RM 46.8.

Reach D12 was sampled as part of the fisheries study. A total of 37 fish species were sampled in the reach. Three species collected in the reach have been identified by the Montana Natural Heritage Program as Species of Concern (SOC): Pallid Sturgeon, Sauger, and Sturgeon Chub.

Reach D12 was also sampled as part of the avian study. A total of 59 bird species were identified in the reach. All five bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) on the Yellowstone River were also found, the Black and White Warbler, the Chimney Swift, the Dickscissel, the Ovenbird, and the Plumbeous Vireo. Similarly, all three bird species identified as Species of Concern (SOC) were identified: the Black-billed Cuckoo, Bobolink, and Red-headed Woodpecker. In contrast to most other reaches, Reach D12 has seen an increase in the forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 103 acres per valley mile of such forest, and that number increased to 115 acres per valley mile by 2001.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,310 cfs to 2,410 cfs with human development, a reduction of 50 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,470 cfs under unregulated conditions to 2,680 cfs under regulated conditions, a reduction of 59 percent.

CEA-Related observations in Reach D12 include: •Increase in area at low risk of cowbird parasitism with riparian encroachment

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D12 include:

•Nutrient management at animal handling facility at RM 46.8R

Side channel reactivation at RM 45.3R

Russian olive removal

Reach D12

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

FI	ood His	story				Downstream	Upstream
	Year	Date	Flow on Date	Return Interval	Gage No	Gage 6329500	Gage 6309000
	1978	May 23	111,000	10-25 yr	Location	Sidney	Miles Citv
	1912	Mar 29	114,000	10-25 yr	Period of Record	1911-2015	1929-2015
	1944	Jun 21	120,000	10-25 yr	Distanco To (milos)	5 5	13/ 1
	2011	May 24	124,000	10-25 yr	Distance TO (Innes)	5.5	134.1
	1918	Jun 20	126,000	25-50 yr			
	1943	Mar 29	132,000	25-50 yr			
	1923	Oct 3	134,000	25-50 yr			
	1952	Mar 31	138,000	25-50 yr			
	1921	Jun 21	159,000	100-yr			

Discharge

-	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		69,800	90,300	103,000	132,000	144,000	172,000	4,310	6,470
Regulated		54,300	74,900	88,600	119,000	132,000	163,000	2,140	2,680
% Change		-22.21%	-17.05%	-13.98%	-9.85%	-8.33%	-5.23%	-50.35%	-58.58%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010 95% Sum

Spring Unregulated 67,400 24,700 7,180 Regulated 52,000 14,400 5,190 % Change -23% -42% -28% Summer Unregulated 47,700 14,700 6,470 Regulated 35,300 8,370 2,680
Spring Offregulated 67,400 24,700 7,160 Regulated 52,000 14,400 5,190 % Change -23% -42% -28% Summer Unregulated 47,700 14,700 6,470 Regulated 35,300 8,370 2,680
Regulated 52,000 14,400 5,190 % Change -23% -42% -28% Summer Unregulated 47,700 14,700 6,470 Regulated 35,300 8,370 2,680
% Change -23% -42% -28% Summer Unregulated 47,700 14,700 6,470 Regulated 35,300 8,370 2,680
Summer Unregulated 47,700 14,700 6,470 Regulated 35,300 8,370 2,680
Regulated 35,300 8,370 2,680
% Change -26% -43% -59%
Fall Unregulated 9,910 5,830 1,940
Regulated 11,300 7,330 3,510
% Change 14% 26% 81%
Winter Unregulated 16,100 5,580 2,140
Regulated 16,600 6,750 3,490
% Change 3% 21% 63%
Annual Unregulated 49,700 8,830 2,830
Regulated 37,000 8,000 3,480
% Change -26% -9% 23%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1957	USDA	???	B/W	1:20,000	6329500	
1976	MDT	28-Oct-77	B/W	1:12,000	6329500	5800
1995	USGS DOQQ	8/3/97 - 8/22/97	B/W		6329500	23000
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2005	NAIP	07/14/2005	color	1-meter pixels	6329500	15900
2007	Woolpert	10/15/2007 - 11/2/0007	Color		6329500	
2009	NAIP	7/11/2009	Color	1-meter pixels	6329500	32600
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/21/2011	Color	1-meter pixels	6329500	46600
2011	NAIP	7/15/2011	Color	1-meter pixels	6329500	57900
2013	NAIP	07/19/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Tree Revetments	531	0.4%	404	0.3%	-127
	Rock RipRap	595	0.4%	3,251	2.3%	2,656
	Flow Deflectors	356	0.2%	474	0.3%	118
	Concrete RipRap	1,945	1.4%	1,945	1.4%	0
	Between Flow Deflectors	1,328	0.9%	1,328	0.9%	0
	Feature Type Totals	4,755	3.3%	7,402	5.2%	2,647
Floodplain	Control					
	Floodplain Dike/Levee	350	0.2%	350	0.2%	0
	Feature Type Totals	350	0.2%	350	0.2%	0
	Reach Totals	5,106	3.6%	7,752	5.4%	2,647

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Concrete RipRap		1,289	0	656	0	0	0	0	0
Flow Deflectors/Between FD	s	1,683	0	0	0	0	0	0	0
Rock RipRap		0	423	171	0	0	0	0	0
Tree Revetments		531	0	0	0	0	0	0	0
	Totals	3,503	423	827	0	0	0	0	0

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	75,467	116,193	2.54	1950 to 1976:	-2.36%
1976	72,988	107,995	2.48	1976 to 1995:	9.36%
1995	70,922	121,394	2.71	1995 to 2001:	-6.48%
2001	71,860	110,374	2.54	1950 to 2001:	-0.15%
Change 1950 - 2001	-3,607	-5,818	0.00		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	14,624		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year			
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain		
Non-Structural (hydrology, geomorphic, etc.)	11	0.2%				
Agriculture (generally relates to field boundaries)	0	0.0%				
Agriculture (isloated by canal or large ditch)	0	0.0%				
Levee/Riprap (protecting agricultural lands)	285	3.9%				
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%				
Railroad	49	0.7%				
Abandoned Railroad	0	0.0%				
Transportation (Interstate and other roads)	0	0.0%				
Total Not Isolated (Ac)	6965		4622			
Total Floodplain Area (Ac)	7310		6736			
Total Isolated (Ac)	345	4.7%	2113	42.4%		

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	300	0	27	328

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 556	Erosion Buffer (ft) 1,113	Tot CN Acre 7,03	tal IZ age 34	Restricted CMZ Acreage 126	% Restrict Migratio Area 2%	ted T n Ac	Fotal AHZ sreage 639	Restricted AHZ Acreage 0	I % Restricted Avulsion Area 0%	
2011 Res	stricted Migr	ation A	rea Sun	nmar	у	Note that the	ese data r	eflect the	observed co	nditions in the	
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	Counties, COE for the rest of the river).					
RipRap											
	Non-Irrigated		46	0.	6%						
	Irrigated		23	0.	3%						
Flow Deflec	tors										
	Irrigated		122	1.	6%						
Dike/Levee											
	Railroad		7	0.	1%						
		Totals	198	2.	6%						
Land Use	es within the	e CMZ (A	Acres)	F Irri 8	lood gation 96.1	Sprinkler Irrigation 0.0	Pivot Irrigatio 244.1	: U on Ex	rban/ KUrban p 4.1	Trans- portation 6.4	

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3			% of Reach Area					
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								1
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	60	109	166	155	0.6%	1.0%	1.6%	1.5%
	Totals	60	109	166	155	0.6%	1.0%	1.6%	1.5%
Agricultural Lan	d								1
	Non-Irrigated	3,778	3,965	3,128	3,139	36.2%	38.0%	29.9%	30.0%
	Irrigated	2,108	2,241	3,003	2,947	20.2%	21.4%	28.7%	28.2%
	Totals	5,886	6,206	6,131	6,087	56.3%	59.4%	58.7%	58.3%
Channel									1
	Channel	4,458	4,074	4,091	4,146	42.7%	39.0%	39.2%	39.7%
	Totals	4,458	4,074	4,091	4,146	42.7%	39.0%	39.2%	39.7%
ExUrban									
	ExUrban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	0	2	2	0.0%	0.0%	0.0%	0.0%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	2	2	0.0%	0.0%	0.0%	0.0%
Transportation									
	Public Road	26	42	41	41	0.3%	0.4%	0.4%	0.4%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	17	17	17	17	0.2%	0.2%	0.2%	0.2%
	Totals	44	59	59	59	0.4%	0.6%	0.6%	0.6%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	neline - Tiers 3 and	4								Char	ige Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	1	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irr													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	360	583	0.0%	0.0%	5.9%	9.6%	0.0%	5.9%	3.7%	9.6%
	Flood	2,108	2,241	2,643	2,365	35.8%	36.1%	43.1%	38.9%	0.3%	7.0%	-4.3%	3.0%
	Totals	2,108	2,241	3,003	2,947	35.8%	36.1%	49.0%	48.4%	0.3%	12.9%	-0.6%	12.6%

Nolrr

Reach D12

Multi-Use	3,111	3,170	2,961	2,986	52.8%	51.1%	48.3%	49.1%	-1.8%	-2.8%	0.8%	-3.8%
Hay/Pasture	668	795	167	154	11.3%	12.8%	2.7%	2.5%	1.5%	-10.1%	-0.2%	-8.8%
Totals	3,778	3,965	3,128	3,139	64.2%	63.9%	51.0%	51.6%	-0.3%	-12.9%	0.6%	-12.6%
RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	5	Shrub (Acres	s)	Clos	ed Timber (A	Acres)	Оре	en Timber (A	cres)
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min Max Average Sum	0.5 247.0 21.5 1,611.4	0.2 140.2 14.0 870.4	0.8 87.4 11.3 473.5	3.1 235.5 64.5 2,128.4	0.6 658.4 81.6 2,856.4	0.2 804.3 71.8 3,517.4	4.0 78.4 27.1 379.5	4.4 137.8 71.1 284.3	4.2 189.5 33.8 337.7
Riparian Conve from c and 20	Turnove rision of ripar hannel to ripa 001 data set.	ian areas to o arian betwee	channel, or n the 1950's	R	Riparian t Channel t iparian Encr e	to Channel (a to Riparian (a oachment (a	cres) 1 cres) 1	518.6 1115.6 597.0	
Riparian	Recruit	nent	1950s Cha	nnel Mapped	l as 2011 Ripa	arian (Ac)	1123.2		
Creation of	f riparian are	as	1950s Floodp	olain Mapped	as 2011 Cha	annel (Ac)	578.0		
between 1	950s and 20	01.	Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	1701.2		

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	28.0	117.2	139.8	0.0	285.0
Acres/Valley Mile	2.6	10.9	13.0	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	74.77	1.37%	82.86	0.12	25.02	13.06	

Species of Concern

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region	Region	Region	Region
Bigmouth buffalo	✓ ✓ Flathead chub	✓ ✓ Northern redbelly dace	Stonecat
✓ ✓ Black bullhead	Freshwater drum	✓ ✓ Pallid sturgeon	Sturgeon chub
Black crappie	Goldeye	Pumpkinseed	Sucker species
Blue sucker	Green sunfish	Rainbow trout	Sunfish species
✓ ✓ Bluegill	Lake chub	River carpsucker	V Walleye
Brook stickleback	Largemouth bass	Rock bass	Vestern silvery minnov
Brown trout	✓ ✓ Longnose dace	Sand shiner	✓ ✓ White bass
V Burbot	✓ ✓ Longnose sucker	✓ ✓ Sauger	V White crappie
Catfish species	Minnow species	Shorthead redhorse	Vite sucker
✓ ✓ Channel catfish	Mottled sculpin	Shortnose gar	Yellow bullhead
Common carp	Mountain sucker	Shovelnose sturgeon	Yellow perch
Creek chub	Mountain whitefish	Sicklefin chub	
Emerald shiner	✓ ✓ Northern pike	Smallmouth bass	
Fathead minnow	✓ ✓ Northern plains killifish	✓ ✓ Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat	Bankfull	Low Flow	% of Low Flow
Scour Pool	608.4	334.5	8.2%
Rip Rap Bottom	23.1	16.6	0.4%
Rip Rap Margin	24.4	21.9	0.5%
Bluff Pool	16.3	16.9	0.4%
Terrace Pool	40.1	30.7	0.8%
Secondary Channel	122.7	110.7	2.7%
Secondary Channel (Seasonal)	479.7	402.0	9.8%
Channel Crossover	439.8	269.4	6.6%
Point Bar		247.3	6.0%
Side Bar		107.7	2.6%
Mid-channel Bar		69.6	1.7%
Island	2,336.7	2,336.7	57.1%
Dry Channel		127.5	3.1%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird Species Observed	in Reach/Region	Species of Concern	Potential Species of Concern
Region	Region	Region	Region
American Robin	Chipping Sparrow	Killdeer	Song Sparrow
American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
✓ ✓ American Goldfinch	Cliff Swallow	✓ ✓ Lark Sparrow	Spotted Towhee
✓ ✓ American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
✓ ✓ American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
✓ ✓ Bald Eagle	🗌 ✔ Common Nighthawk	Mallard	Sandhill Crane
✓ ✓ Baltimore Oriole	Common Raven	Mountain Bluebird	Tree Swallow
Barn Swallow	✓ ✓ Common Yellowthroat	Mourning Dove	Turkey Vulture
Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
Black-billed Cuckoo	✓ ✓ Dickcissel	✓ ✓ Orchard Oriole	Vesper Sparrow
V Black-billed Magpie	Downy Woodpecker	Osprey	□ □ Violet-green Swallow
V Black-capped Chickadee	Eastern Bluebird	V Ovenbird	✓ ✓ Warbling Vireo
I Black-and-white Warbler	✓ ✓ Eastern Kingbird	✓ ✓ Plumbeous Vireo	Western Kingbird
V Black-headed Grosbeak	Eurasian Collared-dove	✓ ✓ Red-headed Woodpecker	Vestern Meadowlark
✓ ✓ Blue Jay	🖌 🖌 European Starling	Red-naped Sapsucker	Vestern Wood-pewee
V Bobolink	✓ ✓ Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
✓ ✓ Brewer's Blackbird	✓ ✓ Franklin's Gull	✓ ✓ Ring-necked Pheasant	White-throated Swift
V Brown-headed Cowbird	Grasshopper Sparrow	✓ ✓ Red-tailed hawk	Wild Turkey
Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
V Brown Thrasher	Great Blue Heron	✓ ✓ Red-winged Blackbird	Vellow-bellied Sapsucker
✓ ✓ Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Vellow-billed Cuckoo
Canada Goose	✓ ✓ Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	✓ ✓ Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

County	Richland	Upstream River Mile	36.3
Classification	PCM/I: Partly confined meandering/islands	Downstream River Mile	27.8
General Location	To Sidney	Length	8.50 mi (13.68 km)
General Comments			

Narrative Summary

Reach D13 is located just upstream of Sidney. It is 8.5 miles long, and is a PCM/I reach type, indicating a primary meandering channel thread with distinct islands largely formed by historic bendway cutoffs. The reach has multiple pipeline crossings, and the Highway 23 Bridge and approach have confined the river and isolated floodplain area. Floodplain development for irrigated agricultural is extensive, and in many cases irrigated fields intersect the channel bank. These locations are commonly armored, and low field dikes affect floodplain access.

In 2011 there was almost 16,000 feet of bank armor in the reach, protecting 16 percent of the total bank line. That includes 2,440 feet of car bodies. The car body revetments are all located off of the main channel at RM 32.2L. About ½ mile of rock riprap was constructed between 2001 and 2011.

Although no side channels have been intentionally blocked in the reach, there has still been a net loss of almost two miles of side channel since 1950, reflecting passive abandonment of side channels with flow alterations.

There are three mapped pipeline crossings in the reach, two at the Sidney Bridge and another about a mile upstream. The two on the bridge are apparently installed on the bridge structure itself. The one upstream at RM 32.1 is described as an LPG pipeline installed in 1997; however no more information was available.

Reach D13 has had 28 reported ice jam events since 1917. Especially severe damages were reported in the ice jam of March 25, 1943.

Human development has resulted in isolation of 18 percent of the historic 100-year floodplain and 26 percent of the 5-year floodplain. This isolation includes the effects of transportation infrastructure embankments (mainly Highway 23), low agricultural dikes on the edges of irrigated fields, and reduced flood magnitudes. There has been fairly extensive land use encroachment into the Channel Migration Zone: as of 2011 there were 250 acres of pivot irrigation and 137 acres of urban/exurban land uses within the CMZ, making these areas especially prone to the threat of river erosion. One drill pad was mapped within 1,500 feet of the river at RM 32. There is also a large animal handling facility that drains to an irrigation return flow point at RM 29.

Reach D13 shows, like most other reaches below the Bighorn River, a shrinking channel with reduced rates of erosion and floodplain turnover. The bankfull channel area in the reach dropped by 220 acres since 1950, and there was a similar amount of mapped riparian encroachment into old channel areas. Floodplain turnover rates have dropped from 14.3 acres per year from 1950-1976 to 6.1 acres per year from 1976-2001. There has also been a net loss of 45 acres of open bar area as the channel has become smaller and more forested. On the floodplain, riparian acreage has decreased; about 424 acres or 27 percent of the total riparian area was cleared for irrigation since 1950.

Like numerous reaches below the Bighorn River confluence, Reach D13 exhibits a shift from a largely braided pattern in 1950 to an anabranching pattern today. The pattern shift reflects the fact that side channels that used to flow around open bars (braided) now flow around wooded islands (anabranching). This shift appears largely due to riparian encroachment onto sand bars since 1950. This encroachment reflects the flow alterations identified in the reach, and may also be due to the altered sediment regime imposed by upstream influences including Yellowtail Dam. Changes in sediment loading have not been quantified in the CEA.

There are 45 acres of Russian olive mapped in the reach.

Reach D13 was sampled as part of the fisheries study. A total of 38 fish species were sampled in the reach, including six Species of Concern: the Blue Sucker, Pallid Sturgeon, Sauger, Shortnose Gar, Sicklefin Chub, and Sturgeon Chub.

Reach D13 was also sampled as part of the avian study. A total of 39 bird species were identified in the reach. The Red-headed Woodpecker was found, which is a Species of Concern (SOC). In contrast to most other reaches, Reach D12 has seen a reduction in the forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 27.6 acres per valley mile of such forest, and that number decreased to 18.1 acres per valley mile by 2001.

A hydrologic evaluation of flow depletions indicates that flow alterations over the last century have been major in this reach. The magnitude of the 100-year flood is now 134,000 cfs, which 6 percent lower than it was pre-development (143,000 cfs). The 2-year flood, which strongly influences overall channel form, has dropped by 22 percent. Low flows have also been impacted; severe low flows described as 7Q10 (the lowest average 7-day flow anticipated every ten years) for summer months has dropped from an estimated 4,190 cfs to 2,000 cfs with human development, a reduction of 52 percent. More typical summer low flows, described as the summer 95% flow duration, have dropped from 6,340 cfs under unregulated conditions to 2,550 cfs under regulated conditions, a reduction of 60 percent.

Seasonal low flows have increased by 82 percent in the fall and 63 percent in the winter. Both fall and winter base flows are currently about 3,500 cfs.

CEA-Related observations in Reach D13 include:

•Conversion of river pattern from braided to anabranching due to riparian encroachment onto sand bars since 1950.

•Passive side channel abandonment due to hydrologic alterations and potentially downcutting due to CMZ confinement.

•100-year floodplain isolation due to low agricultural field dikes.

•100-year floodplain isolation due to transportation infrastructure.

•Channel Migration Zone (CMZ) restrictions that significantly confine the river corridor, potentially causing downcutting. This may be an important Increase in area at low risk of cowbird parasitism with riparian encroachment

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D13 include:

•Nutrient Management at Animal Handling Facility at RM 29L

•Pipeline Crossing PRACTICE RM 32.1

•Old car body removal RM 32.2L

•Russian olive removal

PHYSICAL FEATURES MAP (2011)

05% Sum

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

Flood Hi	story				Downstream	Upstream
Year	Date	Flow on Date	Return Interval	Gage No	Gage	Gage 6329500
1978	May 23	111,000	10-25 yr	Location	#Error	Sidney
1912	Mar 29	114,000	10-25 yr	Period of Record	#Error	1911-2015
1944	Jun 21	120,000	10-25 yr	Distance To (miles)	#Error	-5.5
2011	May 24	124,000	10-25 yr	Distance To (miles)	#Eno	0.0
1918	Jun 20	126,000	25-50 yr			
1943	Mar 29	132,000	25-50 yr			
1923	Oct 3	134,000	25-50 yr			
1952 1921	Mar 31	138,000	25-50 yr			

Discharge

•	1.01 Yr	2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregulated		69,900	90,500	104,000	132,000	143,000	170,000	4,190	6,340
Regulated		54,300	75,100	89,100	120,000	134,000	166,000	2,000	2,550
% Change		-22.32%	-17.02%	-14.33%	-9.09%	-6.29%	-2.35%	-52.27%	-59.78%

Flow Duration

Streamflow, in ft3/s, which was equaled or exceeded for indicated percent of time

Note that these statistics are only available from Reach C10 downstream. See the USGS report for detailed information.

7010

			-	
Season		5%	50%	95%
Spring	Unregulated	67,400	24,600	7,250
	Regulated	52,000	14,300	5,220
	% Change	-23%	-42%	-28%
Summer	Unregulated	47,800	14,600	6,340
	Regulated	35,300	8,230	2,550
	% Change	-26%	-44%	-60%
Fall	Unregulated	9,950	5,800	1,920
	Regulated	11,300	7,300	3,490
	% Change	14%	26%	82%
Winter	Unregulated	16,500	5,640	2,150
	Regulated	17,000	6,810	3,510
	% Change	3%	21%	63%
Annual	Unregulated	49,700	8,810	2,830
	Regulated	36,900	7,990	3,440
	% Change	-26%	-9%	22%

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	MDT	28-Oct-77	B/W	1:12,000	6329500	5800
1995	USGS DOQQ	7/28/95 - 8/3/97	B/W		6329500	23000
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2005	NAIP	07/14/2005	color	1-meter pixels	6329500	15900
2007	Woolpert	10/15/2007 - 11/2/0007	Color		6329500	
2009	NAIP	7/11/2009	Color	1-meter pixels	6329500	32600
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/15/2011	Color	1-meter pixels	6329500	57900
2013	NAIP	07/19/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	bilization					
	Tire Revetment	520	0.6%	0	0.0%	-520
	Rock RipRap	3,976	4.4%	6,387	7.1%	2,410
	Flow Deflectors	962	1.1%	944	1.0%	-18
	Concrete RipRap	3,329	3.7%	3,329	3.7%	0
	Car Bodies	2,437	2.7%	2,437	2.7%	0
	Between Flow Deflectors	3,074	3.4%	3,235	3.6%	161
	Feature Type Totals	14,298	15.8%	16,332	18.1%	2,033
	Reach Totals	14,298	15.8%	16,332	18.1%	2,033

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type	Irriga	ted Non-	Irrig. Ag. I	nfrastr. R	Road	nterstate	Railroad	Urban	Exurban
Car Bodies	2,20	63 (C	0	0	0	0	0	174
Concrete RipRap	2,52	22 (C	0	0	0	0	0	807
Flow Deflectors/Between FDs	1,49	96 2,3	394	0	0	0	0	0	0
Rock RipRap	74	8 () <u>(</u>	984	66	0	0	0	2,178
Tire Revetment	51	8 (C	0	0	0	0	0	0
Tot	als 7,54	47 2,3	394 9	984	66	0	0	0	3,159

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

Jam Date	Jam Type	River Mile	Damages
	NA	31	35K USD estimated rural damages
4/3/1917	NA	31	?
3/31/1923	NA	31	?
1/1/1927	NA	31	21,400 USD estimated rural damages
3/2/1938	NA	31	?
3/22/1939	NA	31	?
3/25/1943	NA	31	484,800 USD estimated rural damages
1/1/1944	NA	31	86,600 USD estimated rural damages
1/1/1946	NA	31	50,400 USD estimated rural damages
1/1/1948	NA	31	11,300 USD estimated rural damages
3/8/1949	NA	31	50,500 USD estimated rural damages
4/4/1950	NA	31	?
3/27/1951	NA	31	Severe flooding, evacuations, 100,000s USD in damages
4/1/1952	Freeze-up	31	44,900 USD estimated rural damages, severe flooding
4/3/1955	NA	31	1,800 USD estimated rural damages
3/26/1956	NA	31	?
3/21/1959	NA	31	30K USD estimated rural damages
3/21/1960	NA	31	69K USD estimated rural damages
3/17/1961	NA	31	?
4/7/1965	NA	31	?
4/7/1965	NA	31	?
3/26/1969	Break-up	31	230K USD and 14,000 acres flooded
3/19/1979	NA	31	?
2/27/1986	NA	31	?
3/6/1994	NA	31	?
2/13/1996	Break-up	31	High water
2/14/1997	NA	31	?
3/19/2011	Break-up		

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)			Bankfull		
	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Braiding Parameter		% Change in Braiding
1950	44,020	49,325	2.12	1950 to 1976:	-1.37%
1976	43,740	47,743	2.09	1976 to 1995:	1.60%
1995	44,321	49,858	2.12	1995 to 2001:	-12.40%
2001	45,127	38,872	1.86	1950 to 2001:	-12.22%
Change 1950 - 2001	1,106	-10,453	-0.26		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-Year			
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain		
Non-Structural (hydrology, geomorphic, etc.)	31	0.7%				
Agriculture (generally relates to field boundaries)	552	13.1%				
Agriculture (isloated by canal or large ditch)	0	0.0%				
Levee/Riprap (protecting agricultural lands)	38	0.9%				
Levee/Riprap (protecting urban, industrial, etc.)	16	0.4%				
Railroad	0	0.0%				
Abandoned Railroad	0	0.0%				
Transportation (Interstate and other roads)	129	3.1%				
Total Not Isolated (Ac)	3434		2297			
Total Floodplain Area (Ac)	4200		2764			
Total Isolated (Ac)	766	18.2%	467	25.6%		

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	163	0	19	183

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft) 521	Erosion Buffer (ft) 1,042	To CN Acre 3,54	tal //Z eage 41	Restricted CMZ Acreage 598	% Restrict Migration Area 17%	ted Tot n Al- Acre C	tal IZ age	Restricted AHZ Acreage 0	% Restricted Avulsion Area 0%
2011 Res	stricted Mig	ration A	rea Sun	nmai	Y	Note that the	ese data refl	ect the c	bserved con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc C	ent of MZ	2011 aerial p Counties, CO	bhotography DE for the re	<pre>/ (NAIP for est of the</pre>	or Park and S e river).	Sweet Grass
Road/Railro	oad Prism									
	Public Road		177	5	.0%					
RipRap/Flo	w Deflectors									
	Irrigated		233	6	.6%					
RipRap										
	Irrigated		128	3	.6%					
Flow Deflect	tors									
	Irrigated		101	2	.9%					
		Totals	639	18	8.1%					
Land Us	es within the	e CMZ (A	Acres)	F Irri	Flood igation 585.1	Sprinkler Irrigation 0.0	Pivot Irrigation 250.7	Urb ExU 13	oan/ T rban po 6.9	Frans- ortation 9.9

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Timeline - Tiers 2 and 3		Acres			% of Reach Area				
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	73	163	209	210	1.1%	2.4%	3.0%	3.1%
	Totals	73	163	209	210	1.1%	2.4%	3.0%	3.1%
Agricultural Lan	d								
	Non-Irrigated	1,843	1,799	1,831	1,780	26.8%	26.2%	26.6%	25.9%
	Irrigated	3,210	3,141	3,230	3,218	46.7%	45.7%	46.9%	46.8%
	Totals	5,052	4,940	5,061	4,998	73.4%	71.8%	73.6%	72.7%
Channel									1
	Channel	1,695	1,543	1,343	1,398	24.6%	22.4%	19.5%	20.3%
	Totals			1,343	1,398	24.6%	22.4%	19.5%	20.3%
ExUrban									l
ExUrban Other		0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	158	185	192	0.0%	2.3%	2.7%	2.8%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	5	19	24	24	0.1%	0.3%	0.4%	0.4%
	Totals	5	176	209	216	0.1%	2.6%	3.0%	3.1%
Transportation									· · · · ·
	Public Road	44	47	47	47	0.6%	0.7%	0.7%	0.7%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	9	9	9	9	0.1%	0.1%	0.1%	0.1%
	Totals	53	57	57	57	0.8%	0.8%	0.8%	0.8%
Urban									· · · · ·
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Tir	nd Use Timeline - Tiers 3 and 4									Char	ige Betv	ween Y	ears
			Acı	res		%	of Rea	ch Area	l I	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irr													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	316	894	0.0%	0.0%	6.3%	17.9%	0.0%	6.3%	11.6%	17.9%
	Flood	3,210	3,141	2,913	2,324	63.5%	63.6%	57.6%	46.5%	0.0%	-6.0%	-11.0%	-17.0%
	Totals	3,210	3,141	3,230	3,218	63.5%	63.6%	63.8%	64.4%	0.1%	0.2%	0.6%	0.9%

Nolrr

Reach D13

Multi-Use	1,549	1,546	1,731	1,747	30.7%	31.3%	34.2%	35.0%	0.6%	2.9%	0.7%	4.3%
Hay/Pasture	293	253	100	33	5.8%	5.1%	2.0%	0.7%	-0.7%	-3.2%	-1.3%	-5.1%
Totals	1,843	1,799	1,831	1,780	36.5%	36.4%	36.2%	35.6%	-0.1%	-0.2%	-0.6%	-0.9%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	Shrub (Acres)			Clos	ed Timber (A	(cres)	Open Timber (Acres)			
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.5	0.2	0.7	2.2	0.3	2.0	3.7	5.3	8.8	
Max	175.6	31.2	43.2	110.3	279.9	346.3	51.5	31.8	19.4	
Average	26.7	6.6	11.6	32.0	31.7	41.1	22.9	16.8	14.1	
Sum	987.8	277.2	372.7	641.0	1,014.0	1,273.4	114.5	67.4	28.2	
Riparian	Turnove	er			Diparian t	o Channol (a	croc)	021 0		
Conver	sion of ripar	ian areas to o	channel. or		Кірапан і	o channel (a	(165)	231.2		
from ch	nannel to ripa	arian betweel	en the 1950's Channel to Riparian				(acres) 522.9			
and 2001 data set. Riparian En						oachment (a	cres)	291.7		
Riparian	Recruit	nent	1950s Char	l as 2011 Ripa	arian (Ac)	546.4				
Creation of	f riparian are	eas	1950s Floodp	lain Mapped	l as 2011 Cha	innel (Ac)	104.1			
between 1950s and 2001.			Tota	I Recruitme	nt (1950s to 2	2011)(Ac)	650.5			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	65.0	126.5	60.6	0.0	252.0
Acres/Valley Mile	8.5	16.6	7.9	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain Area (Ac)	% of Floodplain	Other Area (Ac)	Inside RMA (Ac)	Inside '50s Channel (Ac)	Inside 50s Island (Ac)	
Russian Olive in Reach	44.74	3.16%	145.58	2.81	22.19	6.15	

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Fish Species Observed in Reach/Region

Region	Region	Region Reach	Region Reach
 Bigmouth buffalo 	Flathead chub	Northern redbelly dace	Stonecat
 Black bullhead 	Freshwater drum	✓ ✓ Pallid sturgeon	Sturgeon chub
Black crappie	Goldeye	Pumpkinseed	Sucker species
✓ ✓ Blue sucker	Green sunfish	Rainbow trout	Sunfish species
✓ ✓ Bluegill	Lake chub	River carpsucker	V Walleye
Brook stickleback	Largemouth bass	Rock bass	Vestern silvery minnow
Brown trout	Longnose dace	Sand shiner	V White bass
✓ ✓ Burbot	Longnose sucker	✓ ✓ Sauger	V White crappie
Catfish species	Minnow species	Shorthead redhorse	✓ ✓ White sucker
Channel catfish	Mottled sculpin	Shortnose gar	Yellow bullhead
Common carp	Mountain sucker	✓ ✓ Shovelnose sturgeon	Yellow perch
Creek chub	Mountain whitefish	Sicklefin chub	
Emerald shiner	✓ ✓ Northern pike	Smallmouth bass	
✓ ✓ Fathead minnow	✓ ✓ Northern plains killifish	🗌 🔽 Smallmouth buffalo	

2001 (Acres)

Low Flow Fisheries Habitat Mapping

Habitat Scour Pool	Bankfull 256.0	Low Flow 134.5	% of Low Flow 10.0%
Rip Rap Bottom	262.2	125.6	9.4%
Rip Rap Margin	25.8	18.2	1.4%
Secondary Channel (Seasonal)	222.7	209.0	15.6%
Channel Crossover	176.1	163.4	12.2%
Point Bar		88.1	6.6%
Side Bar		27.8	2.1%
Mid-channel Bar		37.7	2.8%
Island	400.6	401.2	29.9%
Dry Channel		137.9	10.3%

Species of Concern

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird Species Obse	erved in Reach/Region	Species of Concern	Potential Species of Concern
Region	Region	Region Reach	Region
American Robin	Chipping Sparrow	✓ ✓ Killdeer	Song Sparrow
American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
American Goldfinch		✓ ✓ Lark Sparrow	Spotted Towhee
American Kestrel	Common Grackle	✓ ✓ Lazuli Bunting	Sharp-shinned Hawk
American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
✓ ✓ Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
Baltimore Oriole	Common Raven	Mountain Bluebird	✓ ✓ Tree Swallow
Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
Black-billed Magpie	Downy Woodpecker	Osprey	Violet-green Swallow
Black-capped Chick	adee 🖌 🖌 Eastern Bluebird	Ovenbird	✓ ✓ Warbling Vireo
Black-and-white Wa	rbler 🖌 🖌 Eastern Kingbird	Plumbeous Vireo	Western Kingbird
Black-headed Gros	beak 🔄 🗌 Eurasian Collared-dove	✓ ✓ Red-headed Woodpecker	Vestern Meadowlark
Blue Jay	European Starling	Red-naped Sapsucker	Vestern Wood-pewee
Bobolink	Field Sparrow	Red Crossbill	V White-breasted Nuthatch
Brewer's Blackbird	🗌 🗹 Franklin's Gull	Ring-necked Pheasant	White-throated Swift
Brown-headed Cow	bird 🛛 🗹 Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
Brown Thrasher	Great Blue Heron	Red-winged Blackbird	☐ ✓ Yellow-bellied Sapsucker
Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	☐ ✓ Yellow-billed Cuckoo
Canada Goose	Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
Chimney Swift	✓ ✓ House Wren	Savannah Sparrow	V Yellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

County	Richland
Classification	PCM/I: Partly confined meandering/islands
General Location	To Fariview
General Comments	Into Mckenzie County, North Dakota: High sinuosity

Upstream River Mile	27.8
Downstream River Mile	13.5
Length	14.30 mi (23.01 km)

Reach D

Narrative Summary

Reach D14 is located upstream of Fairview. The reach is a 14.3 mile long Partially Confined Meandering with Islands (PCM/I), indicating some valley wall influence, and a meandering main thread with cutoff channels through meander cores forming persistent forested islands.

There is just over a mile of bank armor in the reach, including 3,900 feet of rock riprap and 2,500 feet of flow deflectors. Most of the rock riprap was constructed between 2001 and 2011 (2,300 feet).

Prior to 1950, 3,600 feet of side channel was blocked in the reach at RM 23L.

Similar to many reaches in the Lower Yellowstone Valley, the river channel in Reach D14 has gotten smaller since 1950. The channel contracted by about 309 acres in this reach since 1950, and about 460 acres of riparian vegetation has encroached into old channel areas. This pattern has been consistent in the lower river, and relates primarily to a reduction in flows due to human development. Floodplain turnover rates have dropped from 14.4 acres per year pre-1976 to 6.1 acres per year post-1976. There has also been a major loss of open bar habitat area in the channel; between 1950 and 2001, there was a loss of 510 acres of mid-channel bar area, which can be important habitat to certain species such as least tern.

Land use is predominantly agricultural, with just over a thousand acres of pivot irrigation development since 1950. Development in the reach included conversion of 1,063 acres of 1950s riparian area to other land uses (mostly irrigated agriculture); that represented 36 percent of the entire 1950s riparian footprint. There are 93 acres of pivot irrigated land and 113 acres of urban/exurban development within the Channel Migration Zone (CMZ), making these areas especially susceptible to river erosion. At RM 26L there are three drill pads within the CMZ.

Several dump sites have been mapped on the banks: RM 25R, RM 24.3L, RM 17L, RM 15.8L, and RM 15.8R.

There is one pipeline crossing in Reach D14 at RM 27. It is an 8-inch crude oil pipeline that has been Horizontally Directionally Drilled.

About 41 percent of the historic 5-year floodplain has become isolated, primarily due to flow alterations.

One ice jam was reported in the reach. It was a break-up flood event on March 17, 2011.

There are about 36 acres of mapped Russian olive in the reach.

Reach D14 was sampled as part of the avian study. A total of 30 bird species were identified in the reach. Two bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) on the Yellowstone River were found, the Ovenbird and the Plumbeous Vireo. Reach D14 has seen a decrease in the forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 25.6 acres per valley mile of such forest, and that number dropped to 19.6 acres per valley mile by 2001.

CEA-Related observations in Reach D14 include: •Flow alteration impacts on floodplain access

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D14 include: •Solid waste removal at dump sites at RM 25R, RM 24.3L, RM 17L, RM 15.8L, and RM 15.8R. •Side channel reactivation at RM 23L

•Pipeline crossing Management at RM 27.

•Russian olive removal

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

Flood Hi	story							Downstream	Upstream
Year	Date	Flow on Date	Return I	nterval			Gago No	Gage	6329500
1978	May 23	111,000	10-28	5 yr			Location	#Error	Sidney
1912	Mar 29	114,000	10-28	5 yr		Porior		#Error	1011 2015
1944	Jun 21	120,000	10-25	5 yr		Penot		#EII0	1911-2013
2011	May 24	124,000	10-25	5 yr		Distance	e To (miles)	#Error	3.0
1918	Jun 20	126,000	25-50) yr					
1943	Mar 29	132,000	25-50) yr					
1923	Oct 3	134,000	25-50) yr					
1952	Mar 31	138,000	25-50) yr					
1921	Jun 21	159,000	100-	-yr					
Dischar	ge							7Q10	95% Sum.
	1.0	1 Yr 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregu	lated							NA	NA
Regu	lated							NA	NA
% Cł	nange							NA	NA

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1949	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1976	MDT	28-Oct-77	B/W	1:12,000	6329500	5800
1995	USGS DOQQ	28-Jul-95	B/W		6329500	25000
2001	NRCS	???	CIR	1:24,000	6329500	4000
2005	NAIP	07/14/2005	color	1-meter pixels	6329500	15900
2007	Woolpert	10/15/2007 - 11/2/0007	Color		6329500	
2009	NAIP	7/11/2009	Color	1-meter pixels	6329500	32600
2009	NAIP	7/9/2009	Color	1-meter pixels	6329500	35400
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/25/2011	Color	1-meter pixels	6329500	41100
2011	NAIP	7/15/2011	Color	1-meter pixels	6329500	57900
2013	NAIP	07/19/2013	color	1-meter pixels	6329500	

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream Sta	abilization					
	Rock RipRap	1,613	1.1%	3,906	2.6%	2,293
	Flow Deflectors	935	0.6%	1,208	0.8%	273
	Between Flow Deflectors	1,297	0.9%	1,297	0.9%	0
	Feature Type Totals	3,845	2.5%	6,411	4.2%	2,566
	Reach Totals	3,845	2.5%	6,411	4.2%	2,566

Intent of Bank Protection: 2001

The 2001 bank protection features were assessed for the 'intent' of what they protect.

Feature Type		Irrigated	Non-Irrig.	Ag. Infrastr.	Road	Interstate	Railroad	Urban	Exurban
Flow Deflectors/Between FDs		1,971	0	0	0	0	0	0	259
Rock RipRap		0	0	446	0	0	0	0	1,168
т	otals	1,971	0	446	0	0	0	0	1,427

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

3/17/2011

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	76,083	3,723	1.05	1950 to 1976:	31.63%
1976	75,267	28,654	1.38	1976 to 1995:	24.21%
1995	75,888	54,254	1.71	1995 to 2001:	-16.71%
2001	75,901	32,508	1.43	1950 to 2001:	36.17%
Change 1950 - 2001	-182	28,786	0.38		
Length of Side		Pre-1950s (ft)	3,595		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	1451	17.4%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	6895		3410		
Total Floodplain Area (Ac)	8346		4456		
Total Isolated (Ac)	1451	17.4%	1046	40.9%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	132	0	33	164

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	To CN Acre	tal IZ age	Restricted CMZ Acreage	% Restrict Migratio Area	ted To n Al Acre	tal IZ eage	Restricted AHZ Acreage	% Restricted Avulsion Area
	538	1,077	5,42	28	118	2%	63	33	0	0%
2011 Res	stricted Migr	ation A	ea Sun	nma	ry	Note that the	ese data ref	lect the o	observed con	ditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Perc	cent of MZ	Counties, COE for the rest of the river).				
Road/Railro	ad Prism									
	Public Road		14	0	.2%					
RipRap/Flo	w Deflectors									
	Irrigated		1	0	.0%					
RipRap										
	Non-Irrigated		12	0	.2%					
	Exurban Indu	strial	69	1	.1%					
Flow Deflect	tors									
	Irrigated		65	1	.1%					
		Totals	161	2	.7%					
Land Us	es within the	e CMZ (A	Acres)	i Irr 1	Flood igation 586.3	Sprinkler Irrigation 0.0	Pivot Irrigation 93.1	Url I ExU 1	ban/ 1 Jrban po 13.0	Trans- ortation 10.9

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	imeline - Tiers 2 and 3		Acı	res		%	6 of Reach Area		
Feature Class	Feature Type	1950	1976	2001	2011	1950 1976 2001			2011
Agricultural Infra	astructure								
	Canal	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Agricultural Roads	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Other Infrastructure	49	98	143	153	0.5%	0.9%	1.3%	1.4%
	Totals	49	98	143	153	0.5%	0.9%	1.3%	1.4%
Agricultural Lan	d								
	Non-Irrigated	4,570	3,488	3,179	3,085	42.6%	32.6%	29.7%	28.8%
	Irrigated	3,833	4,692	4,966	4,994	35.8%	43.8%	46.3%	46.6%
	Totals	8,402	8,180	8,145	8,079	78.4%	76.3%	76.0%	75.4%
Channel									
	Channel	2,199	2,353	2,196	2,249	20.5%	22.0%	20.5%	21.0%
	Totals	2,199	2,353	2,196	2,249	20.5%	22.0%	20.5%	21.0%
ExUrban									
	ExUrban Other	0	0	23	23	0.0%	0.0%	0.2%	0.2%
	ExUrban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Industrial	0	15	135	139	0.0%	0.1%	1.3%	1.3%
	ExUrban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	ExUrban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	15	158	161	0.0%	0.1%	1.5%	1.5%
Transportation									
	Public Road	62	66	70	70	0.6%	0.6%	0.7%	0.7%
	Interstate	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Railroad	3	3	3	3	0.0%	0.0%	0.0%	0.0%
	Totals	65	69	73	73	0.6%	0.6%	0.7%	0.7%
Urban									
	Urban Other	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Residential	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Commercial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Undeveloped	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Urban Industrial	0	0	0	0	0.0%	0.0%	0.0%	0.0%
	Totals	0	0	0	0	0.0%	0.0%	0.0%	0.0%

Land Use Til	meline - Tiers 3	and 4								Char	ige Beti	ween Y	ears
			Acı	res		%	of Rea	ch Area	a	(% 0	f Agricu	Itural L	and)
Feature Class	Feature Type	1950	1976	2001	2011	1950	1976	2001	2011	'50-76	'76-01 '	01-11	'50-11
Irr													
	Sprinkler	0	0	0	0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Pivot	0	0	436	1,003	0.0%	0.0%	5.3%	12.4%	0.0%	5.3%	7.1%	12.4%
	Flood	3,833	4,692	4,530	3,990	45.6%	57.4%	55.6%	49.4%	11.7%	-1.7%	-6.2%	3.8%
	Totals	3,833	4,692	4,966	4,994	45.6%	57.4%	61.0%	61.8%	11.7%	3.6%	0.8%	16.2%

Nolrr

Reach DI4

Multi-Use	3,964	3,206	2,956	2,842	47.2%	39.2%	36.3%	35.2%	-8.0%	-2.9%	-1.1%	-12.0%
Hay/Pasture	606	283	223	243	7.2%	3.5%	2.7%	3.0%	-3.8%	-0.7%	0.3%	-4.2%
Totals	4,570	3,488	3,179	3,085	54.4%	42.6%	39.0%	38.2%	-11.7%	-3.6%	-0.8%	-16.2%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	5	Shrub (Acres) Closed Timber (Acres)		Open Timber (Acres)					
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001
Min	0.8	0.2	0.8	2.6	0.0	0.7	6.5	3.7	5.5
Max	500.7	159.2	118.8	246.1	421.8	478.2	28.9	8.4	13.3
Average	58.8	28.6	13.9	55.5	70.4	74.5	14.4	6.2	9.6
Sum	2,000.5	885.6	556.3	1,110.9	1,479.0	1,863.1	129.7	18.7	38.4
Riparian	Turnove	er			Diparian (to Channol (a	croc)	270.6	
Conve	rsion of ripar	ian areas to o	channel. or		Channel to Riparian (acres) 729.7				
from c	hannel to ripa	arian betweel	n the 1950's						
and 2001 data set.					Riparian Encroachment (acres) 459.1				
Riparian Recruitment 1950s Channel M				nnel Mapped	el Mapped as 2011 Riparian (Ac) 736.1				
Creation o	f riparian are	as	1950s Floodp	olain Mapped	as 2011 Cha	nnel (Ac)	97.3		
between 1950s and 2001.			Total Recruitment (1950s to 2011)(Ac) 833.4						

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	8.1	137.1	144.3	0.0	289.5
Acres/Valley Mile	0.6	10.9	11.5	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	35.69	0.77%	53.75	0.15	15.92	0.02

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (
Habitat Scour Pool	Bankfull 805.0	Low Flow 536.5	% of Low Flow 24.0%
Rip Rap Bottom	149.6	127.5	5.7%
Rip Rap Margin	61.0	48.0	2.1%
Bluff Pool	71.9	69.6	3.1%
Terrace Pool	40.0	57.3	2.6%
Secondary Channel	53.2	73.2	3.3%
Secondary Channel (Seasonal)	232.9	175.0	7.8%
Channel Crossover	486.2	301.4	13.5%
Point Bar		65.0	2.9%
Side Bar		113.1	5.1%
Mid-channel Bar		138.6	6.2%
Island	337.6	337.6	15.1%
Dry Channel		191.5	8.6%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

Bird	Species Observed i	n Reach/Region	Species of Concern	Potential Species of Concern
Region Reach		Region	Region	Region
	American Robin	Chipping Sparrow	✓ ✓ Killdeer	Song Sparrow
	American Crow	Clay-collared Sparrow	Lark Bunting	Spotted Sandpiper
	American Goldfinch	Cliff Swallow	Lark Sparrow	Spotted Towhee
	American Kestrel	Common Grackle	🗹 🗹 Lazuli Bunting	Sharp-shinned Hawk
	American Redstart	Common Merganser	Least Flycatcher	Swainson's Thrush
	Bald Eagle	Common Nighthawk	Mallard	Sandhill Crane
	Baltimore Oriole	Common Raven	Mountain Bluebird	Tree Swallow
	Barn Swallow	Common Yellowthroat	Mourning Dove	Turkey Vulture
	Belted Kingfisher	Cooper's Hawk	✓ ✓ Northern Flicker	Upland Sandpiper
	Black-billed Cuckoo	Dickcissel	Orchard Oriole	Vesper Sparrow
	Black-billed Magpie	Downy Woodpecker	Osprey	☐ ☐ Violet-green Swallow
	Black-capped Chickadee	Eastern Bluebird	V Ovenbird	✓ ✓ Warbling Vireo
	Black-and-white Warbler	Eastern Kingbird	Plumbeous Vireo	☐ ✔ Western Kingbird
	Black-headed Grosbeak	Eurasian Collared-dove	Red-headed Woodpecker	☐ ✔ Western Meadowlark
	Blue Jay	🗌 🗹 European Starling	Red-naped Sapsucker	✔ ✔ Western Wood-pewee
	Bobolink	Field Sparrow	Red Crossbill	✓ ✓ White-breasted Nuthatch
	Brewer's Blackbird	🗌 🗹 Franklin's Gull	✓ ✓ Ring-necked Pheasant	White-throated Swift
	Brown-headed Cowbird	Grasshopper Sparrow	Red-tailed hawk	Wild Turkey
	Brown Creeper	Gray Catbird	Rock Dove	Wood Duck
	Brown Thrasher	Great Blue Heron	✓ ✓ Red-winged Blackbird	☐ ✔ Yellow-bellied Sapsucker
	Bullock's Oriole	Great Horned Owl	Red-eyed Vireo	Vellow-billed Cuckoo
	Canada Goose	Hairy Woodpecker	Red-breasted Grosbeak	✓ ✓ Yellow-breasted Chat
	Cedar Waxwing	House Finch	Say's Phoebe	Yellow-headed Blackbird
	Chimney Swift	House Wren	Savannah Sparrow	Vellow Warbler

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

County	Mckenzie	Upstream River Mile	13.5
Classification	PCM/I: Partially confined meandering/islands	Downstream River Mile	7.5
General Location	Downstream of Fairview	Length	6.00 mi (9.66 km)
General Comments			

Narrative Summary

Reach D15 is located downstream of Fairview. The reach is a 6 mile long Partially Confined Meandering with Islands (PCM/I), indicating some valley wall influence, and a meandering main thread with cutoff channels through meander cores forming persistent forested islands.

No bank armor was mapped in the reach, and no side channels have been blocked.

Similar to many reaches in the Lower Yellowstone Valley, the river channel in Reach D15 has gotten smaller since 1950. The channel contracted by about 190 acres in this reach since 1950, and about 210 acres of riparian vegetation has encroached into old channel areas. This pattern has been consistent in the lower river, and relates primarily to a reduction in flows due to human development.

Land use is predominantly agricultural, with 71 acres of pivot irrigation development since 1950. A total of 54 percent of the 100 year floodplain has become isolated (1,885 acres), and most of this isolation is from agricultural dikes. Approximately 23 percent of the 5-year floodplain has become isolated (168 acres).

There is a drill pad on the edge of the CMZ at RM 10.8L.

One ice jam was reported in the reach. It was a break-up flood event on February 12, 1996.

Reach D15 was sampled as part of the avian study. A total of 30 bird species were identified in the reach. Two bird species identified by the Montana Natural Heritage Program as Potential Species of Concern (PSOC) on the Yellowstone River were found, the Ovenbird and the Plumbeous Vireo.. Reach D15 has seen a decrease in the forested area that is at low risk of cowbird parasitism since 1950. At that time, there were 25.6 acres per valley mile of such forest, and that number dropped to 19.6 acres per valley mile by 2001.

CEA-Related observations in Reach D15 include: •Flow alteration impacts on floodplain access

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D15 include: •Russian olive removal
PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

Flood Hi	story							Downstream	Upstream
Year	Date	Flow on Date	Return li	nterval			Gago No	Gage	6329500
1978	May 23	111,000	10-25	5 yr			Gage NO	#Error	Sidney
1912	Mar 29	114,000	10-25	10-25 yr		Deriod	Devied of Decend		1011 2015
1944	Jun 21	120,000	10-25	10-25 yr		I OI Record	#EII0	1911-2015	
2011	May 24	124,000	10-25	5 yr	Distance To (miles)		e To (miles)	#Error	17.3
1918	Jun 20	126,000	25-50) yr					
1943	Mar 29	132,000	25-50) yr					
1923	Oct 3	134,000	25-50) yr					
1952	Mar 31	138,000	25-50) yr					
1921	Jun 21	159,000	100-	yr					
Dischar	ge							7Q10	95% Sum.
	1.0	1 Yr 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregu	ulated							NA	NA
Regu	ulated							NA	NA
% Cł	nange							NA	NA

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	USGS-EROS	26-Aug-49	B/W	1:14,800	6329500	2750
1995	USGS DOQQ	1995??	B/W		6329500	
2001	NRCS	August 2-8, 2001	CIR	1:24,000	6329500	4000
2007	Woolpert	10/15/2007 - 11/2/0007	Color		6329500	
2009	NAIP	7/9/2009	Color	1-meter pixels	6329500	35400
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/25/2011	Color	1-meter pixels	6329500	41100

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

Jam Date

2/12/1996

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	31,574	14,376	1.46	1950 to 1976:	
1976				1976 to 1995:	
1995	31,054	33,170	2.07	1995 to 2001:	-5.23%
2001	31,573	30,311	1.96	1950 to 2001:	34.68%
Change 1950 - 2001	-1	15,935	0.50		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100 -	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	0	0.0%			
Agriculture (generally relates to field boundaries)	1885	54.4%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	1581		1372		
Total Floodplain Area (Ac)	3466		1540		
Total Isolated (Ac)	1885	54.4%	168	22.7%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	56	0	0	56

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

	Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Tot CN Acre	al Restricte IZ CMZ age Acreage	d % Restrict Migration Area	ed Total n AHZ Acreag	Restricted AHZ je Acreage	% Restricted Avulsion Area
	226	452	1,77	76 20	1%	0	0	0%
2011 Res	stricted Mig	ration A	rea Sun	nmary	Note that the	ese data reflec	t the observed co	nditions in the
Reason for Restriction	Land Use Protected		RMA Acres	Percent of CMZ	Counties, CC	Sweet Grass		
Road/Railro	ad Prism							
	Public Road		4	0.2%				
	Exurban Oth	er	17	1.0%				
		Totals	21	1.2%				
Land Us	es within th	e CMZ (A	Acres)	Flood Irrigation 240.7	Sprinkler Irrigation 0.0	Pivot Irrigation 4.4	Urban/ ExUrban p 10.2	Trans- portation 1.1

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3		Acres		1	%	of Rea	ach Area	a I	
Feature Class	Feature Type	1950	1976 20	01 2	2011	1950	1976	2001	2011	
Agricultural Infra	structure									
	Canal	0		0	0	0.0%		0.0%	0.0%	
	Agricultural Roads	0		0	0	0.0%		0.0%	0.0%	
	Other Infrastructure	86		188	193	1.0%		2.1%	2.1%	
	Totals	86		188	193	1.0%		2.1%	2.1%	
Agricultural Land	d									
	Non-Irrigated	2,260	1,:	320 ⁻	1,313	25.1%		14.7%	14.6%	
	Irrigated	3,955	6,	173 6	6,173	44.0%		68.6%	68.6%	
	Totals	6,215	7,4	192 7	7,485	69.1%		83.3%	83.2%	
Channel									1.1	
	Channel	1,130	1,2	212 [·]	1,214	12.6%		13.5%	13.5%	
	Totals	1,130	1,2	212 [·]	1,214	12.6%		13.5%	13.5%	
ExUrban										
	ExUrban Other	0		29	29	0.0%		0.3%	0.3%	
	ExUrban Undeveloped	0		0	0	0.0%		0.0%	0.0%	
	ExUrban Industrial	0		7	7	0.0%		0.1%	0.1%	
	ExUrban Commercial	0		0	0	0.0%		0.0%	0.0%	
	ExUrban Residential	0		0	0	0.0%		0.0%	0.0%	
	Totals	0		36	36	0.0%		0.4%	0.4%	
Transportation										
	Public Road	79		71	71	0.9%		0.8%	0.8%	
	Interstate	0		0	0	0.0%		0.0%	0.0%	
	Railroad	0		0	0	0.0%		0.0%	0.0%	
	Totals	79		71	71	0.9%		0.8%	0.8%	
Urban										
	Urban Other	0		0	0	0.0%		0.0%	0.0%	
	Urban Residential	0		0	0	0.0%		0.0%	0.0%	
	Urban Commercial	0		0	0	0.0%		0.0%	0.0%	
	Urban Undeveloped	0		0	0	0.0%		0.0%	0.0%	
	Urban Industrial	0		0	0	0.0%		0.0%	0.0%	
	Totals	0		0	0	0.0%		0.0%	0.0%	

Change Between Years Land Use Timeline - Tiers 3 and 4 (% of Agricultural Land) Acres % of Reach Area **Feature Class** Feature Type 1950 1976 2001 2011 1950 1976 2001 2011 '50-76 '76-01 '01-11 '50-11 Irr Sprinkler 0 0 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Pivot 0 20 71 0.0% 0.3% 1.0% 0.3% 0.7% 1.0% Flood 3,955 6,153 6,101 63.6% 82.1% 81.5% 18.5% -0.6% 17.9% **Totals** 3,955 6,173 6,173 63.6% 82.4% 82.5% 18.8% 0.1% 18.8%

Nolrr

Reach D15

Multi-Use	1,804	1,307	1,300	29.0%	17.4%	17.4%	-11.6%	-0.1%	-11.7%
Hay/Pasture	456	13	13	7.3%	0.2%	0.2%	-7.2%	0.0%	-7.2%
Totals	2,260	1,320	1,313	36.4%	17.6%	17.5%	-18.8%	-0.1%	-18.8%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

	8	Shrub (Acre	s)	Close	Closed Timber (Acres)			Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.2		1.8	7.7		1.8	13.7		3.6	
Max	120.5		39.0	121.8		199.0	35.0		16.2	
Average	35.5		12.0	46.0		39.9	22.7		9.9	
Sum	568.0		228.1	322.1		678.8	90.8		19.8	
Riparian Turnover Riparian to Channel				to Channel (a	acres)	93.5				
from ch	nannel to ripa	arian betwee	n the 1950's	Channel to Riparian (acres) 302.0						
and 2001 data set.				Ri	Riparian Encroachment (acres) 208.5					
Riparian	Recruit	nent	1950s Cha	nnel Mapped	as 2011 Ripa	arian (Ac)	304.4			
Creation of	f riparian are	as	1950s Floodplain Mapped as 2011 Channel (Ac)				77.3			
between 1	950s and 20	01.	Total Recruitment (1950s to 2011)(Ac)				381.7			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	1.6	20.2	68.7	0.0	90.5
Acres/Valley Mile	0.3	3.5	11.9	0.0	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	0.83	0.10%	5.72	0.00	0.00	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

2001 (Acres)				
Bankfull 197.2	Low Flow 191.0	% of Low Flow 15.8%		
133.0	79.1	6.5%		
38.3	34.6	2.9%		
64.3	43.7	3.6%		
101.9	36.7	3.0%		
	30.9	2.6%		
71.0	68.4	5.6%		
190.0	133.8	11.0%		
	124.6	10.3%		
	52.1	4.3%		
413.3	413.3	34.1%		
	3.9	0.3%		
	Bankfull 197.2 133.0 38.3 64.3 101.9 71.0 190.0 413.3	2001 (Acres) Bankfull Low Flow 197.2 191.0 133.0 79.1 38.3 34.6 64.3 43.7 101.9 36.7 30.9 71.0 71.0 68.4 190.0 133.8 124.6 52.1 413.3 413.3 3.9 3.9		

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.

County	Mckenzie	Up
Classification	US/I: Unconfined straight/islands	Do
General Location	To Missouri River	Le
General Comments	To mouth: low sinuosity; alternate bars; vegetated islands	

Reach D16 ostream River Mile 7.5

ownstream River Mile 0 ngth

7.50 mi (12.07 km)

Narrative Summary

Reach D16 is the lowermost reach of the Yellowstone River, extending 7.5 miles to the confluence with the Missouri River. It is a unique reach type, referred to as Unconfined Straight (US), and it has numerous forested islands that have developed since the 1950s.

Reach D16 has only a few hundred feet of rock riprap along its 7.5 mile length, and all of that was built since 2001. No side channels have been blocked.

The most striking change in Reach D16 since 1950 is the encroachment of riparian vegetation onto old sand bars. Between 1950 and 2001, the size of the channel has dropped by 550 acres, and there has been 472 acres of riparian encroachment into old channel areas. Much of this encroachment converted open sand bars into forested islands. There has been a loss of over 150 acres of sand bar since 1950. This change has resulted in a conversion of almost 7 miles low flow channels around gravel bars to anabranching side channels around islands.

Land use in the reach is dominated by flood irrigation. The extent of flood irrigated lands increased from 4.600 acres in 1950 to about 8,500 acres in 2011. The floodplain is very flat and broad in this lowermost portion of the Yellowstone River valley, and as a result, floodplain development for agriculture has substantially altered floodplain access. About 29 percent of the 100-year floodplain has become isolated from the river, and a fraction of this (1.6 percent) has been attributed to flow alterations, whereas 27 percent has been associated with agricultural features on the floodplain such as roads and ditches. There are about 480 acres of flood irrigated land within the Channel Migration Zone of Reach D16.

Land use mapping shows several drill pads in the lower portion of the reach that are within several thousand feet of the river. There are four drill pads on a narrow strip of land at the mouth that lies between the Yellowstone and Missouri Rivers.

Reach D16 has a notably high concentration of mapped wetlands. There are about 580 acres of mapped wetland in the reach, which translates to about 80 acres per valley mile. Along the rest of the river, wetland densities rarely exceed 50 acres per valley mile. Reach D16 only has 3.5 acres of mapped Russian olive, which is a relatively low density for reaches below Billings.

Because of the riparian encroachment, Reach D16 has seen an increase in the area of riparian forest considered at low risk of cowbird parasitism; in 1950 there were about 250 acres of such forest per valley mile, and in 2001 there were 308 acres per valley mile.

The changes in Reach D16 are due in part to major flow alterations in the reach. The 2-year discharge, which is considered to have a large influence on channel size, has been reduced by 22 percent due to human development.

CEA-Related observations in Reach D16 include: •Extensive riparian encroachment with flow alterations •Conversion of open sand bars to forested islands

Recommended Practices (may include Yellowstone River Recommended Practices--YRRPs) for Reach D16 include: •Drill pad considerations

•Riparian protections

Reach D16

PHYSICAL FEATURES MAP (2011)

HYDROLOGIC SUMMARY

Hydrologic data available for the Reach Narratives include data from representative gaging stations, modeling from the COE from the Big Horn river upstream, and modeling by the USGS for the Big Horn River to the Missouri River confluence. Gaging stations that best represent the watershed area within any reach are used to describe the flood history within the reach. Hydrology modeling results generated for all reaches provides unregulated and regulated flow values. Seasonal and annual flow duration data generated by the USGS are available for reaches C10 through D13.

Gage Representation (Gage-Based): Sidney

Flood Hi	story							Downstream	Upstream
Year	Date	Flow on Date	Return li	nterval			Gago No	Gage	6329500
1978	May 23	111,000	10-25	5 yr			Gage NO	#Error	Sidney
1912	Mar 29	114,000	10-25	5 yr		Dorios		#Error	1011 2015
1944	Jun 21	120,000	10-25	10-25 yr		Period	I OI Record	#EII0	1911-2015
2011	May 24	124,000	10-25	5 yr		Distance	e To (miles)	#Error	23.3
1918	Jun 20	126,000	25-50) yr					
1943	Mar 29	132,000	25-50) yr					
1923	Oct 3	134,000	25-50) yr					
1952	Mar 31	138,000	25-50) yr					
1921	Jun 21	159,000	100-	-yr					
Dischar	ge							7Q10	95% Sum.
	1.0	1 Yr 2 Yr	5 Yr	10 Yr	50 Yr	100 Yr	500 Yr	Summer	Duration
Unregu	lated							NA	NA
Regu	lated							NA	NA
% Cł	nange							NA	NA

AERIAL PHOTOGRAPHY

A variety of aerial photographic sources provide the basis for much of the Cumulative Effects Assessment analysis. The table below lists the air photos compiled for the reach and the associated discharge at the most representative USGS gaging station.

	Source	Acquisition Date	Туре	Scale	Gage	Discharge
1950	???	???	B/W		6329500	
1995	USGS DOQQ	???	B/W		6329500	
2007	Woolpert	10/15/2007 - 11/2/0007	Color		6329500	
2011	USCOE	October 2012	color	1-ft pixel	6329500	9030
2011	NAIP	7/25/2011	Color	1-meter pixels	6329500	41100

PHYSICAL FEATURES

Several efforts to capture the types and extents of physical features in the corridor have been generated by the CEA study. The 2001 Physical Features Inventory was performed through helicopter/video Rapid Aerial Assessment by the NRCS (NRCS, 2001) and did not include Park County. This inventory includes point and linear features that represent bank armor, irrigation structures, transportation encroachments, and areas of accelerated erosion. Bank armor mapped in the 2001 inventory only reflects features on the active channel margin, and thus excludes off-channel features on historic side channels. Some floodplain restriction features such as dikes and levees in the 2001 Physical Features Inventory may extend well beyond the active channel. In 2013, the 2001 inventory was revised to include Park County. At that time, some attribute inconsistencies in the original data were addressed. This dataset was then updated to reflect conditions in the 2011 NAIP imagery.

For Stillwater, Yellowstone and Dawson Counties, a Physical Features Timeline was generated that includes additional mapping based on aerial photography and assigns approximate dates of feature construction based on observed presence/absence in historic imagery between the 1950s and 2005 (DTM and AGI, 2008). The Physical Features Timeline contains features that were not mapped in the 2001 inventory (e.g. bank armor abandoned in floodplain areas by 2001). As such the total bank armor extent in the 2005 data is commonly greater than that identified in 2001 or 2013.

Note: As the goal for each physical features mapping effort were different, with differing mapping extents, there will be descrepancies between total feature lengths (e.g. length of rock riprap) in each data set.

2001 and 2011 Physical Features Bankline Inventories

Feature Class	Feature Type	2001 Length (ft)	% of Bankline	2011 Length (ft)	% of Bankline	2001-2011 Change
Stream St	abilization					
	Rock RipRap	0	0.0%	266	0.3%	266
	Feature Type Totals		0.0%	266	0.3%	
	Reach Totals	6	0.0%	266	0.3%	

ICE JAMS

Ice jam data were obtained from the National Ice Jam Database maintained by the Ice Engineering Group at Army Corps of Engineers Cold Regions Research and Engineering Laboratory (https://rsgis.crrel.usace.army.mil/icejam/). From this database, Yellowstone River ice jams are summarized by reach in the Yellowstone River Historic Events Timeline (DTM and AGI, 2008b). The basic information for each ice jam is presented as a list of events. The graph represents the number of database entries for a reach. Note that a single jam event may have multiple entries.

GEOMORPHIC

The geomorphology data presented below consist of measured changes in Braiding Parameter since 1950 and blocked side channels. Braiding parameter is a measure of the total length of side channels relative to that of the main channel. The braiding parameter is calculated as the sum of anabranching and primary channel lengths divided by the primary channel length. Secondary channels within the bankfull margins are a function of flow stage and hence were not included in the braiding parameter calculation. If a reach has a braiding parameter of 3, then the total bankfull channel length is three times that of the main channel. The mean braiding parameter measured for all 88 reaches is 1.8.

Blocked side channels that were either plugged with a small dike or cutoff by larger features such as a levee or road prism were identified for the pre and post-1950s eras.

Additional geomorphic parameters are discussed in more detail in the study report and appendices.

Braiding (Bankfull)	Primary Chan. Length (ft)	Anab. Ch. Length (ft)	Bankfull Braiding Parameter		% Change in Braiding
1950	39,537	8,696	1.22	1950 to 1976:	
1976				1976 to 1995:	
1995	39,507	52,163	2.32	1995 to 2001:	-8.63%
2001	39,089	43,781	2.12	1950 to 2001:	73.78%
Change 1950 - 2001	-448	35,086	0.90		
Length of Side		Pre-1950s (ft)	0		
Channels Blocked		Post-1950s (ft)	0		

HYDRAULICS

Available hydraulic information includes county-based HEC-RAS modeling efforts by the Army Corps of Engineers with the exclusion of Park County. Floodplain modeling was performed for four conditions representing a developed and undeveloped floodplain, and unregulated and regulated flows for the 1.5, 2, 5, 10, 20, 50, 100, 200, and 500-year events. Park County has limited FEMA hydraulic modeling and was not included in the analysis.

The results of HEC-RAS modeling for the 5 and 100-year flood events were assessed to compare the extents of inundated area for the pristine (undeveloped floodplain, unregulated flows) and developed (developed floodplain, regulated flows) conditions. The data sets provided for each flow condition were unioned in the GIS to identify areas where the inundated extent differed. These area areas of human-caused floodplain isolation due to either flow alterations or physical features such as levees. For the 100-year flood event, isolated areas greater than 5 acres were attributed with the interpreted reason for isolation (railroad, levee, etc.). The resulting values are presented as acres and percent of the pristine floodplain that has been isolated. The pristine floodplain is defined as the total floodplain footprint minus the area of the mapped 2001 bankfull channel (mapped islands were included in the floodplain area).

Floodplain Isolation	100	-Year	5-Year		
	Isolated Acres	% of Floodplain	Isolated Acres	% of Floodplain	
Non-Structural (hydrology, geomorphic, etc.)	22	1.6%			
Agriculture (generally relates to field boundaries)	369	27.7%			
Agriculture (isloated by canal or large ditch)	0	0.0%			
Levee/Riprap (protecting agricultural lands)	0	0.0%			
Levee/Riprap (protecting urban, industrial, etc.)	0	0.0%			
Railroad	0	0.0%			
Abandoned Railroad	0	0.0%			
Transportation (Interstate and other roads)	0	0.0%			
Total Not Isolated (Ac)	939		1193		
Total Floodplain Area (Ac)	1330		1298		
Total Isolated (Ac)	390	29.4%	106	31.3%	

The 5-year floodplain is a good allegory for the extent of the riparian zone. Thus, irrigated areas within the 5-year floodplain tend to represent riparian zones that have been converted to agrigulture and may result in additional bank protection to protect the agricultural production and irrigation infrastructure.

	Flood	Sprinkler	Pivot	Total
Irrigated Acres within the 5 Year Flooplain:	8	0	0	8

CHANNEL MIGRATION ZONE

A series of Channel Migration Maps were developed for the Yellowstone River from Gardiner to its mouth in McKenzie County, North Dakota (Thatcher, Swindell, and Boyd, 2009). These maps and their accompanying report can be accessed from the YRCDC Website. The channel migration zone (CMZ) developed for the Yellowstone River is defined as a composite area made up of the existing channel, the historic channel since 1950 (Historic Migration Zone, or HMZ), and an Erosion Buffer that encompasses areas prone to channel erosion over the next 100 years. Areas within this CMZ that have been isolated by constructed features such as armor or floodplain dikes are attributed as "Restricted Migration Areas" (RMA). Beyond the CMZ boundaries, outlying areas that pose risks of channel avulsion are identified as "Avulsion Potential Zones".

Mean 50-Yr Migration Distance (ft)	Erosion Buffer (ft)	Total CMZ Acreage	Restricted CMZ Acreage	% Restricte Migration Area	d Total AHZ Acreage	Restrict AHZ e Acreag	ed % Restrict Avulsion je Area	ed 1
Uses within the	CMZ (Ac	res) Iri	Flood rigation 481.7	Sprinkler Irrigation 0.0	Pivot Irrigation 0.0	Urban/ ExUrban 0.0	Trans- portation 0.0	

Land

LAND USE

Land uses were mapped from aerial photography Gardiner to the confluence of the Missouri River in North Dakota for four time periods: 1950s, 1976, 2001, and 2011. Mapping was performed at approximately 1:6,000 to ensure consistent mapping across all data sets. Typically, if a feature could not be easily mapped at the target mapping scale, it was not separated out from the adjacent land use.

A four-tiered system was used to allow analysis at a variety of levels. Tier 1 breaks land use into Agricultural and Non-Agricultural uses. Tier two subdivided uses into productive Agricultural Land and Infrastructure for the Agricultural land, and Urban, Exurban and Transportation categories for the Non-Agricultural land. Tier three further breaks down land uses into more refined categories such as Irrigated or Non-Irrigated and Residential, Commercial, or Industrial. Finally, Tier 4 focuses primarily on the productive agricultural lands, identifying the type of irrigation (Pivot, Sprinkler or Flood).

Land Use Ti	meline - Tiers 2 and 3	Acres			% of Reach Area			a I	
Feature Class	Feature Type	1950	1976 2001	2011	1950	1976	2001	2011	
Agricultural Infra	structure								
	Canal	0	0	0	0.0%		0.0%	0.0%	
	Agricultural Roads	0	0	0	0.0%		0.0%	0.0%	
	Other Infrastructure	87	229	270	0.5%		1.4%	1.7%	
	Totals	87	229	270	0.5%		1.4%	1.7%	
Agricultural Land	b								
	Non-Irrigated	5,841	5,977	5,870	36.3%		37.2%	36.5%	
	Irrigated	4,631	8,513	8,492	28.8%		53.0%	52.8%	
	Totals	10,472	14,490	14,362	65.1%		90.1%	89.3%	
Channel									
	Channel	1,547	1,334	1,361	9.6%		8.3%	8.5%	
	Totals	1,547	1,334	1,361	9.6%		8.3%	8.5%	
ExUrban									
	ExUrban Other	0	0	0	0.0%		0.0%	0.0%	
	ExUrban Undeveloped	0	0	0	0.0%		0.0%	0.0%	
	ExUrban Industrial	0	4	64	0.0%		0.0%	0.4%	
	ExUrban Commercial	0	0	0	0.0%		0.0%	0.0%	
	ExUrban Residential	0	0	0	0.0%		0.0%	0.0%	
	Totals	0	4	64	0.0%		0.0%	0.4%	
Transportation									
	Public Road	0	18	18	0.0%		0.1%	0.1%	
	Interstate	0	0	0	0.0%		0.0%	0.0%	
	Railroad	0	0	0	0.0%		0.0%	0.0%	
	Totals	0	18	18	0.0%		0.1%	0.1%	
Urban									
	Urban Other	0	0	0	0.0%		0.0%	0.0%	
	Urban Residential	0	0	0	0.0%		0.0%	0.0%	
	Urban Commercial	0	0	0	0.0%		0.0%	0.0%	
	Urban Undeveloped	0	0	0	0.0%		0.0%	0.0%	
	Urban Industrial	0	0	0	0.0%		0.0%	0.0%	
	Totals	0	0	0	0.0%		0.0%	0.0%	

Change Between Years Land Use Timeline - Tiers 3 and 4 (% of Agricultural Land) Acres % of Reach Area **Feature Class** Feature Type 1950 1976 2001 2011 1950 1976 2001 2011 50-76 76-01 01-11 50-11 Irr Sprinkler 0 0 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Pivot 0 0 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Flood 4,631 8,513 8,492 44.2% 58.7% 59.1% 14.5% 0.4% 14.9% **Totals** 4,631 8,513 8,492 44.2% 58.7% 59.1% 14.5% 0.4% 14.9%

Nolrr

Reach D16

Multi-Use	5,423	5,308	5,281	51.8%	36.6%	36.8%	-15.2%	0.1%	-15.0%
Hay/Pasture	418	670	589	4.0%	4.6%	4.1%	0.6%	-0.5%	0.1%
Totals	5,841	5,977	5,870	55.8%	41.3%	40.9%	-14.5%	-0.4%	-14.9%

RIPARIAN

Riparian mapping data are derived from the Yellowstone River Riparian Vegetation Mapping study (DTM/AGI 2008). This study coarsely mapped the riparian vegetation communities using 1950's, 1976-1977, and 2001 aerial imagery in a GIS environment. The polygons are digitized at a scale of approximately 1:7,500, with a minimum mapping unit of approximately 10 acres. The goal of the delineation was to capture areas of similar vegetation structure as they appeared on the aerial imagery, while maintaining a consistent scale.

The "Riparian Turnover" values quantify the total area within the active channel area that converted from either woody vegetation to open bar or water, or from open bar or water to woody vegetation. A comparison of these values allows some consideration of overall riparian encroachment into the river corridor from 1950 to 2001.

Riparian Mapping

Shrub (A			cres)		Closed Timber (Acres)			Open Timber (Acres)		
Statistic	1950	1976	2001	1950	1976	2001	1950	1976	2001	
Min	0.5		1.7	0.6		2.5	3.3		5.3	
Max	379.8		185.8	930.0		891.6	31.5		60.8	
Average	44.8		26.0	141.0		95.7	13.2		20.1	
Sum	1,971.6		988.8	2,537.5		2,965.9	66.1		201.3	
Riparian	Turnove	r			Riparian	to Channel (a	cres)	296.8		
Conve from c	rsion of ripari hannel to ripa	an areas to irian betwee	channel, or n the 1950's		Channel to Riparian (acres) 769.0					
and 20	01 data set.			Riparian Encroachment (acres)				472.2		
Riparian	Recruitm	nent	1950s Cha	innel Mapped	as 2011 Ripa	arian (Ac)	757.5			
Creation of	of riparian area	as	1950s Flood	plain Mapped	as 2011 Cha	annel (Ac)	117.7			
between 1950s and 2001.			Total Recruitment (1950s to 2011)(Ac)				875.2			

WETLANDS

Wetland areas were mapped to National Wetland Inventory standards by the Montana Natural Heritage Program. Palustrine wetlands within the mapped 100-year inundation boundary were extracted and summarized into four categories: Riverine (Unconsolidated Bottom - UB, Aquatic Bed - AB, and Unconsolidated Shore - US), Emergent - EM, Scrub-Shrub - SS, and Forested - FO.

	Riverine	Emergent	Scrub/Shrub	Forested	Total
Mapped Acres	25.3	254.9	278.2	21.7	580.0
Acres/Valley Mile	3.6	36.2	39.5	3.1	

RUSSIAN OLIVE

Russian olive is considered an invasive species and its presence in the Yellowstone River corridor is fairly recent. As such, its spread can be used as a general indicator of invasive plants within the corridor. It has the added benefit of being easily identified in multi-spectral aerial photography, making it possible to inventory large areas using remote techniques.

In 2011, Natural Resources Conservation Service (NRCS) in Bozeman, MT conducted an inventory of Russian olive locations in the Yellowstone River watershed. This study utilized the Feature Analyst extension within ArcGIS to interpret multi-spectral 2008 NAIP imagery for the presence of Russian olive. The resulting analysis was converted from raster format to a polygon ESRI shape file for distribution and further analysis within a GIS environment.

This work scope was tasked with integrating the resulting Russian olive inventory into the Yellowstone River Conservation Districts Council (YRCDC) Cumulative Effects Assessment (CEA) GIS and associated reach-based database. Additionally, analysis of Russian olive within the corridor was conducted to characterize its distribution in throughout the corridor and its association with other corridor data sets.

	Floodplain	% of	Other	Inside	Inside '50s	Inside 50s
	Area (Ac)	Floodplain	Area (Ac)	RMA (Ac)	Channel (Ac)	Island (Ac)
Russian Olive in Reach	3.48	0.07%	6.30	0.00	0.00	0.00

FISHERIES SUMMARY

Fisheries data available for the Reach Narratives include low-flow and high-flow habitat mapping of 2001 conditions for 406 miles of river, extending from the mouth upstream to a point approximately 8 miles upstream of Park City. Habitat mapping was performed remotely on the 2001 CIR aerial photography utilizing habitat classifications developed by Montana Fish, Wildlife, and Parks (DTM 2009). Historic habitat mapping using the 1950's imagery is limited to Reach B1 (high-flow) and D9 (low and high-flow).

Fisheries field sampling data have been provided by Ann Marie Reinhold (MSU). In this study, the Yellowstone River from Park City to Sidney was divided into five segments. Within each segment, fish were sampled in reaches modified by riprap ("treatment reaches") and relatively unmodified reaches ("control reaches"). Fish sampling was conducted during summer and autumn of 2009, 2010, and 2011. Boat electrofishing, trammel nets, mini-fyke nets and bag seines were used to collect data from river bends.

Fish presence data is only presented for those reaches that were sampled.

The Low Flow Habitat Mapping followed schema deveoped by Montana Fish Wildlife and Parks to identify key habitat units for certain aquatic species.

Low Flow Fisheries Habitat Mapping	2001 (
Habitat Scour Pool	Bankfull 575.6	Low Flow 457.3	% of Low Flow 34.3%
Secondary Channel		12.5	0.9%
Secondary Channel (Seasonal)	216.4	152.0	11.4%
Channel Crossover	162.6	117.9	8.8%
Point Bar		10.3	0.8%
Side Bar		78.9	5.9%
Mid-channel Bar		53.1	4.0%
Island	379.1	379.1	28.4%
Dry Channel		72.8	5.5%

AVIAN

Birds were sampled in 2006 and 2007 by Danielle Jones of Montana State University. Point count methods were used at 304 randomly chosen sites in 21 braided or anabranching reaches. Each site was visited multiple times within a season, and sites were visited in both years. Birds were sampled in grassland, shrubland, and cottonwood forest habitats. Additional bird data was collected by Amy Cilimburg of Montana Audubon in summer 2012. High priority areas for data collection were identified with the assistance of the YRCDC Technical Advisory Committee. The Audubon methodology recorded data for a wider variety of bird species relative to the MSU study, including raptors and waterfowl.

CULTURAL INVENTORY SUMMARY

The Yellowstone River Cultural Inventory - 2006 documents the variety and intensity of different perspectives and values held by people who share the Yellowstone River. Between May and November of 2006, a total of 313 individuals participated in the study. They represented agricultural, civic, recreational, or residential interest groups. Also, individuals from the Crow and the Northern Cheyenne tribes were included. There are three particular goals associated with the investigation. The first goal is to document how the people of the Yellowstone River describe the physical character of the river and how they think the physical processes, such as floods and erosion, should be managed. Within this goal, efforts have been made to document participants' views regarding the many different bank stabilization techniques employed by landowners. The second goal is to document the degree to which the riparian zone associated with the river is recognized and valued by the participants. The third goal is to document concerns regarding the management of the river's resources. Special attention is given to the ways in which residents from diverse geographical settings and diverse interest groups view river management and uses. The results illustrate the commonalities of thought and the complexities of concerns expressed by those who share the resources of the Yellowstone River.

Summary of Cultural Views in Region D

A review of the interview data for the segment, Missouri River to Powder River, suggests that people in this area engage in four primary discussions when asked about the Yellowstone River. First, the notion of Eastern Montana is not simply a geographic reference. It is a defining concept that captures the agricultural roots and the cultural values of the people living in the study segment, and the river is an essential element within their notion of Eastern Montana. Second, the river is discussed as a wholesome recreational outlet. However, shifting landownership is noted as an important change in the recreational context. Third, even though agricultural practices are viewed as the mainstay of the local economies, many participants discuss the long-term economic viability of their communities as a concern. Industrial and residential developments along the river's edge are seemingly remote possibilities and are generally discussed with references to flood plain restrictions and the stability of nearby dikes. Finally, discussions of managing the river are limited, but a variety of opinions are offered regarding bank erosion and stabilization techniques.